Оптические явления в природе. Виды оптических явлений

Оптические явления в природе

Явления, связанные с преломлением света.

Миражи.

В неоднородной среде свет распространяется непрямолинейно. Если мы представим себе среду, в которой показатель преломления изменяется снизу вверх, и мысленно разобьем ее на тонкие горизонтальные слои, то, рассматривая условия преломления света при переходе от слоя к слою, заметим, что в такой среде луч света должен постепенно изменять свое направления.

Такое искривление световой луч претерпевает в атмосфере, в которой по тем или иным причинам, главным образом благодаря неравномерному нагреванию ее, показатель преломления воздуха изменяется с высотой.

Воздух обычно нагревается от почвы, поглощающей энергию солнечных лучей. Поэтому температура воздуха понижается с высотой. Известно также, что с высотой понижается и плотность воздуха. Установлено, что с увеличением высоты, показатель преломления уменьшается, поэтому лучи, идущие сквозь атмосферу искривляются, пригибаясь к Земле. Это явление получило название нормальной атмосферной рефракции. Вследствие рефракции небесные светила кажутся нам несколько «приподнятыми» (выше своей истинной высоты) над горизонтом.


Миражи делят на три класса.
К первому классу относят наиболее распространенные и простые по своему происхождению, так называемые озерные (или нижние) миражи, вызывающие столько надежд и разочарований у путников пустынь.

Объяснение этого явления простое. Нижние слои воздуха, разогретые от почвы, не успели еще подняться вверх; их показатель преломления света меньше, чем верхних. Поэтому лучи света, исходящие от предметов, изгибаясь в воздухе, попадают в глаз снизу.

Чтобы увидеть мираж, нет надобности ехать в Африку. Его можно наблюдать и в жаркий тихий летний день и у нас над разогретой поверхностью асфальтового шоссе.

Миражи второго класса называют верхними или миражами дальнего видения.

Они появляются в том случае, если верхние слои атмосферы окажутся по каким-либо причинам, например, при попадании туда нагретого воздуха, особенно разреженными. Тогда лучи, исходящие от земных предметов, искривляются сильнее и достигают земной поверхности, идя под большим углом к горизонту. Глаз же наблюдателя проецирует их в том направлении, по которому они входят в него.



Видимо в том, что большое количество миражей дальнего видения наблюдается на побережье Средиземного моря, повинна пустыня Сахара. Горячие массы воздуха поднимаются над ней, затем уносятся на север и создают благоприятные условия для возникновения миражей.

Верхние миражи наблюдаются и в северных странах, когда дуют теплые южные ветры. Верхние слои атмосферы оказываются нагретыми, а нижние – охлажденными из-за наличия больших масс тающих льдов и снегов.

Миражи третьего класса – сверхдальнего видения – трудно объяснить. Однако, высказывались предположения об образовании в атмосфере гигантских воздушных линз, о создании вторичного миража, то есть миража от миража. Возможно, что здесь играет роль ионосфера, отражающая не только радиоволны, но и световые волны.

Явления, связанные с дисперсией света

Радуга – это красивое небесное явление – всегда привлекала внимание человека. В прежние времена, когда люди еще очень мало знали об окружающем их мире, радугу считали «небесным знамением». Так, древние греки думали, сто радуга – это улыбка богини Ириды. Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя Ра расстоянии 1-2 км., иногда ее можно наблюдать на расстоянии 2-3 м. на фоне водяных капель, образованных фонтанами или распылителями воды



У радуги различают семь основных цветов, плавно переходящих один в другой.

Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают радугу более узкую, с резко выделяющимися цветами, малые – дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.

Впервые теория радуги была дана в 1637 году Р. Декартом. Он объяснил радугу как явление, связанное с отражением и преломлением света в дождевых каплях.

Образование цветов и их последовательность были объяснены позже, после разгадки сложной природы белого света и его дисперсии в среде. Дифракционная теория радуги разработана Эри и Пертнером.

Явления, связанные с интерференцией света

Белые световые окружности вокруг Солнца или Луны, которые возникают в результате преломления или отражения света находящимися в атмосфере кристаллами льда или снега, называются гало. В атмосфере присутствуют небольшие кристаллы воды, и когда их грани образуют прямой угол с плоскостью, проходящей через Солнце, того, кто наблюдает эффект, и кристаллы, на небе становится виден характерный белый ореол, окружающий Солнце. Так грани отражают лучи света с отклонением на 22°, образуя гало. В холодное время года гало, образованные кристаллами льда и снега на поверхности земли, отражают солнечный свет и рассеивают его в разных направлениях, образуя эффект под названием "бриллиантовая пыль".

Наиболее известным примером большого гало является знаменитое, часто повторяющееся «Брокенское видение». Например, человек, стоящий на холме или горе, за спиной которого восходит или заходит солнце, обнаруживает, что его тень, упавшая на облака, становится неправдоподобно огромной. Это происходит из-за того, что мельчайшие капли тумана особым образом преломляют и отражают солнечный свет. Свое название явление получило по имени вершины Броккен в Германии, на которой, из-за частых туманов, можно регулярно наблюдать этот эффект.

Паргелии.

"Паргелий" в переводе с греческого – "ложное солнце". Это одна из форм гало (см. пункт 6): на небе наблюдается одно или несколько дополнительных изображений Солнца, расположенных на той же высоте над горизонтом, что и настоящее Солнце. Миллионы кристаллов льда с вертикальной поверхностью, отражающие Солнце, и образуют это красивейшее явление.

Паргелии можно наблюдать в тихую погоду при низком положении Солнца, когда значительное количество призм располагается в воздухе так, что их главные оси вертикальны, и призмы медленно опускаются как маленькие парашютики. В этом случае наиболее яркий преломленный свет поступает в глаз под углом 220 с граней, расположенных вертикально, и создает вертикальные столбы по обе стороны от Солнца по горизонту. Эти столбы могут быть в некоторых местах особо яркими, создавая впечатление ложного Солнца.

Полярные сияния.

Одним из красивейших оптических явлений природы является полярное сияние. Невозможно передать словами красоту полярных сияний, переливающихся, мерцающих, пламенеющих на фоне темного ночного неба в полярных широтах.

В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета.



Полярные сияния наблюдают в двух основных формах – в виде лент и в виде облакоподобных пятен. Когда сияние интенсивно, оно приобретает форму лент. Теряя интенсивность, оно превращается в пятна. Однако многие ленты исчезают, не успев разбиться на пятна. Ленты как бы висят в темном пространстве неба, напоминая гигантский занавес или драпировку, протянувшуюся обычно с востока на запад на тысячи километров. Высота занавеса составляет несколько сотен километров, толщина не превышает несколько сотен метров, причем он так нежен и прозрачен, что сквозь него видны звезды. Нижний край занавеса довольно отчетливо и резко очерчен и часто подкрашен в красный или розоватый цвет, напоминающий кайму занавеса, верхний – постепенно теряется в высоте и это создает особенно эффектное впечатление глубины пространства.

Различают четыре типа полярных сияний:

1. Однородная дуга – светящаяся полоса имеет наиболее простую, спокойную форму. Она более ярка снизу и постепенно исчезает кверху на фоне свечения неба;

2.Лучистая дуга – лента становится несколько более активной и подвижной, она образует мелкие складки и струйки;

3.Лучистая полоса – с ростом активности более крупные складки накладываются на мелкие;

4.При повышении активности складки или петли расширяются до огромных размеров (до сотни километров), нижний край ленты сияет розовым светом. Когда активность спадает, складки исчезают и лента возвращается к однородной форме. Это наводит на мысль, что однородная структура являе6тся основной формой полярного сияния, а складки связаны с возрастанием активности.

Часто возникают сияния иного вида. Они захватывают весь полярный район и оказываются очень интенсивными. Происходят они во время увеличения солнечной активности. Эти сияния представляются в виде беловато-зеленого свечения всей полярной шапки. Такие сияния называются шквалами.

Заключение

Когда-то миражи «Летучий голландец» и «Фата Моргана» наводили ужас на моряков. В ночь на 27 марта 1898 года, среди Тихого океана экипаж судна «Матадор» был напуган видением, когда в штиль в полночь увидел в 2милях (3,2 км) судно, которое боролось с сильным штормом. Все эти события на самом деле происходили на расстоянии 1700км.

Сегодня все, кто знает законы физики, а точнее ее раздела оптика, могут объяснить все эти загадочные явления.

В своей работе я не описала все оптические явления природы. Их очень много. Мы любуемся голубым цветом неба, румяной зарей, пылающим закатом - эти явления объясняются поглощением и рассеянием солнечного света. Работая с дополнительной литературой, я убедилась, что на вопросы, которые возникают при наблюдениях за окружающим нас миром, можно всегда найти ответы. Правда, надо знать, основы естественных наук.

ВЫВОД: Оптические явления в природе объясняются преломлением или отражением света, либо волновыми свойствами света- дисперсией, интерференцией, дифракцией, поляризацией, либо квантовыми свойствами света. Мир загадочен, но познаваем.

1. Оптические явления в атмосфере были первыми оптическими эффектами, которые наблюдались человеком. С осмысления природы этих явлений и природы зрения человека начиналось становление проблемы света.

Общее число оптических явлений в атмосфере очень велико. Здесь будут рассмотрены лишь наиболее известные явления – миражи, радуга, гало, венцы, мерцания звёзд, голубой цвет неба и алый цвет зари . Образование этих эффектов связано с такими свойствами света как преломление на границах раздела сред, интерференция и дифракция.

2. Атмосферная рефракция это искривление световых лучей при прохождении через атмосферу планеты . В зависимости от источников лучей различают астрономическую и земную рефракцию. В первом случае лучи идут от небесных тел (звёзд, планет), во втором случае – от земных объектов. В результате атмосферной рефракции наблюдатель видит объект не там, где он находится, или не той формы, какую он имеет.

3. Астрономическая рефракция была известна уже во времена Птолемея (2 в. н.э.). В 1604 г. И. Кеплер предположил, что земная атмосфера имеет независимую от высоты плотность и определённую толщину h (рис.199). Луч 1, идущий от звёзды S прямо к наблюдателю A по прямой, не попадёт в его глаз. Преломившись на границе вакуума и атмосферы, он попадёт в точку В .

В глаз наблюдателя попадёт луч 2, который при отсутствии преломления в атмосфере должен был бы пройти мимо. В результате преломления (рефракции) наблюдатель будет видеть звезду не в направлении S , а на продолжении преломлённого в атмосфере луча, то есть в направлении S 1 .

Угол γ , на который отклоняется к зениту Z видимое положение звезды S 1 по сравнению с истинным положением S , называют углом рефракции . Во времена Кеплера углы рефракции были уже известны по результатам астрономических наблюдений некоторых звёзд. Поэтому данную схему Кеплер использовал для оценки толщины атмосферы h . По его вычислениям получилось h » 4 км. Если считать по массе атмосферы, то это примерно в два раза меньше истинного.

В действительности плотность атмосферы Земли уменьшается с высотой. Поэтому нижние слои воздуха оптически плотнее, чем верхние. Лучи света, идущие наклонно к Земле, преломляются не в одной точке границы вакуума и атмосферы, как в схеме Кеплера, а искривляются постепенно на всём протяжении пути. Это подобно тому, как проходит луч света через стопу прозрачных пластинок, показатель преломления которых тем больше, чем ниже расположена пластинка. Однако суммарный эффект рефракции проявляется так же, как и в схеме Кеплера. Отметим два явления, обусловленные астрономической рефракцией.

а. Видимые положения небесных объектов смещаются к зениту на угол рефракции γ . Чем ниже к горизонту находится звезда, тем заметнее приподнимается её видимое положение на небосклоне по сравнению с истинным (рис.200). Поэтому картина звёздного неба, наблюдаемая с Земли, несколько деформирована к центру. Не смещается только точка S , находящаяся в зените. Благодаря атмосферной рефракции могут наблюдаться звёзды, находящиеся несколько ниже линии геометрического горизонта.


Значения угла рефракции γ быстро убывают с ростом угла β высоты светила над горизонтом. При β = 0 γ = 35" . Это максимальный угол рефракции. При β = 5º γ = 10" , при β = 15º γ = 3" , при β = 30º γ = 1" . Для светил, высота которых β > 30º, рефракционное смещение γ < 1" .

б. Солнце освещает больше половины поверхности земного шара . Лучи 1 - 1, которые должны были бы в отсутствие атмосферы касаться Земли в точках диаметрального сечения DD , благодаря атмосфере касаются её несколько раньше (рис.201).

Поверхности Земли касаются лучи 2 - 2, которые без атмосферы прошли бы мимо. В результате линия терминатора ВВ , отделяющая свет от тени, смещается в область ночного полушария. Поэтому площадь дневной поверхности на Земле больше площади ночной.

4. Земная рефракция . Если явления астрономической рефракции обусловлены глобальным преломляющим эффектом атмосферы , то явления земной рефракции обусловлены локальными изменениями атмосферы , связанными обычно с температурными аномалиями. Наиболее замечательными проявлениями земной рефракции являются миражи .

а. Верхний мираж (от фр. mirage ). Наблюдается обычно в арктических районах с прозрачным воздухом и с низкой температурой поверхности Земли. Сильное выстывание поверхности здесь обусловлено не только низким положением солнца над горизонтом, но и тем, что поверхность, покрытая снегом или льдом, отражает большую часть радиации в космос. В результате в приземном слое с приближением к поверхности Земли очень быстро понижается температура и увеличивается оптическая плотность воздуха.

Искривление лучей в сторону Земли оказывается иногда столь значительным, что наблюдаются предметы, находящиеся далеко за линией геометрического горизонта. Луч 2 на рис.202, который в обычной атмосфере ушёл бы в её верхние слои, в данном случае искривляется к Земле и попадает в глаз наблюдателя.

По-видимому, именно такой мираж представляет собой легендарные “Летучие голландцы” - призраки кораблей, находящихся в действительности на расстоянии в сотни и даже тысячи километров. Удивительно в верхних миражах то, что не наблюдается заметного уменьшения видимых размеров тел.

Например, в 1898 г. экипаж бременского судна “Матадор” наблюдал судно-призрак, видимые размеры которого соответствовали расстоянию 3-5 миль. В действительности, как позднее выяснилось, это судно находилось в это время на расстоянии около тысячи миль. (1 морская миля равна 1852 м). Приземный воздух не только искривляет световые лучи, но и фокусирует их как сложная оптическая система.

В обычных условиях температура воздуха с увеличением высоты падает. Обратный ход температуры, когда с увеличением высоты температура растёт, называют инверсией температуры . Температурные инверсии могут возникать не только в арктических зонах, но и в других, более низких по широте местах. Поэтому верхние миражи могут возникать всюду, где воздух достаточно чист и где возникают температурные инверсии. Например, миражи дальнего видения наблюдаются иногда на побережье Средиземного моря. Инверсия температуры создаётся здесь горячим воздухом из Сахары.

б. Нижний мираж возникает при обратном ходе температуры и наблюдается обычно в пустынях в жаркое время. К полудню, когда солнце высоко, песчаный грунт пустыни, состоящий из частиц твёрдых минералов, разогревается до 50 и более градусов. В то же время на высоте нескольких десятков метров воздух остаётся сравнительно холодным. Поэтому коэффициент преломления выше расположенных слоёв воздуха оказывается заметно больше по сравнению с воздухом возле земли. Это также приводит к искривлению лучей, но в обратную сторону (рис.203).

Лучи света, идущие от низко расположенных над горизонтом частей неба, находящихся напротив наблюдателя, постоянно искривляются кверху и попадают в глаз наблюдателя в направлении снизу вверх. В результате на их продолжении на поверхности земли наблюдатель видит отражение неба, напоминающее водную гладь. Это так называемый “озёрный” мираж.

Эффект ещё более усиливается, когда в направлении наблюдения находятся скалы, возвышенности, деревья, постройки. В этом случае они видны как острова посреди обширного озера. Причём виден не только предмет, но и его отражение. По характеру искривления лучей приземный слой воздуха действует как зеркало водной поверхности.

5. Радуга . Это красочное оптическое явление, наблюдающееся во время дождя, освещённого солнцем и представляющее собой систему концентрических цветных дуг .

Первую теорию радуги разработал Декарт в 1637 г. К этому времени были известны следующие опытные факты, относящиеся к радуге:

а. Центр радуги О находится на прямой, соединяющей Солнце с глазом наблюдателя (рис.204).

б. Вокруг линии симметрии Глаз - Солнце располагается цветная дуга с угловым радиусом около 42°. Цвета располагаются, считая от центра, в порядке: голубой (г), зелёный (з), красный (к) (группа линий 1). Это главная радуга . Внутри главной радуги имеются слабые разноцветные дуги красноватого и зеленоватого оттенков.

в. Вторая система дуг с угловым радиусом около 51° называется вторичной радугой. Её цвета значительно бледнее и идут в обратном порядке, считая от центра, красный, зелёный, голубой (группа линий 2) .

г. Главная радуга появляется лишь тогда, когда солнце находится над горизонтом под углом не более 42°.

Как установил Декарт, основной причиной образования главной и вторичной радуги является преломление и отражение световых лучей в каплях дождя. Рассмотрим основные положения его теории.

6. Преломление и отражение монохроматического луча в капле . Пусть монохроматический луч интенсивностью I 0 падает на сферическую каплю радиуса R на расстоянии y от оси в плоскости диаметрального сечения (рис.205). В точке падения A часть луча отражается, а основная часть интенсивностью I 1 проходит внутрь капли. В точке B большая часть луча проходит в воздух (на рис.205 вышедший в В луч не показан), а меньшая часть отражается и падает в точку С . Вышедший в точке С луч интенсивностью I 3 участвует в образовании главной радуги и слабых вторичных полос внутри главной радуги.

Найдём угол θ , под которым выходит луч I 3 по отношению к падающему лучу I 0 . Заметим, что все углы между лучом и нормалью внутри капли одинаковы и равны углу преломления β . (Треугольники ОАВ и ОВС равнобедренные). Сколько бы луч не “кружился” внутри капли, все углы падения и отражения одинаковы и равны углу преломления β . По этой причине любой луч, выходящий из капли в точках В , С и т.д., выходит под одним и тем же углом, равным углу падения α .

Чтобы найти угол θ отклонения луча I 3 от первоначального, надо просуммировать углы отклонения в точках А , В и С : q = (α – β) + (π – 2β) + (α - β) = π + 2α – 4β . (25.1)

Удобнее измерять острый угол φ = π – q = 4β – 2α . (25.2)

Выполнив расчёт для нескольких сот лучей, Декарт нашёл, что угол φ с ростом y , то есть по мере удаления луча I 0 от оси капли, сначала растёт по абсолютной величине, при y /R ≈ 0,85 принимает максимальное значение, а затем начинает убывать.

Сейчас это предельное значение угла φ можно найти, исследовав функцию φ на экстремум по у . Так как sinα = yçR , а sinβ = yçR ·n , то α = arcsin(yçR ), β = arcsin(yçRn ). Тогда

, . (25.3)

Разнеся члены в разные части равенства и возведя в квадрат, получаем:

, Þ (25.4)

Для жёлтой D -линии натрия λ = 589,3 нм показатель преломления воды n = 1,333. Расстояние точки А вхождения этого луча от оси y = 0,861R . Предельный угол для этого луча равен

Интересно, что точка В первого отражения луча в капле также максимально удалена от оси капли. Исследовав на экстре-мум угол d = p α ε = p α – (p – 2β ) = 2β α по величине у , получаем то же условие, у = 0,861R и d = 42,08°/2 = 21,04°.

На рис.206 показана зависимость угла φ , под которым из капли выходит луч после первого отражения (формула 25.2), от положения точки А входа луча в каплю. Все лучи отражаются внутри конуса с углом при вершине ≈ 42º.

Очень важно для образования радуги то, что лучи, вошедшие в каплю в цилиндрическом слое толщиной уçR от 0,81 до 0,90 , выходят после отражения в тонкой стенке конуса в угловых пределах от 41,48º до 42,08º. Снаружи стенка конуса гладкая (есть экстремум угла φ ), изнутри – рыхлая. Угловая толщина стенки ≈ 20 угловых минут. Для проходящих лучей капля ведёт себя как линза с фокусным расстоянием f = 1,5R . Входят в каплю лучи по всей поверхности первого полушария, отражаются назад расходящимся пучком в пространстве конуса с осевым углом ≈ 42º, а проходят через окно с угловым радиусом ≈ 21º (рис.207).

7. Интенсивность вышедших из капли лучей . Здесь будем говорить лишь о лучах, вышедших из капли после 1-го отражения (рис.205). Если луч, падающий на каплю под углом α , имеет интенсивность I 0 , то прошедший в каплю луч имеет интенсивность I 1 = I 0 (1 – ρ ), где ρ – коэффициент отражения по интенсивности.

Для неполяризованного света коэффициент отражения ρ можно вычислить по формуле Френеля (17.20). Поскольку в формулу входят квадраты функций от разности и суммы углов α и β , то коэффициент отражения не зависит от того, в каплю входит луч, или из капли. Поскольку углы α и β в точках А , В , С одинаковы, то и коэффициент ρ во всех точках А , В , С один и тот же. Отсюда, интенсивности лучей I 1 = I 0 (1 – ρ ), I 2 = I 1 ρ = I 0 ρ (1 – ρ ), I 3 = I 2 (1 – ρ ) = I 0 ρ (1 – ρ ) 2 .

В таблице 25.1 приведены значения углов φ , коэффициента ρ и отношения интенсивности I 3 çI 0 , вычисленные при разных расстояниях уçR входа луча для жёлтой линии натрия λ = 589,3 нм. Как видно из таблицы, при у ≤ 0,8R в луч I 3 попадает меньше 4 % энергии от падающего на каплю луча. И лишь начиная с у = 0,8R и более вплоть до у = R интенсивность вышедшего луча I 3 увеличивается в несколько раз.

Таблица 25.1

y /R α β φ ρ I 3 /I 0
0 0 0 0 0,020 0,019
0,30 17,38 12,94 16,99 0,020 0,019
0,50 29,87 21,89 27,82 0,021 0,020
0,60 36,65 26,62 33,17 0,023 0,022
0,65 40,36 29,01 35,34 0,025 0,024
0,70 44,17 31,52 37,73 0,027 0,025
0,75 48,34 34,09 39,67 0,031 0,029
0,80 52,84 36,71 41,15 0,039 0,036
0,85 57,91 39,39 42,08 0,052 0,046
0,90 63,84 42,24 41,27 0,074 0,063
0,95 71,42 45,20 37,96 0,125 0,095
1,00 89,49 48,34 18,00 0,50 0,125

Итак, лучи, выходящие из капли под предельным углом φ , имеют значительно большую по сравнению с другими лучами интенсивность по двум причинам. Во-первых, за счёт сильного углового сжатия пучка лучей в тонкой стенке конуса, а во-вторых, за счёт меньших потерь в капле. Лишь интенсивность этих лучей достаточна для того, чтобы вызвать в глазу ощущение блеска капли.

8. Образование главной радуги . При падении на каплю света вследствие дисперсии луч расщепляется. В результате стенка конуса яркого отражения расслаивается по цветам (рис.208). Фиолетовые лучи (l = 396,8 нм) выходят под углом j = 40°36", красные (l = 656,3 нм) – под углом j = 42°22". В этом угловом интервале Dφ = 1°46" заключён весь спектр выходящих из капли лучей. Фиолетовые лучи образуют внутренний конус, красные – внешний. Если освещённые солнцем дождевые капли видит наблюдатель, то те из них, лучи конуса которых попадают в глаз, видятся наиболее яркими. В итоге все капли, находящиеся по отношению к солнечно-му лучу, проходящему через глаз наблюдателя, под углом красного конуса, видятся красными, под углом зелёного -зелёными (рис.209).

9. Образование вторичной радуги происходит благодаря лучам, выходящим из капли после второго отражения (рис.210). Интенсивность лучей после второго отражения примерно на порядок меньше по сравнению с лучами после первого отражения и имеет примерно такой же ход с изменением уçR .

Лучи, выходящие из капли после второго отражения образуют конус с углом при вершине ≈ 51º. Если у первичного конуса гладкая сторона снаружи, то у вторичного изнутри. Между этими конусами практически нет лучей. Чем крупнее капли дождя, тем ярче радуга. С уменьшением размеров капель радуга бледнеет. При переходе дождя в морось с R ≈ 20 – 30 мкм радуга вырождается в белесоватую дугу с практически неразличимыми цветами.

10. Гало (от греч. halōs - кольцо) – оптическое явление, представляющее собой обычно радужные круги вокруг диска Солнца или Луны с угловым радиусом 22º и 46º. Эти круги образуются в результате преломления света находящимися в перистых облаках ледяными кристаллами, имеющими форму шестигранных правильных призм.

Снежинки, падающие на землю, очень разнообразны по форме. Однако кристаллики, образующиеся в результате конденсации паров в верхних слоях атмосферы, имеют, в основном, форму шестигранных призм. Из всех возможных вариантов прохождения луча через шестигранную призму наиболее важны три (рис.211).

В случае (а) луч проходит через противоположные парал-лельные грани призмы, не расщепляясь и не отклоняясь.

В случае (б) луч проходит через грани призмы, образующие между собой угол 60º, и преломляется как в спектральной призме. Интенсивность луча, выходящего под углом наименьшего отклонения 22º, максимальна. В третьем случае (в) луч проходит через боковую грань и основание призмы. Преломляющий угол 90º, угол наименьшего отклонения 46º. В обоих последних случаях белые лучи расщепляются, голубые лучи отклоняются больше, красные – меньше. Случаи (б) и (в) обуславливают появление колец, наблюдающихся в проходящих лучах и имеющих угловые размеры 22º и 46º (рис.212).

Обычно наружное кольцо (46º) ярче внутреннего и оба они имеют красноватый оттенок. Это объясняется не только интенсивным рассеиванием голубых лучей в облаке, но и тем, что дисперсия голубых лучей в призме больше, чем красных. Поэтому голубые лучи выходят из кристаллов сильно расходящимся пучком, из-за чего их интенсивность уменьшается. А красные лучи выходят узким пучком, имеющим значительно большую интенсивность. При благоприятных условиях, когда удаётся различать цвета, внутренняя часть колец красная, внешняя – голубая.

10. Венцы – светлые туманные кольца вокруг диска светила. Их угловой радиус много меньше радиуса гало и не превышает 5º. Венцы возникают вследствие дифракционного рассеяния лучей на образующих облако или туман водяных каплях.

Если радиус капли R , то первый дифракционный минимум в параллельных лучах наблюдается под углом j = 0,61∙lçR (см. формулу 15.3). Здесь l - длина волны света. Дифракционные картины отдельных капель в параллельных лучах совпадают, в результате интенсивность светлых колец усиливается.

По диаметру венцов можно определять размер капель в облаке. Чем крупнее капли (больше R ), тем меньше угловой размер кольца. Самые большие кольца наблюдаются от самых мелких капель. На расстояниях несколько километров дифракционные кольца ещё заметны, когда размер капель не менее 5 мкм. В этом случае j max = 0,61lçR ≈ 5 ¸ 6°.

Окраска светлых колец венцов проявляется очень слабо. Когда она заметна, то наружный край колец имеет красноватый цвет. То есть распределение цветов в венцах обратно распределению цветов в кольцах гало. Помимо угловых размеров это также позволяет различать венцы и гало между собой. Если в атмосфере присутствуют капли широкого спектра размеров, то кольца венцов, налагаясь друг на друга, образуют общее светлое сияние вокруг диска светила. Это сияние называют ореолом .

11. Голубой цвет неба и алый цвет зари . Когда Солнце находится выше горизонта, безоблачное небо видится голубым. Дело в том, что из лучей солнечного спектра в соответствии с законом Рэлея I расс ~ 1/l 4 наиболее интенсивно рассеиваются короткие синие, голубые и фиолетовые лучи.

Если Солнце находится низко над горизонтом, то его диск воспринимается багрово-красным по этой же причине. Благодаря интенсивному рассеянию коротковолнового света до наблюдателя доходят, в основном, слабо рассеивающиеся красные лучи. Рассеяние лучей от восходящего или заходящего Солнца особенно велико ещё потому, что лучи проходят большое расстояние вблизи поверхности Земли, где концентрация рассеивающих частиц особенно велика.

Утренняя или вечерняя заря – окрашивание близкой к Солнцу части неба в розовый цвет – объясняется дифракционным рассеянием света на кристалликах льда в верхних слоях атмосферы и геометрическим отражением света от кристаллов.

12. Мерцание звёзд – это быстрые изменения блеска и цвета звёзд, особенно заметные вблизи горизонта. Мерцание звёзд обусловлено преломлением лучей в быстро пробегающих струях воздуха, которые из-за разной плотности имеют разный показатель преломления. В результате слой атмосферы, через который проходит луч, ведёт себя как линза с переменным фокусным расстоянием. Она может быть как собирающей, так и рассеивающей. В первом случае свет концентрируется, блеск звезды усиливается, во втором – свет рассеивается. Такая перемена знака регистрируется до сотни раз в секунду.

Вследствие дисперсии луч разлагается на лучи разных цветов, которые идут по разным путям и могут расходиться тем больше, чем ниже звезда к горизонту. Расстояние между фиолетовыми и красными лучами от одной звезды может достигать у поверхности Земли 10 метров. В результате наблюдатель видит непрерывное изменение блеска и цвета звезды.

Волгоградская муниципальная гимназия №1

Экзаменационная работа

по физике на тему:

«Оптические явления в природе»

Выполнили

ученицы 9класса «Б»

Покусаева В.О.

Трубникова М.В.

План

1. Введение

а) Что такое оптика?

б) Виды оптики

в) Роль оптики в развитии современной физики

2. Явления, связанные с отражением света

а) Предмет и его отражение

б) Зависимость коэффициента отражения от угла падения света

в) Защитные стекла

д) Полное отражение света

е) Цилиндрический световод

ж) Алмазы и самоцветы

3. Явления, связанные с преломлением света

б) Радуга

4. Полярные сияния

Введение

Что такое оптика?

Первые представления древних ученых о свете были весьма наивны. Считалось, что из глаз выходят особые тонкие щупальцы и зрительные впечатления возникают при ощупывании ими предметов. Тогда под оптикой понимали науку о зрении. Именно такой точный смысл слова «оптика». В средние века оптика постепенно из науки о зрении превратилась в науку о свете, этому способствовало изобретение линз и камеры-обскуры. В современное время оптика - это раздел физики, в котором исследуется испускание света, его распространение в различных средах и взаимодействие с веществом. Что же касается вопросов, связанных со зрением, устройство и функционирование глаза, то они выделились в специальное научное направление, называемое физиологической оптикой.

Виды оптики

При рассмотрении многих оптических явлений можно пользоваться представлением о световых лучах – геометрических линиях, вдоль которых распространяется световая энергия. В этом случае говорят о геометрической (лучевой) оптике.

Геометрическая оптика широко используется в светотехнике и при рассмотрении действий многочисленных приборов и устройств – начиная от лупы и очков и кончая сложнейшими оптическими микроскопами и телескопами.

В начале XIX века развернулись интенсивные исследования открытых ранее явлений интерференции, дифракции и поляризации света. Эти явления не находили объяснения в рамках геометрической оптики, необходимо было рассматривать свет в виде поперечных волн. Так возникла волновая оптика. Первоначально полагали, что свет - это упругие волны в некоторой среде (мировом эфире), которая будто бы заполняет все мировое пространство.

В 1864 году английский физик Джеймс Максвелл создал электромагнитную теорию света, согласно которой волны света – это электромагнитные волны с соответствующим диапазоном длин.

Исследования, выполненные в начале XX века, показали, что для объяснения некоторых явлений, например фотоэффекта, необходимо представить световой пучок в виде потока своеобразных частиц – световых квантов (фотонов). Еще 200 лет назад Исаак Ньютон придерживался аналогичной точки зрения на природу света в своей «теории истечения света». Теперь представление о световых квантах изучает квантовая оптика.

Роль оптики в развитии современной физики.

Роль оптики в развитии современной физики велика. Возникновение двух наиболее важных и революционных теорий двадцатого столетия (квантовой механики и теории относительности) в существенной мере связано с оптическими исследованиями. Оптические методы анализа вещества на молекулярном уровне породили специальное научное направление – молекулярную оптику. К ней тесно примыкает оптическая спектроскопия, применяемая в современном материаловедении, при исследованиях плазмы, в астрофизике. Существуют также электронная и нейтронная оптики; созданы электронный микроскоп и нейтронное зеркало. Разработаны оптические модели атомных ядер.

Способствуя развитию разных направлений современной физики, оптика в то же время и сама переживает сегодня период бурного развития. Основной толчок этому развитию дало изобретение интенсивных источников когерентного света – лазеров. В результате волновая оптика поднялась на более высокую ступень, соответствующую когерентной оптике. Трудно даже перечислить все новейшие научно-технические направления, развивающиеся благодаря появлению лазеров. Среди них нелинейная оптика, голография, радиооптика, пикосекундная оптика, адаптивная оптика и другие. Радиооптика возникла на стыке радиотехники и оптики; она исследует оптические методы передачи и обработки информации. Эти методы обычно сочетают с традиционными электронными методами; в результате сложилось научно-техническое направление, называемое оптоэлектронникой. Передача световых сигналов по диэлектрическим волокнам составляет предмет волоконной оптики. Используя достижения нелинейной оптики, можно исправлять волновой фронт светового пучка, искажающийся при распространении света в той или иной среде, например в атмосфере или в воде. В результате возникла и интенсивно развивается так называемая адоптивная оптика. К ней тесно примыкает зарождающаяся на наших глазах фотоэнергетика, занимающаяся, в частности, вопросами эффективной передачи световой энергии по лучу света. Современная лазерная техника позволяет получать световые импульсы длительностью порядка всего лишь пикосекунды. Такие импульсы оказываются уникальным «инструментом» для исследования целого ряда быстропротекающих процессов в веществе, и в частности в биологических структурах. Возникло и развивается специальное направление – пикосекундная оптика; к нему тесно примыкает фотобиология. Можно без преувеличения сказать, что широкое практическое использование достижений современной оптики – обязательное условие научно-технического прогресса. Оптика открыла человеческому разуму дорогу в микромир, она же позволила ему проникнуть в тайны звездных миров. Оптика охватывает все стороны нашей практической деятельности.

Явления, связанные с отражением света.

Предмет и его отражение

То, что отраженный в стоячей воде пейзаж не отличается от реального, а только перевернут «вверх ногами» далеко не так.

Если человек посмотрит поздним вечером, как отражаются в воде светильники или как отражается берег, спускающийся к воде, то отражение покажется ему укороченным и совсем «исчезнет», если наблюдатель находится высоко над поверхностью воды. Также никогда нельзя увидеть отражение верхушки камня, часть которого погружена в воду.

Пейзаж видится наблюдателю таким, как если бы на него смотрели из точки, находящейся на столько глубже поверхности воды, насколько глаз наблюдателя находится выше поверхности. Разница между пейзажем и его изображением уменьшается по мере приближения глаза к поверхности воды, а так же по мере удаления объекта.

Часто людям кажется, что отражение в пруду кустов и деревьев отличается большей яркостью красок и насыщенностью тонов. Эту особенность также можно заметить, наблюдая отражение предметов в зеркале. Здесь большую роль играет психологическое восприятие, чем физическая сторона явления. Рама зеркала, берега пруда ограничивают небольшой участок пейзажа, ограждая боковое зрение человека от избыточного рассеянного света, поступающего со всего небосвода и ослепляющего наблюдателя, то есть он смотрит на небольшой участок пейзажа как бы через темную узкую трубу. Уменьшение яркости отраженного света по сравнению с прямым облегчает людям наблюдение неба, облаков и других яркоосвещенных предметов, которые при прямом наблюдении оказывается слишком ярким для глаза.

Зависимость коэффициента отражения от угла падения света.

На границе двух прозрачных сред свет частично отражается, частично проходит в другую среду и преломляется, частично поглощается средой. Отношение отраженной энергии к падающей называют коэффициентом отражения. Отношение энергии света, прошедшего через вещество, к энергии падающего света называют коэффициентом пропускания.

Коэффициенты отражения и пропускания зависят от оптических свойств, граничащих между собой сред и угла падения света. Так, если свет падает на стеклянную пластинку перпендикулярно (угол падения α=0), то отражается всего лишь 5% световой энергии, а 95% проходит через границу раздела. При увеличении угла падения доля отраженной энергии возрастает. При угле падения α=90˚ она равна единице.

Зависимость интенсивности отраженного и проходящего через стеклянную пластинку света можно проследить, располагая пластинку под различными углами к световым лучам и оценивая интенсивность на глаз.

Интересно также оценить на глаз интенсивность света, отраженного от поверхности водоема, в зависимости от угла падения, пронаблюдать отражение солнечных лучей от окон дома при различных углах падения днем, при закате, восходе светила.

Защитные стекла

Обычные оконные стекла частично пропускают тепловые лучи. Это хорошо для использования их в северных районах, а также для парников. На юге же помещения настолько перегреваются, что работать в них тяжело. Защита от Солнца сводится либо к затемнению здания деревьями, либо к выбору благоприятной ориентации здания при перестройке. И то и другое иногда бывает затруднительным и не всегда выполнимым.

Для того чтобы стекло не пропускало тепловые лучи, его покрывают тонкими прозрачными пленками окислов металлов. Так, оловянно-сурьмяная пленка не пропускает более половины тепловых лучей, а покрытия содержащие окись железа, полностью отражают ультрафиолетовые лучи и 35-55% тепловых.

Растворы пленкообразующих солей наносят из пульверизатора на горячую поверхность стекла во время его тепловой обработки или формования. При высокой температуре соли переходят в окиси, крепко связанные с поверхностью стекла.

Подобным образом изготовляют стекла для светозащитных очков.

Полное внутреннее отражение света

Красивое зрелище представляет собой фонтан, у которого выбрасываемые струи освещаются изнутри. Это можно изобразить в обычных условиях, проделав следующий опыт (рис. 1). В высокой консервной банке на высоте 5 см от дна надо просверлить круглое отверстие (а ) диаметром 5-6 мм. Электрическую лампочку с патроном надо аккуратно обернуть целлофановой бумагой и расположить ее напротив отверстия. В банку надо налить воды. Открыв отверстие а , получим струю, которая будет освещена изнутри. В темной комнате она ярко светится и опят выглядит очень эффектно. Струе можно придать любую окраску, поместив на пути лучей света цветное стекло б . Если на пути струи подставить палец, то вода разбрызгивается и эти капельки ярко светятся.

Объяснение этого явления довольно простое. Луч света проходит вдоль струи воды и попадает на изогнутую поверхность под углом, большим предельного, испытывает полное внутреннее отражение, а затем опять попадает на противоположную сторону струи под углом опять больше предельного. Так луч проходит вдоль струи изгибаясь вместе с ней.

Но если бы свет полностью отражался внутри струи, то она не была бы видна извне. Часть света рассеивается водой, пузырьками воздуха и различными примесями, имеющимися в ней, а также вследствие неровностей поверхности струи, поэтому она видна снаружи.

Цилиндрический световод

Если направить световой пучок в один торец сплошного стеклянного изогнутого цилиндра, можно заметить, что свет будет выходить из его другого торца (рис. 2); через боковую поверхность цилиндра свет почти не выходит. Прохождение света по стеклянному цилиндру объясняется тем, что, падая на внутреннюю поверхность цилиндра под углом, больше предельного, свет многократно испытывает полное отражение и достигает конца.

Чем тоньше цилиндр, тем чаще будут происходить отражения луча и тем большая часть света будет падать на внутреннюю поверхность цилиндра под углами, большими предельного.

Алмазы и самоцветы

В Кремле существует выставка алмазного фонда России.

В зале свет слегка приглушен. В витринах сверкают творения ювелиров. Здесь можно увидеть такие алмазы, как «Орлов», «Шах», «Мария», «Валентина Терешкова».

Секрет прелестной игры света в алмазах, заключается в том, что этот камень имеет высокий показатель преломления (n=2,4173) и вследствие этого малый угол полного внутреннего отражения (α=24˚30′) и обладает большей дисперсией, вызывающей разложение белого света на простые цвета.

Кроме того, игра света в алмазе зависит от правильности его огранки. Грани алмаза многократно отражают свет внутри кристалла. Вследствие большой прозрачности алмазов высокого класса свет внутри них почти не теряет своей энергии, а только разлагается на простые цвета, лучи которых затем вырываются наружу в различных, самых неожиданных направлениях. При повороте камня меняются цвета, исходящие из камня, и кажется, что сам он является источником многих ярких разноцветных лучей.

Встречаются алмазы, окрашенные в красный, голубоватый и сиреневый цвета. Сияние алмаза зависит от его огранки. Если смотреть сквозь хорошо ограненный водяно-прозрачный бриллиант на свет, то камень кажется совершенно непрозрачным, а некоторые его грани выглядят просто черными. Это происходит потому, что свет, претерпевая полное внутреннее отражение, выходит в обратном направлении или в стороны.

Если смотреть на верхнюю огранку со стороны света, она сияет многими цветами, а местами блестит. Яркое сверкание верхних граней бриллианта называют алмазным блеском. Нижняя сторона бриллианта снаружи кажется как бы посеребренной и отливает металлическим блеском.

Наиболее прозрачные и крупные алмазы служат украшением. Мелкие алмазы находят широкое применение в технике в качестве режущего или шлифующего инструмента для металлообрабатывающих станков. Алмазами армируют головки бурильного инструмента для проходки скважин в твердых породах. Такое применение алмаза возможно из-за большой отличающей его твердости. Другие драгоценные камни в большинстве случаев являются кристаллами окиси алюминия с примесью окислов окрашивающих элементов – хрома (рубин), меди (изумруд), марганца (аметист). Они также отличаются твердостью, прочностью и обладают красивой окраской и «игрой света». В настоящее время умеют получать искусственным путем крупные кристаллы окиси алюминия и окрашивать их в желаемый цвет.

Явления дисперсии света объясняют многообразием красок природы. Целый комплекс оптических экспериментов с призмами в XVII веке провел английский ученый Исаак Ньютон. Эти эксперименты показали, что белый свет не является основным, его надо рассматривать как составной («неоднородный»); основными же являются различные цвета («однородные» лучи, или «монохроматические» лучи). Разложение белого света на различные цвета происходит по той причине, что каждому цвету соответствует своя степень преломляемости. Эти выводы, сделанные Ньютоном, согласуются с современными научными представлениями.

Наряду с дисперсией коэффициента преломления наблюдается дисперсия коэффициентов поглощения, пропускания и отражения света. Этим объясняются разнообразные эффекты при освещении тел. Например, если имеется какое-то прозрачное для света тело, у которого для красного света коэффициент пропускания велик, а коэффициент отражения мал, для зеленого же света наоборот: коэффициент пропускания мал, а коэффициент отражения велик, тогда в проходящем свете тело будет казаться красным, а в отраженном свете – зеленым. Такими свойствами обладает, например, хлорофилл – зеленое вещество, содержащееся в листьях растений и обуславливающее зеленый цвет. Раствор хлорофилла в спирту при рассматривании на просвет оказывается красным. В отраженном свете этот же раствор выглядит зеленым.

Если у какого-то тела коэффициент поглощения велик, а коэффициенты пропускания и отражения малы, то такое тело будет казаться черным и непрозрачным (например, сажа). Очень белое, непрозрачное тело (например, окись магния) имеет коэффициент отражения близкий к единице для всех длин волн, и очень малые коэффициенты пропускания и поглощения. Вполне прозрачное для света тело (стекло) имеет малые коэффициенты отражения и поглощения и близкий к единицы для всех длин волн коэффициент пропускания. У окрашенного стекла для некоторых длин волн коэффициенты пропускания и отражения практически равны нулю и, соответственно, значение коэффициента поглощения для этих же длин волн близко к единице.

Явления, связанные с преломлением света

Мираж

Некоторые виды миражей. Из большего многообразие миражей выделим несколько видов: «озерные» миражи, называемые также нижними миражами, верхние миражи, двойные и тройные миражи, миражи сверхдальнего видения.

Нижние («озерные») миражи возникают над сильно нагретой поверхностью. Верхние миражи возникают, наоборот, над сильно охлажденной поверхностью, например над холодной водой. Если нижние миражи наблюдают, как правило, в пустынях и степях, то верхние наблюдают в северных широтах.

Верхние миражи отличаются разнообразием. В одних случаях они дают прямое изображение, в других случаях в воздухе появляется перевернутое изображение. Миражи могут быть двойными, когда наблюдаются два изображения, простое и перевернутое. Эти изображения могут быть разделены полосой воздуха (одно может оказаться над линией горизонта, другое под ней), но могут непосредственно смыкаться друг с другом. Иногда возникает еще одно - третье изображение.

Особенно удивительны миражи сверхдальнего видения. К. Фламмарион в своей книге «Атмосфера» описывает пример подобного миража: «Опираясь на свидетельства нескольких лиц, заслуживающих доверия, я могу сообщить про мираж, который видели в городе Вервье (Бельгия) в июне 1815 г. Однажды утром жители города увидели в небе войско, и так ясно, что можно было различить костюмы артиллеристов и даже, например, пушку со сломанным колесом, которое вот-вот отвалится… Это было утро сражения при Ватерлоо!» Описанный мираж изображен в виде цветной акварели одним из очевидцев. Расстояние от Ватерлоо до Вервье по прямой линии составляет более 100км. Известны случаи, когда подобные миражи наблюдались и на больших расстояниях – до 1000км. «Летучего голландца» следует отнести именно к таким миражам.

Объяснение нижнего («озерного») миража. Если воздух у самой поверхности земли сильно нагрет и, следовательно, его плотность относительно мала, то показатель преломления у поверхности будет меньше, чем в более высоких воздушных слоях. Изменение показателя преломления воздуха n с высотой h вблизи земной поверхности для рассматриваемого случая показано на рисунке 3, а.

В соответствии с установленным правилом, световые лучи вблизи поверхности земли будут в данном случае изгибаться так, чтобы их траектория была обращена выпуклостью вниз. Пусть в точке A находится наблюдатель. Световой луч от некоторого участка голубого неба попадет в глаз наблюдателя, испытав указанное искривление. А это означает, что наблюдатель увидит соответствующий участок небосвода не над линией горизонта, а ниже ее. Ему будет казаться, что он видит воду, хотя на самом деле перед ним изображение голубого неба. Если представить себе, что у линии горизонта находятся холмы, пальмы или иные объекты, то наблюдатель увидит и их перевернутыми, благодаря отмеченному искривлению лучей, и воспримет как отражения соответствующих объектов в несуществующей воде. Так возникает иллюзия, представляющая собой «озерный» мираж.

Простые верхние миражи. Можно предположить, что воздух у самой поверхности земли или воды не нагрет, а, напротив, заметно охлажден по сравнению с более высокими воздушными слоями; изменение n с высотой h показано на рисунке 4, а. Световые лучи в рассматриваемом случае изгибаются так, что их траектория обращена выпуклостью вверх. Поэтому теперь наблюдатель может видеть объекты, скрытые от него за горизонтом, причем он будет видеть их вверху как бы висящими над линией горизонта. Поэтому такие миражи называют верхними.

Верхний мираж может давать как прямое, так и перевернутое изображение. Показанное на рисунке прямое изображение возникает, когда показатель преломления воздуха уменьшается с высотой относительно медленно. При быстром уменьшении показателя преломления образуется перевернутое изображение. В этом можно убедится, рассмотрев гипотетический случай – показатель преломления на некоторой высоте h уменьшается скачком (рис. 5). Лучи объекта, прежде чем попасть к наблюдателю А испытывают полное внутреннее отражение от границы ВС ниже которой в данном случае находится более плотный воздух. Видно, что верхний мираж дает перевернутое изображение объекта. В действительности нет скачкообразной границы между слоями воздуха, переход совершается постепенно. Но если он совершается достаточно резко, то верхний мираж даст перевернутое изображение (рис. 5).

Двойные и тройные миражи. Если показатель преломления воздуха изменяется сначала быстро, а затем медленно, то в этом случае лучи в области I будут искривляться быстрее, чем в области II. В результате возникают два изображения (рис. 6, 7). Световые лучи 1, распространяющиеся в пределах воздушной области I, формируют перевернутое изображение объекта. Лучи 2, распространяющиеся в основном в пределах области II, искривляются в меньшей степени и формируют прямое изображение.

Чтобы понять как появляется тройной мираж, нужно представить три последовательный воздушные области: первая (у самой поверхности), где показатель преломления уменьшается с высотой медленно, следующая, где показатель преломления уменьшается быстро, и третья область, где показатель преломления снова уменьшается медленно. На рисунке представлено рассматриваемое изменение показателя преломления с высотой. На рисунке показано, как возникает тройной мираж. Лучи 1 формируют нижнее изображение объекта, они распространяются в пределах воздушной области I. Лучи 2 формируют перевернутое изображение; попадаю в воздушную область II, эти лучи испытывают сильное искривление. Лучи 3 формируют верхнее прямое изображение объекта.

Мираж сверхдальнего видения. Природа этих миражей изучена менее всего. Ясно, что атмосфера должна быть прозрачной, свободной от водяных паров и загрязнений. Но этого мало. Должен образоваться устойчивый слой охлажденного воздуха на некоторой высоте над поверхностью земли. Ниже и выше этого слоя воздух должен быть более теплым. Световой луч, попавший внутрь плотного холодного слоя воздуха, как бы “запертым” внутри него и распространяется в нем как по своеобразному световоду. Траектория луча на рисунке 8 все время обращена выпуклостью в сторону менее плотных областей воздуха.

Возникновение сверхдальних миражей можно объяснить распространением лучей внутри подобных «световодов», которые иногда создает природа.

Радуга

Радуга – это красивое небесное явление – всегда привлекала внимание человека. В прежние времена, когда люди еще мало знали об окружающем мире, радугу считали «небесным знамением». Так, древние греки думали, что радуга - это улыбка богини Ириды.

Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя на расстоянии 1-2 км, а иногда ее можно наблюдать на расстоянии 2-3 м на фоне водяных капель, образованных фонтанами или распылителями воды.

Центр радуги находится на продолжении прямой, соединяющей Солнце и глаз наблюдателя – на противосолнечной линии. Угол между направлением на главную радугу и противосолнечной линией составляет 41-42º(рис. 9).

В момент восхода солнца противосолнечная точка (точка М) находится на линии горизонта и радуга имеет вид полуокружности. По мере поднятия Солнца противосолнечная точка опускается под горизонт и размер радуги уменьшается. Она представляет собой лишь часть окружности.

Часто наблюдается побочная радуга, концентрическая с первой, с угловым радиусом около 52º и обратным расположением цветов.

При высоте Солнца 41º главная радуга перестает быть видимой и над горизонтом выступает лишь часть побочной радуги, а при высоте Солнца более 52º не видна и побочная радуга. Поэтому в средних экваториальных широтах в околополуденные часы это явление природы никогда не наблюдается.

У радуги различают семь основных цветов, плавно переходящих один в другой.

Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают более узкую радугу, с резко выделяющимися цветами, малые – дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Образование цветов и их последовательность были объяснены позже, после разгадки сложной природы белого света и его дисперсии в среде. Дифракционная теория радуги разработана Эри и Партнером.

Можно рассмотреть простейший случай: пусть на капли, имеющих форму шара, падает пучок параллельных солнечных лучей (рис. 10). Луч, падающий на поверхность капли в точке А, преломляется внутри нее по закону преломления:

n sin α=n sin β, где n=1, n≈1,33 –

соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.

Внутри капли идет по прямой луч АВ. В точке В происходит частичное преломление луча и частичное его отражение. Надо заметить, что, чем меньше угол падения в точке В, а следовательно и в точке А, тем меньше интенсивность отраженного луча и тем больше интенсивность преломленного луча.

Луч АВ после отражения в точке В происходит под углом β`=β b попадает в точку С, где также происходит частичное отражение и частичное преломление света. Преломленный луч выходит из капли под углом γ, а отраженный может пройти дальше, в точку D и т. д. Таким образом, луч света в капле претерпевает многократное отражение и преломление. При каждом отражении некоторая часть лучей света выходит наружу и интенсивность их внутри капли уменьшается. Наиболее интенсивным из выходящих в воздух лучей является луч, вышедший из капли в точке В. Но наблюдать его трудно, так как он теряется на фоне ярких прямых солнечных лучей. Лучи же, преломленные в точке С, создают в совокупности на фоне темной тучи первичную радугу, а лучи, испытывающие преломление в точке D дают вторичную радугу, которая менее интенсивна, чем первичная.

При рассмотрении образования радуги нужно учесть еще одно явление – неодинаковое преломление волн света различной длины, то есть световых лучей разного цвета. Это явление носит название дисперсии. Вследствие дисперсии углы преломления γ и угла отклонения лучей Θ в капле различны для лучей различной окраски.

Чаще всего мы наблюдаем одну радугу. Нередки случаи, когда на небосводе появляются одновременно две радужные полосы, расположенные одна за другой; наблюдают и еще большее число небесных дуг – три, четыре и даже пять одновременно. Это интересное явление наблюдали ленинградцы 24 сентября 1948 года, когда во второй половине дня среди туч над Невой появились четыре радуги. Оказывается, что радуга может возникать не только от прямых лучей; нередко она появляется и в отраженных лучах Солнца. Это можно видеть на берегу морских заливов, больших рек и озер. Три-четыре радуги – обыкновенные и отраженные – создают подчас красивую картину. Так как отраженные от водной поверхности лучи Солнца идут снизу вверх, то радуга образующаяся в лучах, может выглядеть иногда совершенно необычно.

Не следует думать, что радугу можно наблюдать только днем. Она бывает и ночью, правда, всегда слабая. Увидеть такую радугу можно после ночного дождя, когда из-за туч выглянет Луна.

Некоторой подобие радуги можно получить на таком опыте: Нужно колбу, наполненную водой, осветить солнечных светом или лампой через отверстие в белой доске. Тогда на доске отчетливо станет видна радуга, причем угол расхождения лучей по сравнению с начальным направлением составит около 41-42°. В естественных условиях экрана нет, изображение возникает на сетчатке глаза, и глаз проецирует это изображение на облака.

Если радуга появляется вечером перед заходом Солнца, то наблюдают красную радугу. В последние пять или десять минут перед закатом все цвета радуги, кроме красного, исчезают, она становится очень яркой и видимой даже спустя десять минут после заката.

Красивое зрелище представляет собой радуга на росе. Ее можно наблюдать при восходе Солнца на траве, покрытой росой. Эта радуга имеет форму гиперболы.

Полярные сияния

Одним из красивейших оптических явлений природы является полярное сияние.

В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета.

Полярные сияния наблюдают в двух основных формах – в виде лент и в виде облакоподобных пятен. Когда сияние интенсивно, оно приобретает форму лент. Теряя интенсивность, оно превращается в пятна. Однако многие ленты исчезают, не успев разбиться на пятна. Ленты как бы висят в темном пространстве неба, напоминая гигантский занавес или драпировку, протянувшуюся обычно с востока на запад на тысячи километров. Высота этого занавеса составляет несколько сотен километров, толщина не превышает нескольких сотен метров, причем так нежен и прозрачен, что сквозь него видны звезды. Нижний край занавеса довольно резко и отчетливо очерчен и часто подкрашен в красный или розоватый цвет, напоминающий кайму занавеса, верхний – постепенно теряется в высоте и это создает особенно эффектное впечатление глубины пространства.

Различают четыре типа полярных сияний:

Однородная дуга – светящаяся полоса имеет наиболее простую, спокойную форму. Она более ярка снизу и постепенно исчезает кверху на фоне свечения неба;

Лучистая дуга – лента становится несколько более активной и подвижной, она образует мелкие складки и струйки;

Лучистая полоса – с ростом активности более крупные складки накладываются на мелкие;

При повышении активности складки или петли расширяются до огромных размеров, нижний край ленты ярко сияет розовым свечением. Когда активность спадает, складки исчезают и лента возвращается к однородной форме. Это наводит на мысль, что однородная структура является основной формой полярного сияния, а складки связаны с возрастанием активности.

Часто возникают сияния иного вида. Они захватывают весь полярный район и оказываются очень интенсивными. Происходят они во время увеличения солнечной активности. Эти сияния представляются в виде беловато-зеленой шапки. Такие сияния называют шквалами.

По яркости сияния разделяют на четыре класса, отличающиеся друг от друга на один порядок (то есть в 10 раз). К первому классу относятся сияния, еле заметные и приблизительно равные по яркости Млечному Пути, сияние же четвертого класса освещают Землю так ярко, как полная Луна.

Надо отметить, что возникшее сияние распространяется на запад со скоростью 1 км/сек. Верхние слои атмосферы в области вспышек сияний разогреваются и устремляются вверх, что сказалось на усиленном торможении искусственных спутников Земли, проходящих эти зоны.

Во время сияний в атмосфере Земли возникают вихревые электрические токи, захватывающие большие области. Они возбуждают дополнительные неустойчивые магнитные поля, так называемые магнитные бури. Во время сияний атмосфера излучает рентгеновские лучи, которые, по-видимому, являются результатом торможения электронов в атмосфере.

Интенсивные вспышки сияния часто сопровождаются звуками, напоминающими шум, треск. Полярные сияния вызывают сильные изменения в ионосфере, что в свою очередь влияет на условия радиосвязи. В большинстве случаев радиосвязь значительно ухудшается. Возникают сильные помехи, а иногда полная потеря приема.

Как возникают полярные сияния. Земля представляет собой огромный магнит, южный полюс которого находится вблизи северного географического полюса, а северный - вблизи южного. Силовые линии магнитного поля Земли, называемые геомагнитными линиями, выходят из области, прилегающей к северному магнитному полюсу Земли, охватывает земной шар и входят в него в области южного магнитного полюса, образуя тороидальную решетку вокруг Земли.

Долго считалось, что расположение магнитных силовых линий симметрично относительно земной оси. Теперь выяснилось, что так называемый «солнечный ветер» – поток протонов и электронов, излучаемых Солнцем, налетаю на геомагнитную оболочку Земли с высоты около 20000 км, оттягивает ее назад, в сторону от Солнца, образуя у Земли своеобразный магнитный «хвост».

Электрон или протон, попавшие в магнитное поле Земли, движутся по спирали, как бы навиваясь на геомагнитную линию. Электроны и протоны, попавшие из солнечного ветра в магнитное поле Земли, разделяются на две части. Часть из них вдоль магнитных силовых линий сразу стекает в полярные области Земли; другие попадают внутрь тероида и движутся внутри него, как это можно по правилу левой руки, вдоль замкнутой кривой АВС. Эти протоны и электроны в конце концов по геомагнитным линиям также стекают в область полюсов, где возникает их увеличенная концентрация. Протоны и электроны производят ионизацию и возбуждение атомов и молекул газов. Для этого они имеют достаточно энергии, так как протоны прилетают на Землю с энергиями 10000-20000эв (1эв= 1.6 10 дж), а электроны с энергиями 10-20эв. Для ионизации же атомов нужно: для водорода – 13,56 эв, для кислорода - 13,56 эв, для азота – 124,47 эв, а для возбуждения еще меньше.

Возбужденные атомов газов отдают обратно полученную энергию в виде света, наподобие того, как это происходит в трубках с разреженным газом при пропускании через них токов.

Спектральное исследование показывает, что зеленое и красное свечение принадлежит возбужденным атомам кислорода, инфракрасное и фиолетовое – ионизованным молекулам азота. Некоторые линии излучения кислорода и азота образуются на высоте 110 км, а красное свечение кислорода – на высоте 200-400 км. Другим слабым источником красного света являются атомы водорода, образовавшие в верхних слоях атмосферы из протонов прилетевших с Солнца. Захватив электрон, такой протон превращается в возбужденный атом водорода и излучает красный свет.

Вспышки сияний происходят обычно через день-два после вспышек на Солнце. Это подтверждает связь между этими явлениями. Исследование при помощи ракет показало, что в местах большей интенсивности сияний имеется более значительная ионизация газов электронами.

В последнее время ученые установили, что полярные сияния более интенсивны у берегов океанов и морей.

Но научное объяснение всех явлений, связанных с полярными сияниями, встречает ряд трудностей. Например, неизвестен точно механизм ускорения частиц до указанных энергий, не вполне ясны их траектории в околоземном пространстве, не все сходится количественно в энергетическом балансе ионизации и возбуждения частиц, не вполне ясен механизм образования свечения различных видов, неясно происхождение звуков.

Литература:

5. «Энциклопедический словарь юного физика», составитель В. А. Чуянов, издательство «Педагогика», Москва, 1984 год.

6. «Справочник школьника по физике», составитель - , филологическое общество «Слово», Москва, 1995 год.

7. «Физика 11», Н. М. Шахмаев, С. Н. Шахмаев, Д. Ш. Шодиев, издательство «Просвещение», Москва, 1991 год.

8. «Решение задач по физике», В. А. Шевцов, Нижне-Волжское книжное издательство, Волгоград, 1999 год.

Оптическое явление каждого видимого события является результатом взаимодействия света и материальных сред физической и биологической. Зелёный луч света является примером оптического явления.

Общие оптические явления часто происходят из-за взаимодействия света от солнца или луны с атмосферой, облаками, водой, пылью и другими частицами. Некоторые из них как зеленый луч света настолько редкое явление, что его иногда считают мифическим.

Оптические явления включают те, вытекающие из оптических свойств атмосферы, остальной природы (другие явления); из объектов, будь то природного или человеческого характера (оптические эффекты), где наши глаза имеют энтоптический характер явлений.

Есть много явлений, которые возникают в результате либо квантовой или волновой природой света. Некоторые из них довольно тонкие и наблюдаемое только при помощи точных измерения с помощью научных приборов.

В своей работе я хочу рассмотреть и рассказать об оптических явлениях, связанных с зеркалами (отражение, ослабление) и с атмосферными явлениями (мираж, радуга, полярные сияния), с которыми мы часто и много сталкиваемся в повседневной жизни.

Зеркальные оптические явления

Свет мой, зеркальце, скажи…

Если брать простое и точное определение, то Зеркало -- гладкая поверхность, предназначенная для отражения света (или другого излучения). Наиболее известный пример -- плоское зеркало.

Современную историю зеркал отсчитывают с XIII века, а точнее -- с 1240 года, когда в Европе научились выдувать сосуды из стекла. Изобретение настоящего стеклянного зеркала следует отнести к 1279 году, когда францисканец Джон Пекам описал способ покрывать стекло тонким слоем олова.

Кроме зеркал, изобретенных и созданных человеком, список отражающих поверхностей велик и обширен: гладь водоема, иногда - лед, иногда - отшлифованный металл, просто стекло, если взглянуть на него под определенным углом, но, тем не менее, именно рукотворное зеркало можно назвать практически идеальной отражающей поверхностью.

Принцип хода лучей, отражённых от зеркала прост, если применять законы геометрической оптики, не учитывая волновую природу света. Луч света падает на зеркальную поверхность (рассматриваем полностью непрозрачное зеркало) под углом альфа к нормали (перпендикуляру), проведённой к точке падения луча на зеркало. Угол луча отражённого будет равен тому же значению - альфа. Луч, падающий на зеркало под прямым углом к плоскости зеркала, отразится сам в себя.

Для простейшего -- плоского -- зеркала изображение будет расположено за зеркалом симметрично предмету относительно плоскости зеркала, оно будет мнимым, прямым и такого же размера, как сам предмет.

То, что отраженный в стоячей воде пейзаж не отличается от реального, а только перевернут «вверх ногами» далеко не так. Если человек посмотрит поздним вечером, как отражаются в воде светильники или как отражается берег, спускающийся к воде, то отражение покажется ему укороченным и совсем «исчезнет», если наблюдатель находится высоко над поверхностью воды. Также никогда нельзя увидеть отражение верхушки камня, часть которого погружена в воду. Пейзаж видится наблюдателю таким, как если бы на него смотрели из точки, находящейся на столько глубже поверхности воды, насколько глаз наблюдателя находится выше поверхности. Разница между пейзажем и его изображением уменьшается по мере приближения глаза к поверхности воды, а также по мере удаления объекта. Часто людям кажется, что отражение в пруду кустов и деревьев отличается большей яркостью красок и насыщенностью тонов. Эту особенность также можно заметить, наблюдая отражение предметов в зеркале. Здесь большую роль играет психологическое восприятие, чем физическая сторона явления. Рама зеркала, берега пруда ограничивают небольшой участок пейзажа, ограждая боковое зрение человека от избыточного рассеянного света, поступающего со всего небосвода и ослепляющего наблюдателя, то есть он смотрит на небольшой участок пейзажа как бы через темную узкую трубу. Уменьшение яркости отраженного света по сравнению с прямым облегчает людям наблюдение неба, облаков и других ярко освещенных предметов, которые при прямом наблюдении оказывается слишком ярким для глаза.

22 апреля 2016

В школе изучает тему «Оптические явления в атмосфере» 6 класс. Однако она представляет интерес не только для пытливого детского ума. Оптические явления в атмосфере, с одной стороны, объединяют радугу, изменение цвета неба во время рассветов и закатов, не раз виденные всеми. С другой - в их число входят таинственные миражи, ложные Луны и Солнца, впечатляющие гало, в прошлом наводившие ужас на людей. Механизм образования некоторых из них до конца остается непонятным и сегодня, однако общий принцип, по которому «живут» оптические явления в природе, современная физика хорошо изучила.

Воздушная оболочка

Атмосфера Земли представляет собой оболочку, состоящую из смеси газов и простирающуюся примерно на 100 км над уровнем моря. Плотность воздушного слоя меняется по мере удаления от земли: наибольшее ее значение у поверхности планеты, с высотой оно уменьшается. Атмосферу нельзя назвать статичным формированием. Слои газовой оболочки постоянно двигаются, перемешиваются. Меняются их характеристики: температура, плотность, скорость перемещения, прозрачность. Все эти нюансы оказывают влияние на солнечные лучи, устремляющиеся к поверхности планеты.

Оптическая система

Процессы, происходящие в атмосфере, а также ее состав способствуют поглощению, преломлению и отражению световых лучей. Часть их достигает цели — земной поверхности, другая рассеивается или же перенаправляется обратно в космическое пространство. В результате искривления и отражения света, распада части лучей на спектр и так далее образуются разнообразные оптические явления в атмосфере.

Видео по теме

Атмосферная оптика

Во времена, когда наука только зарождалась, люди объясняли оптические явления исходя из сложившихся представлений об устройстве Вселенной. Радуга соединяла человеческий мир с божественным, появление на небе двух ложных Солнц свидетельствовало о приближающихся катастрофах. Сегодня большинство феноменов, пугавших наших далеких предков, получило научное объяснение. Изучением подобных феноменов занимается атмосферная оптика. Оптические явления в атмосфере эта наука описывает, основываясь на законах физики. Она способна объяснить, почему небо голубое днем, а во время захода и рассвета меняет цвет, как образуется радуга и откуда берутся миражи. Многочисленные исследования и эксперименты сегодня позволяют понять такие оптические явления в природе, как появление светящихся крестов, Фата-моргана, радужные гало.

Синее небо

Цвет неба настолько привычен, что мы редко задумываемся, почему он такой. Тем не менее физикам ответ хорошо известен. Ньютон доказал, что луч света при определенных условиях раскладывается на спектр. При прохождении атмосферы его часть, соответствующая синему цвету, рассеивается лучше. Красный участок видимого излучения характеризуется большей длинной волны и уступает фиолетовому по степени рассеивания в 16 раз.

При этом небо мы видим не фиолетовым, а голубым. Причина этого кроется в особенностях устройства сетчатки и соотношении участков спектра в солнечном свете. Наши глаза более чувствительны к синему, а фиолетовый участок в спектре светила менее интенсивный, чем синий.

Алый закат


Когда люди разобрались, что такое атмосфера, оптические явления перестали быть для них свидетельством или предзнаменованием грозных событий. Однако научный подход не мешает получать эстетическое удовольствие от красочных закатов и нежных рассветов. Яркие красные и оранжевые цвета вместе с розовым и голубым постепенно уступают ночной темноте или утреннему свету. Невозможно наблюдать два одинаковых рассвета или заката. А причина этого кроется во все той же подвижности атмосферных слоев и смене погодных условий.

Во время закатов и рассветов солнечные лучи преодолевают более длинный путь до поверхности, чем днем. В результате рассеянный фиолетовый, синий и зеленый уходят в стороны, а прямой свет окрашивается в красный и оранжевый. Свою лепту в картину заката и рассвета вносят облака, пыль или частички льда, взвешенные в воздухе. Свет преломляется, проходя через них, и окрашивает небо в самые разные оттенки. На противоположном от Солнца участке горизонта нередко можно наблюдать так называемый Пояс Венеры — розовую полосу, разделяющую ночное темное небо и голубое дневное. Красивое оптическое явление, названное в честь римской богини любви, видно перед рассветом и после заката.

Радужный мост

Пожалуй, никакие другие световые явления в атмосфере не вызывают в памяти столько мифологических сюжетов и сказочных образов, сколько связаны с радугой. Дуга или окружность, состоящая из семи цветов, каждому известна с детства. Красивое атмосферное явление, возникающее во время дождя, когда солнечные лучи проходят сквозь капли, завораживает даже тех, кто досконально изучил его природу.

А физика радуги сегодня ни для кого не секрет. Солнечный свет, преломляясь каплями дождя или тумана, расщепляется. В результате наблюдатель видит семь цветов спектра, от красного до фиолетового. Границы между ними определить невозможно. Цвета плавно переходят друг в друга через несколько оттенков.

При наблюдении радуги солнце всегда располагается за спиной человека. Центр улыбки Ириды (так называли радугу древние греки) располагается на линии, проходящей через наблюдателя и дневное светило. Обычно радуга предстает в виде полуокружности. Ее размер и форма зависят от положения Солнца и точки, в которой находится наблюдатель. Чем выше светило над горизонтом, тем ниже опускается окружность возможного появления радуги. Когда Солнце преодолевает отметку в 42º над горизонтом, наблюдатель на поверхности Земли не может увидеть радугу. Чем выше над уровнем моря располагается человек, желающий полюбоваться улыбкой Ириды, тем вероятнее, что он увидит не дугу, но окружность.

Двойная, узкая и широкая радуга


Нередко вместе с основной можно увидеть так называемую побочную радугу. Если первая образуется в результате однократного отражения света, то вторая является результатом двойного. Кроме того, основная радуга отличается определенным порядком цветов: красный располагается на внешней стороне, а фиолетовый — на внутренней, которая ближе к поверхности Земли. Побочный же «мостик» представляет собой обратный по последовательности спектр: фиолетовый оказывается вверху. Происходит так потому, что при двойном отражении из капли дождя лучи выходят под другими углами.

Радуги различаются по интенсивности цвета и ширине. Самые яркие и довольно узкие появляются после летней грозы. Большие капли, характерные для такого дождя, рождают хорошо заметную радугу с отчетливо различимыми цветами. Малые капли дают более расплывчатую и менее заметную радугу.

Оптические явления в атмосфере: полярное сияние


Одно из самых красивых атмосферных оптических явлений — полярное сияние. Оно характерно для всех планет, обладающих магнитосферой. На Земле полярные сияния наблюдаются в высоких широтах обоих полушарий, в зонах, окружающих магнитные полюса планеты. Чаще всего можно видеть зеленоватое или сине-зеленое свечение, иногда дополненное по краям всполохами красного и розового. Интенсивное полярное сияние по форме напоминает ленты или складки ткани, при затухании превращающиеся в пятна. Полосы высотой в несколько сотен километров хорошо выделяются по нижнему краю на фоне темного неба. Верхняя граница полярного сияния теряется в вышине.

Эти красивые оптические явления в атмосфере еще хранят свои тайны от людей: до конца не изучен механизм возникновения некоторых видов свечения, причина возникающего во время резких всполохов треска. Однако общая картина формирования полярных сияний сегодня известна. Небо над северным и южным полюсами украшается зеленовато-розовым свечением, когда заряженные частицы солнечного ветра сталкиваются с атомами верхних слоев земной атмосферы. Последние в результате взаимодействия получают дополнительную энергию и испускают ее в виде света.

Гало

Солнце и Луна нередко предстают перед нами окруженные свечением, напоминающим нимб. Это гало — хорошо заметное кольцо вокруг источника света. В атмосфере чаще всего оно образуется благодаря мельчайшим частичкам льда, составляющим перистые облака высоко над Землей. В зависимости от формы и размеров кристаллов меняются характеристики явления. Часто гало приобретает вид радужного круга в результате разложения светового луча на спектр.

Интересная разновидность явления носит название паргелий. В результате преломления света в кристаллах льда на уровне Солнца образуется два светлых пятна, напоминающих дневное светило. В исторических хрониках можно встретить описания этого феномена. В прошлом оно часто считалось предвестником грозных событий.

Мираж

Миражи — это тоже оптические явления в атмосфере. Они возникают в результате преломления света на границе между значительно различающимися по плотности слоями воздуха. В литературе описано множество случаев, когда путник в пустыне видел оазисы или даже города и замки, которых быть поблизости не могло. Чаще всего это «нижние» миражи. Они возникают над ровной поверхностью (пустыня, асфальт) и представляют собой отраженное изображение неба, кажущееся наблюдателю водоемом.

Так называемые верхние миражи встречаются реже. Они образуются над холодной поверхностью. Верхние миражи бывают прямыми и перевернутыми, иногда совмещают оба положения. Самым известным представителем этих оптических феноменов является Фата-моргана. Это сложный мираж, совмещающий сразу несколько типов отражений. Перед наблюдателем предстают реально существующие объекты, многократно отраженные и перемешенные.

Атмосферное электричество

Электрические и оптические явления в атмосфере нередко упоминаются вместе, хотя причины их возникновения различны. Поляризация облаков и образование молний связаны с процессами, протекающими в тропосфере и ионосфере. Гигантские искровые разряды формируются обычно во время грозы. Молнии возникают внутри облаков, могут ударять в землю. Они являются угрозой для жизни людей, и это одна из причин научного интереса к подобным явлениям. Некоторые свойства молний до сих пор остаются загадкой для исследователей. Сегодня неизвестна причина возникновения шаровых молний. Как и в случае с некоторыми аспектами теории полярных сияний и миражей, электрические феномены продолжают интриговать ученых.

Оптические явления в атмосфере, кратко описанные в статье, с каждым днем становятся все более понятными для физиков. При этом они, как и молнии, не перестают восхищать людей своей красотой, таинственностью и порой грандиозностью.