Тепловой баланс и тепловой режим земной поверхности и атмосферы. Значение тепловой баланс земли в большой советской энциклопедии, бсэ Тепловой баланс атмосферы и поверхности

ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ

баланс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля - атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является солнечная радиация, поэтому распределение и соотношение составляющих Т. б. характеризуют её преобразования в этих оболочках.

Т. б. представляют собой частные формулировки закона сохранения энергии и составляются для участка поверхности Земли (Т. б. земной поверхности); для вертикального столба, проходящего через атмосферу (Т. б. атмосферы); для такого же столба, проходящего через атмосферу и верхние слои литосферы или гидросферу (Т. б. системы Земля - атмосфера).

Уравнение Т. б. земной поверхности: R + P + F0 + LE 0 представляет собой алгебраическую сумму потоков энергии между элементом земной поверхности и окружающим пространством. В число этих потоков входит радиационный баланс (или остаточная радиация) R - разность между поглощённой коротковолновой солнечной радиацией и длинноволновым эффективным излучением с земной поверхности. Положительная или отрицательная величина радиационного баланса компенсируется несколькими потоками тепла. Так как температура земной поверхности обычно не равна температуре воздуха, то между подстилающей поверхностью и атмосферой возникает поток тепла Р. Аналогичный поток тепла F 0 наблюдается между земной поверхностью и более глубокими слоями литосферы или гидросферы. При этом поток тепла в почве определяется молекулярной теплопроводностью, тогда как в водоёмах теплообмен, как правило, имеет в большей или меньшей степени турбулентный характер. Поток тепла F 0 между поверхностью водоёма и его более глубокими слоями численно равен изменению теплосодержания водоёма за данный интервал времени и переносу тепла течениями в водоёме. Существенное значение в Т. б. земной поверхности обычно имеет расход тепла на испарение LE, который определяется как произведение массы испарившейся воды Е на теплоту испарения L. Величина LE зависит от увлажнения земной поверхности, её температуры, влажности воздуха и интенсивности турбулентного теплообмена в приземном слое воздуха, которая определяет скорость переноса водяного пара от земной поверхности в атмосферу.

Уравнение Т. б. атмосферы имеет вид: Ra + Lr + P + Fa D W.

Т. б. атмосферы слагается из её радиационного баланса R a ; прихода или расхода тепла Lr при фазовых преобразованиях воды в атмосфере (г - сумма осадков); прихода или расхода тепла Р, обусловленного турбулентным теплообменом атмосферы с земной поверхностью; прихода или расхода тепла F a, вызванного теплообменом через вертикальные стенки столба, который связан с упорядоченными движениями атмосферы и макротурбулентностью. Кроме того, в уравнение T. б. атмосферы входит член DW, равный величине изменения теплосодержания внутри столба.

Уравнение Т. б. системы Земля - атмосфера соответствует алгебраической сумме членов уравнений Т. б. земной поверхности и атмосферы. Составляющие Т. б. земной поверхности и атмосферы для различных районов земного шара определяются путём метеорологических наблюдений (на актинометрических станциях, на специальных станциях Т. б., на метеорологических спутниках Земли) или путём климатологических расчётов.

Средние широтные величины составляющих Т. б. земной поверхности для океанов, суши и Земли и Т. б. атмосферы приведены в таблицах 1, 2, где величины членов Т. б. считаются положительными, если соответствуют приходу тепла. Так как эти таблицы относятся к средним годовым условиям, в них не включены члены, характеризующие изменения теплосодержания атмосферы и верхних слоев литосферы, поскольку для этих условий они близки к нулю.

Для Земли как планеты, вместе с атмосферой, схема Т. б. представлена на рис. На единицу поверхности внешней границы атмосферы поступает поток солнечной радиации, равный в среднем около 250 ккал/см 2 в год, из которых около отражается в мировое пространство, а 167 ккал/см 2 в год поглощает Земля (стрелка Q s на рис.). Земной поверхности достигает коротковолновая радиация, равная 126 ккал/см 2 в год; 18 ккал/см 2в год из этого количества отражается, а 108 ккал/см 2 в год поглощается земной поверхностью (стрелка Q). Атмосфера поглощает 59 ккал/см 2 в год коротковолновой радиации, то есть значительно меньше, чем земная поверхность. Эффективное длинноволновое излучение поверхности Земли равно 36 ккал/см 2 в год (стрелка I) , поэтому радиационный баланс земной поверхности равен 72 ккал/см 2 в год. Длинноволновое излучение Земли в мировое пространство равно 167 ккал/см 2 в год (стрелка Is) . Таким образом, поверхность Земли получает около 72 ккал/см 2 в год лучистой энергии, которая частично расходуется на испарение воды (кружок LE) и частично возвращается в атмосферу посредством турбулентной теплоотдачи (стрелка Р) .

Табл. 1 . - Тепловой баланс земной поверхности, ккал/см 2 год

Широта, градусы

Земля в среднем

70-60 северной широты

0-10 южной широты

Земля в целом

Данные о составляющих Т. б. используются при разработке многих проблем климатологии, гидрологии суши, океанологии; они применяются для обоснования численных моделей теории климата и для эмпирической проверки результатов применения этих моделей. Материалы о Т. б. играют большую роль в изучении изменений климата, их применяют также в расчётах испарения с поверхности речных бассейнов, озёр, морей и океанов, в исследованиях энергетического режима морских течений, для изучения снежных и ледяных покровов, в физиологии растений для исследования транспирации и фотосинтеза, в физиологии животных для изучения термического режима живых организмов. Данные о Т. б. были использованы и для изучения географической зональности в работах советского географа А. А. Григорьева.

Табл. 2 . - Тепловой баланс атмосферы, ккал/см 2 год

Широта, градусы

70-60 северной широты

0-10 южной широты

Земля в целом

Лит.: Атлас теплового баланса земного шара, под ред. М. И. Будыко, М., 1963; Будыко М. И., Климат и жизнь, Л., 1971; Григорьев А. А., Закономерности строения и развития географической среды, М., 1966.

М. И. Будыко.

Большая советская энциклопедия, БСЭ. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ в русском языке в словарях, энциклопедиях и справочниках:

  • ЗЕМЛИ
    СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ - земли, предоставленные для нужд сельского хозяйства или предназначенные для этих …
  • ЗЕМЛИ в Словаре экономических терминов:
    РЕКРЕАЦИОННОГО НАЗНАЧЕНИЯ - выделенные в установленном порядке земли, предназначенные и используемые для организованного массового отдыха и туризма населения. К ним …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПРИРОДООХРАННОГО НАЗНАЧЕНИЯ - земли заказников (за исключением охотничьих) ; запретных и нерестоохранных полос; земли, занятые лесами, выполняющими защитные функции; другие …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПРИРОДНО-ЗАПОВЕДНОГО ФОНДА - земли заповедников, памятников природы, природных (национальных) и дендрологических, ботанических садов. В состав З.п.-з.ф. включаются земельные участки с …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПОРЧА - см. ПОРЧА ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ОЗДОРОВИТЕЛЬНОГО НАЗНАЧЕНИЯ - земельные участки, обладающие природными лечебными факторами (минеральными источниками, залежами лечебных грязей, климатическими и другими условиями) , благоприятными …
  • ЗЕМЛИ в Словаре экономических терминов:
    ОБЩЕГО ПОЛЬЗОВАНИЯ - в городах, поселках и сельских населенных пунктах - земли, используемые в качестве путей сообщения (площади, улицы, переулки, …
  • ЗЕМЛИ в Словаре экономических терминов:
    НОРМАТИВНАЯ ЦЕНА - см НОРМАТИВНАЯ ЦЕНА ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    НАСЕЛЕННЫХ ПУНКТОВ - см ГОРОДСКИЕ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    МУНИЦИПАЛИЗАЦИЯ - см МУНИЦИПАЛИЗАЦИЯ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЛЕСНОГО ФОНДА - земли, покрытые лесом, а тж. не покрытые лесом, но предоставленные для нужд лесного хозяйства и лесной …
  • ЗЕМЛИ в Словаре экономических терминов:
    ИСТОРИКО-КУЛЬТУРНОГО НАЗНАЧЕНИЯ - земли, на которых (и в которых) располагаются памятники истории и культуры, достопримечательные места, в том числе объявленные …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЗАПАСА - все земли, не предоставленные в собственность, владение, пользование и аренду К ним тж. относятся земли, право собственности, владения …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА - земли федерального значения, предоставляемые безвозмездно в постоянное (бессрочное) пользование предприятиям и учреждениям железнодорожного транспорта для осуществления возложенных …
  • ЗЕМЛИ в Словаре экономических терминов:
    ДЛЯ НУЖД ОБОРОНЫ - земли, предоставленные для размещения и постоянной деятельности войсковых частей, учреждений, военно-учебных заведений, предприятий и организаций Вооруженных …
  • ЗЕМЛИ в Словаре экономических терминов:
    ГОРОДСКИЕ - см. ГОРОДСКИЕ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ВОДНОГО ФОНДА - земли, занятые водоемами, ледниками, болотами, за исключением тундровой и лесотундровой зон, гидротехническими и другими водохозяйственными сооружениями; а …
  • БАЛАНС в Словаре экономических терминов:
    ТРУДОВЫХ РЕСУРСОВ - баланс наличия и использования трудовых ресурсов, составленный с учетом их пополнения и выбытия, сферы занятости, производительности …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ ПАССИВНЫЙ - см ПАССИВНЫЙ ТОРГОВЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ АКТИВНЫЙ - см АКТИВНЫЙ ТОРГОВЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ - см ТОРГОВЫЙ БАЛАНС; ВНЕШНЕТОРГОВЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ТЕКУЩИХ ОПЕРАЦИЙ - баланс, показывающий чистый экспорт государства, равный объему экспорта товаров и услуг за вычетом импорта с добавлением чистого …
  • БАЛАНС в Словаре экономических терминов:
    СВОДНЫЙ - см. СВОДНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    САЛЬДОВЫЙ - см. САЛЬДОВЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    РАСЧЕТНЫЙ - см РАСЧЕТНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    РАЗДЕЛИТЕЛЬНЫЙ - см РАЗДЕЛИТЕЛЬНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    РАБОЧЕГО ВРЕМЕНИ - баланс, характеризующий ресурсы рабочего времени работников предприятия и их использование на разные виды работ. Представляется в виде …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ТЕКУЩИЙ см БАЛАНС ТЕКУЩИХ ОПЕРАЦИЙ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ПО ТЕКУЩИМ ОПЕРАЦИЯМ - см. ПЛАТЕЖНЫЙ БАЛАНС ПО ТЕКУЩИМ ОПЕРАЦИЯМ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ПАССИВНЫЙ. см. ПАССИВНЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ВНЕШНЕТОРГОВЫЙ - см ВНЕШНЕТОРГОВЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ АКТИВНЫЙ - см АКТИВНЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ - см ПЛАТЕЖНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖЕЙ ПО КЛИРИНГОВЫМ РАСЧЕТАМ - баланс безналичных расчетов по платежным обязательствам или взаимным требованиям …
  • БАЛАНС в Словаре экономических терминов:
    ПАССИВНЫЙ ТОРГОВЫЙ (ПЛАТЕЖНЫЙ) - см ПАССИВНЫЙ ТОРГОВЫЙ (ПЛАТЕЖНЫЙ) …
  • БАЛАНС в Словаре экономических терминов:
    ОСНОВНЫХ СРЕДСТВ - баланс, в котором сопоставляются наличные основные средства с учетом их износа и выбытия и вновь вводимые средства …
  • БАЛАНС в Словаре экономических терминов:
    МЕЖОТРАСЛЕВОЙ - см. МЕЖОТРАСЛЕВОЙ …
  • БАЛАНС в Словаре экономических терминов:
    МАТЕРИАЛЬНЫЙ - см МАТЕРИАЛЬНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ЛИКВИДАЦИОННЫЙ - см ЛИКВИДАЦИОННЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ДОХОДОВ И РАСХОДОВ - финансовый баланс, в разделах которого указаны источники и величины доходов и расходов в течение определенного периода …
  • БАЛАНС в Большой советской энциклопедии, БСЭ:
    (франц. balance, буквально - весы, от лат. bilanx - имеющий две весовые чаши), 1) равновесие, уравновешивание. 2) Система показателей, которые …
  • ЗЕМЛИ
    древнерусские области, образовавшиеся около старых городов. З., часто на очень значительном протяжении от города, составляла собственность его жителей и всегда …
  • БАЛАНС в Энциклопедическом словаре Брокгауза и Евфрона:
    Баланс бухгалтерский. В бухгалтерии Б. устанавливается равновесиемежду дебетом в кредитом, причем различают счет Б. входящего, если имоткрываются коммерческие книги, и …
  • БАЛАНС в Энциклопедическом словарике:
    I а, мн. нет, м. 1. Соотношение взаимно связанных показателей какой-нибудь деятельности, процесса. Б. производства и потребления. а Торговый баланс …

Теплово й бала нс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля - атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является солнечная радиация , поэтому распределение и соотношение составляющих Т. б. характеризуют её преобразования в этих оболочках.

Т. б. представляют собой частные формулировки закона сохранения энергии и составляются для участка поверхности Земли (Т. б. земной поверхности); для вертикального столба, проходящего через атмосферу (Т. б. атмосферы); для такого же столба, проходящего через атмосферу и верхние слои литосферы или гидросферу (Т. б. системы Земля - атмосфера).

Уравнение Т. б. земной поверхности: R + P + F 0 + LE = 0 представляет собой алгебраическую сумму потоков энергии между элементом земной поверхности и окружающим пространством. В число этих потоков входит радиационный баланс (или остаточная радиация) R - разность между поглощённой коротковолновой солнечной радиацией и длинноволновым эффективным излучением с земной поверхности. Положительная или отрицательная величина радиационного баланса компенсируется несколькими потоками тепла. Так как температура земной поверхности обычно не равна температуре воздуха, то между подстилающей поверхностью и атмосферой возникает поток тепла Р. Аналогичный поток тепла F 0 наблюдается между земной поверхностью и более глубокими слоями литосферы или гидросферы. При этом поток тепла в почве определяется молекулярной теплопроводностью , тогда как в водоёмах теплообмен, как правило, имеет в большей или меньшей степени турбулентный характер. Поток тепла F 0 между поверхностью водоёма и его более глубокими слоями численно равен изменению теплосодержания водоёма за данный интервал времени и переносу тепла течениями в водоёме. Существенное значение в Т. б. земной поверхности обычно имеет расход тепла на испарение LE, который определяется как произведение массы испарившейся воды Е на теплоту испарения L. Величина LE зависит от увлажнения земной поверхности, её температуры, влажности воздуха и интенсивности турбулентного теплообмена в приземном слое воздуха, которая определяет скорость переноса водяного пара от земной поверхности в атмосферу.

Уравнение Т. б. атмосферы имеет вид: R a + L r + P + F a = D W.

Т. б. атмосферы слагается из её радиационного баланса R a ; прихода или расхода тепла L r при фазовых преобразованиях воды в атмосфере (г - сумма осадков); прихода или расхода тепла Р, обусловленного турбулентным теплообменом атмосферы с земной поверхностью; прихода или расхода тепла F a , вызванного теплообменом через вертикальные стенки столба, который связан с упорядоченными движениями атмосферы и макротурбулентностью. Кроме того, в уравнение T. б. атмосферы входит член D W, равный величине изменения теплосодержания внутри столба.

Уравнение Т. б. системы Земля - атмосфера соответствует алгебраической сумме членов уравнений Т. б. земной поверхности и атмосферы. Составляющие Т. б. земной поверхности и атмосферы для различных районов земного шара определяются путём метеорологических наблюдений (на актинометрических станциях, на специальных станциях Т. б., на метеорологических спутниках Земли) или путём климатологических расчётов.

Средние широтные величины составляющих Т. б. земной поверхности для океанов, суши и Земли и Т. б. атмосферы приведены в таблицах 1, 2, где величины членов Т. б. считаются положительными, если соответствуют приходу тепла. Так как эти таблицы относятся к средним годовым условиям, в них не включены члены, характеризующие изменения теплосодержания атмосферы и верхних слоев литосферы, поскольку для этих условий они близки к нулю.

Для Земли как планеты, вместе с атмосферой, схема Т. б. представлена на рис. На единицу поверхности внешней границы атмосферы поступает поток солнечной радиации, равный в среднем около 250 ккал/см 2 в год, из которых около отражается в мировое пространство, а 167 ккал/см 2 в год поглощает Земля (стрелка Q s на рис. ). Земной поверхности достигает коротковолновая радиация, равная 126 ккал/см 2 в год; 18 ккал/см 2 в год из этого количества отражается, а 108 ккал/см 2 в год поглощается земной поверхностью (стрелка Q ). Атмосфера поглощает 59 ккал/см 2 в год коротковолновой радиации, то есть значительно меньше, чем земная поверхность. Эффективное длинноволновое излучение поверхности Земли равно 36 ккал/см 2 в год (стрелка I ), поэтому радиационный баланс земной поверхности равен 72 ккал/см 2 в год. Длинноволновое излучение Земли в мировое пространство равно 167 ккал/см 2 в год (стрелка I s ). Таким образом, поверхность Земли получает около 72 ккал/см 2 в год лучистой энергии, которая частично расходуется на испарение воды (кружок LE ) и частично возвращается в атмосферу посредством турбулентной теплоотдачи (стрелка Р ).

Табл. 1. - Тепловой баланс земной поверхности, ккал/см 2 год

Широта, градусы

Земля в среднем

R LE Р F o

R LE Р

R LE Р F 0

70-60 северной широты

0-10 южной широты

Земля в целом

Данные о составляющих Т. б. используются при разработке многих проблем климатологии, гидрологии суши, океанологии; они применяются для обоснования численных моделей теории климата и для эмпирической проверки результатов применения этих моделей. Материалы о Т. б. играют большую роль в изучении изменений климата, их применяют также в расчётах испарения с поверхности речных бассейнов, озёр, морей и океанов, в исследованиях энергетического режима морских течений, для изучения снежных и ледяных покровов, в физиологии растений для исследования транспирации и фотосинтеза, в физиологии животных для изучения термического режима живых организмов. Данные о Т. б. были использованы и для изучения географической зональности в работах советского географа А. А. Григорьева.

Табл. 2. - Тепловой баланс атмосферы, ккал/см 2 год

Широта, градусы

70-60 северной широты

0-10 южной широты

Земля в целом

Лит.: Атлас теплового баланса земного шара, под ред. М. И. Будыко, М., 1963; Будыко М. И., Климат и жизнь, Л., 1971; Григорьев А. А., Закономерности строения и развития географической среды, М., 1966.

Понятие о термобарическом поле Земли

Сезонные колебания радиационного баланса

Сезонные колебания радиационного режима Земли в целом соответствуют изменениям облучения северного и южного полушарий при годовом обращении Земли вокруг Солнца.

В экваториальном поясе сезонных колебаний солнечного тепла нет: и в декабре, и в июле радиационный баланс равен 6-8 ккал/см 2 на суше и 10-12 ккал/см 2 на море в месяц.

В тропических поясах уже достаточно отчетливо выражены сезонные колебания. В Северном полушарии – в Северной Африке, Южной Азии и Центральной Америке – в декабре радиационный баланс равен 2-4 ккал/см 2 , а в июне 6-8 ккал/см 2 в месяц. Такая же картина наблюдается и в Южном полушарии: радиационный баланс выше в декабре (лето), ниже в июне (зима).

Во всем умеренном поясе в декабре к северу от субтропиков (нулевая линия баланса проходит через Францию, Среднюю Азию и остров Хоккайдо) баланс отрицательный. В июне даже близ полярного круга радиационный баланс равен 8 ккал/см 2 в месяц. Наибольшая амплитуда радиационного баланса свойственна материковому Северному полушарию.

Тепловой режим тропосферы определяется как поступлением солнечного тепла, так и динамикой воздушных масс, осуществляющей адвекцию тепла и холода. С другой стороны, само движение воздуха вызывается температурным градиентом (падением температуры на единицу расстояния) между экваториальными и полярными широтами и между океанами и материками. В результате этих сложных динамических процессов сформировалось термобарическое поле Земли. Оба его элемента – температура и давление – настолько взаимосвязаны, что это в географии принято говорить о едином термобарическом поле Земли.

Тепло, получаемое земной поверхностью, преобразуется и перераспределяется атмосферой и гидросферой. Тепло расходуется главным образом на испарение, турбулентный теплообмен и на перераспределение тепла между сушей и океаном.

Наибольшее количество тепла расходуется на испарение воды с океанов и материков. В тропических широтах океанов на испарение затрачивается примерно 100-120 ккал/см 2 в год, а в акваториях с теплыми течениями до 140 ккал/см 2 в год, что соответствует испарению слоя воды в 2 м мощностью. В экваториальном поясе на испарение затрачивается значительно меньше энергии, то есть примерно 60 ккал/см 2 в год; это равносильно испарению однометрового слоя воды.

На материках максимальные затраты тепла на испарение приходятся на экваториальную зону с ее влажным климатом. В тропических широтах суши расположены пустыни с ничтожным испарением. В умеренных широтах затраты тепла на испарение в океанах в 2,5 раза больше, чем на суше. Поверхность океана поглощает от 55 до 97 % всей радиации, падающей на него. На всей планете на испарение расходуется 80%, а на турбулентный теплообмен около 20 % солнечной радиации.



Тепло, затраченное на испарение воды, передается атмосфере при конденсации пара в виде скрытой теплоты парообразования. Этот процесс выполняет главную роль в нагревании воздуха и движении воздушных масс.

Максимальное для всей тропосферы количество тепла от конденсации водяного пара получают экваториальные широты - примерно 100-140 ккал/см 2 в год. Это объясняется поступлением сюда огромного количества влаги, приносимой пассатами из тропических акваторий, и поднятием воздуха над экватором. В сухих тропических широтах количество скрытой теплоты парообразования, естественно, ничтожно: менее 10 ккал/см 2 в год в материковых пустынях и около 20 ккал/см 2 в год над океанами. Решающую роль в тепловом и динамическом режиме атмосферы играет вода.

Радиационное тепло поступает в атмосферe также через турбулентный теплообмен воздуха. Воздух – плохой проводник тепла, поэтому молекулярная теплопроводность может обеспечить нагрев только незначительного (единицы метров) нижнего слоя атмосферы. Тропосфера нагревается путем турбулентного, струйного, вихревого перемешивания: воздух нижнего, прилегающего к земле слоя, нагревается, струями поднимается, на его место опускается верхний холодный воздух, который тоже нагревается. Таким образом тепло быстро передается от почвы воздуху, от одного слоя к другому.

Турбулентный поток тепла больше над материками и меньше над океанами. Максимального значения он достигает в тропических пустынях, до 60 ккал/см 2 в год, в экваториальной и субтропических зонах снижается до 30-20 ккал/см 2 , а в умеренных – 20-10 ккал/см 2 в год. На большей площади океанов вода отдает атмосфере около 5 ккал/см 2 в год, и только в субполярных широтах воздух от Гольфстрима и Куросиво получает тепла до 20-30 ккал/см 2 в год.

В отличие от скрытой теплоты парообразования турбулентный поток атмосферой удерживается слабо. Над пустынями он передается вверх и рассеивается, поэтому пустынные зоны и выступают как области охлаждения атмосферы.

Тепловой режим континентов в связи с их географическим положением различен. Затраты тепла на испарение на северных материках определяется их положением в умеренном поясе; в Африке и Австралии – аридностью их значительных площадей. На всех океанах огромная доля тепла затрачивается на испарение. Затем часть этого тепла переносится на материки и утепляет климат высоких широт.

Анализ теплообмена между поверхностью материков и океанов позволяет сделать следующие выводы:

1. В экваториальных широтах обоих полушарий атмосфера получает от нагретых океанов тепла до 40 ккал/см 2 в год.

2. От материковых тропических пустынь тепла в атмосферу практически не поступает.

3. Линия нулевого баланса проходит по субтропикам, близ 40 0 широты.

4. В умеренных широтах расход тепла излучением больше поглощенной радиации; это значит, что климатическая температура воздуха умеренных широт определяется не солнечным, а адвективным (принесенным из низких широт) теплом.

5. Радиационный баланс Земля-Атмосфера диссиметричен относительно плоскости экватора: в полярных широтах северного полушария он достигает 60, а в соответствующих южных – только 20 ккал/см 2 в год; тепло переносится в северное полушарие интенсивнее, чем в южное, приблизительно в 3 раза. Балансом системы Земля-атмосфера определяется температура воздуха.

8.16.Нагревание и охлаждение атмосферы в процессе взаимодействия системы «океан-атмосфера-материки»

Поглощение солнечных лучей воздухом дает не более 0,1 0 С тепла нижнему километровому слою тропосферы. Непосредственно от Солнца атмосфера получает не более 1/3 тепла, а 2/3 она усваивает от земной поверхности и, прежде всего, от гидросферы, которая передает ей тепло через водяной пар, испарившийся с поверхности водной оболочки.

Солнечный лучи, прошедшие через газовую оболочку планеты, в большинстве мест земной поверхности встречают воду: на океанах, в водоемах и болотах суши, во влажной почве и в листве растений. Тепловая энергия солнечной радиации расходуется прежде всего на испарение. Количество тепла, затрачиваемое на единицу испаряющейся воды, называется скрытой теплотой парообразования. При конденсации пара теплота парообразования поступает в воздух и нагревает его.

Усвоение солнечного тепла водоемами отличается от нагревания суши. Теплоемкость воды примерно в 2 раза больше, чем почвы. При одинаковом количестве тепла вода нагревается вдвое слабее, чем почвы. При охлаждении соотношение обратное. Если на теплую океанскую поверхность проникает холодная воздушная масса, то тепло проникает в слой до 5 км. Прогревание тропосферы обязано скрытой теплоте парообразования.

Турбулентное перемешивание воздуха (беспорядочное, неравномерное, хаотическое) создает конвекционные токи, интенсивность и направление которых зависят от характера местности и общепланетарной циркуляции воздушных масс.

Понятие об адиабатическом процессе. Важная роль в тепловом режиме воздуха принадлежит адиабатическому процессу.

Понятие об адиабатическом процессе. Важнейшая роль в тепловом режиме атмосферы принадлежит адиабатическому процессу. Адиабатическое нагревание и охлаждение воздуха происходит в одной массе, без обмена теплом с другими средами.

При опускании воздуха из верхних или средних слоев тропосферы или по склонам гор он из разряженных слоев поступает в более плотные, молекулы газа сближаются, их соударения усиливаются и кинетическая энергия движения молекул воздуха переходит в тепловую. Воздух нагревается, не получая тепло ни от других воздушных масс, ни от земной поверхности. Адиабатическое нагревание происходит, например, в тропическом поясе, над пустынями и над океанами в этих же широтах. Адиабатическое нагревание воздуха сопровождается его иссушением (что является главной причиной образования пустынь в тропическом поясе).

В восходящих токах воздух адиабатически охлаждается. Из плотной нижней тропосферы он поднимается в разряженную среднюю и верхнюю. При этом плотность его уменьшается, молекулы одна от другой удаляются, сталкиваются реже, тепловая энергия, полученная воздухом от нагретой поверхности, переходит в кинетическую, тратится на механическую работу на расширение газа. Этим объясняется охлаждение воздуха при поднятии.

Сухой воздух адиабатически охлаждается на 1 0 С на 100 м подъема, это – адиабатический процесс. Однако природный воздух содержит водяной пар, при конденсации которого выделяется тепло. Поэтому фактически температура падает на 0,6 0 С на 100 м (или на 6 0 С на 1 км высоты). Это влажно-адиабатический процесс.

При опускании и сухой и влажный воздух нагреваются одинаково, поскольку при этом конденсации влаги не происходит и скрытая теплота парообразования не выделяется.

Наиболее отчетливо типичные черты теплового режима суши проявляются в пустынях: большая доля солнечной радиации отражается от светлой их поверхности, тепло не расходуется на испарение, и идет на нагревание сухих горных пород. От них днем воздух нагревается до высоких температур. В сухом воздухе тепло не задерживается и беспрепятственно излучается в верхнюю атмосферу и межпланетное пространство. Пустыни для атмосферы в планетарном масштабе также служат окнами охлаждения.

Разность между поглощенной солнечной радиацией и эффективным излучением составляет радиационный баланс, или остаточную радиацию земной поверхности (В). Радиационный баланс, осредненный для всей поверхности Земли, можно записать в виде формулы B = Q * (1 – А) - Е эф или B = Q - R k – E эф. На рисунке 24 показано приблизительное процентное соотношение различных видов радиации, участвующих в радиационном и тепловом балансе. Очевидно, что поверхность Земли поглощает 47% от всей поступившей на планету радиации, а эффективное излучение составляет 18%. Таким образом, радиационный баланс, осредненный для поверхности всей Земли, положительный и составляет 29%.

Рис. 24. Схема радиационного и теплового балансов земной поверхности (по К. Я. Кондратьеву)

Распределение радиационного баланса по земной поверхности отличается значительной сложностью. Познание закономерностей этого распределения исключительно важно, поскольку под влиянием остаточной радиации формируется температурный режим подстилающей поверхности и тропосферы и в целом климат Земли. Анализ карт радиационного баланса земной поверхности за год (рис. 25) приводит к следующим выводам.

Годовая сумма радиационного баланса поверхности Земли почти повсюду положительна, за исключением ледяных плато Антарктиды и Гренландии. Его годовые величины зонально и закономерно уменьшаются от экватора к полюсам в соответствии с главным фактором – суммарной радиацией. Причем разница величин радиационного баланса между экватором и полюсами значительнее разности величин суммарной радиации. Поэтому зональность радиационного баланса выражена весьма ярко.

Следующая закономерность радиационного баланса – возрастание его при переходе с суши на Океан с разрывами и смешениями изолиний вдоль берега. Эта особенность лучше" выражена в экваториально-тропических широтах и постепенно сглаживается к полярным. Больший радиационный баланс над океанами объясняется меньшим альбедо воды, особенно в экваториально-тропических широтах, и пониженным эффективным излучением вследствие более низкой температуры поверхности Океана и значительного влагосодержания воздуха и облачности. Вследствие повышенных величин радиационного баланса и большой площади Океана на планете (71%) именно ему принадлежит ведущая роль в тепловом режиме Земли. А разница в радиационном балансе океанов и материков обусловливает их постоянное и глубокое взаимовлияние друг на друга на всех широтах.

Рис. 25. Радиационный баланс земной поверхности за год [МДж/(м 2 Хгод)] (по С. П. Хромову и М. А. Петросянцу)

Сезонные изменения радиационного баланса в экваториально-тропических широтах невелики (рис. 26, 27). Следствием этого являются небольшие колебания температуры в течение года. Поэтому сезоны года определяются там не ходом температур, а годовым режимом осадков. Во внетропических широтах происходят качественные изменения радиационного баланса от положительных до отрицательных значений в течение года. Летом на обширных пространствах умеренных и частично высоких широт величины радиационного баланса значительны (например, в июне на суше у Северного полярного круга они такие же, как в тропических пустынях) и колебания его по широтам сравнительно невелики. Это отражается на температурном режиме и соответственно на ослаблении междуширотной циркуляции в этот период. Зимой на больших просторах радиационный баланс отрицательный: линия нулевого радиационного баланса самого холодного месяца проходит над сушей примерно вдоль 40° широты, над океанами – вдоль 45°. Различная термобарическая обстановка приводит зимой к активизации атмосферных процессов в умеренных и субтропических широтных зонах. Отрицательный радиационный баланс зимой в умеренных и полярных широтах отчасти компенсируется притоком тепла с воздушными и водными массами из экваториально-тропических широт. В отличие от низких широт в умеренных и высоких широтах сезоны года обусловлены прежде всего термическими условиями, зависящими от радиационного баланса.


Рис. 26. Радиационный баланс земной поверхности за июнь [в 10 2 МДж/(м 2 х М ес.)|

В горах всех широт распределение радиационного баланса усложнено влиянием высоты, продолжительностью снежного покрова, инсоляционной экспозицией склонов, облачностью и пр. В целом, несмотря на повышенные величины суммарной радиации в горах, радиационный баланс там меньше за счет альбедо снега и льда, увеличения доли эффективного излучения и иных факторов.

Атмосфера Земли имеет свой собственный радиационный баланс. Приход радиации в атмосферу осуществляется за счет поглощения как коротковолновой солнечной радиации, так и длинноволнового земного излучения. Расходуется радиация атмосферой при встречном излучении, которое полностью компенсируется земным излучением, и за счет уходящей радиации. По расчетам специалистов, радиационный баланс атмосферы отрицательный (-29%).

В целом радиационный баланс поверхности и атмосферы Земли равен 0, т. е. Земля находится в состоянии лучистого равновесия. Однако избыток радиации на поверхности Земли и недостаток ее в атмосфере заставляют задать вопрос: почему же при избытке радиации поверхность Земли не испепеляется, а атмосфера при ее недостатке не замерзает до температуры абсолютного нуля? Дело в том, что между поверхностью Земли и атмосферой (как и между поверхностью и глубинными слоями Земли и воды) существуют нерадиационные способы передачи тепла. Первый – это молекулярная теплопроводность и турбулентный теплообмен (Я), в процессе которых осуществляется нагрев атмосферы и перераспределение в ней тепла по вертикали и по горизонтали. Нагреваются также глубинные слои земли и воды. Второй – активный теплообмен, который происходит при переходе воды из одного фазового состояния в другое: при испарении тепло поглощается, а при конденсации и сублимации водяного пара происходит выделение скрытой теплоты парообразования (LE).

Именно нерадиационные способы передачи тепла уравновешивают радиационные балансы земной поверхности и атмосферы, приводя и тот и другой к нулю и не допуская перегрева поверхности и переохлаждения атмосферы Земли. Земная поверхность теряет 24% радиации в результате испарения воды (а атмосфера соответственно столько же получает за счет последующей конденсации и сублимации водяного пара в виде облаков и туманов) и 5% радиации при нагреве атмосферы от земной поверхности. В сумме это составляет те самые 29% радиации, которые избыточны на земной поверхности и которых недостает атмосфере.

Рис. 27. Радиационный баланс земной поверхности за декабрь [в 10 2 МДж/(м 2 х М ес.)]

Рис. 28. Составляющие теплового баланса земной поверхности в дневное время суток (по С. П. Хромову)

Алгебраическая сумма всех приходов и расходов тепла на земной поверхности и в атмосфере называется тепловым балансом; радиационный баланс является, таким образом, важнейшей составляющей теплового баланса. Уравнение теплового баланса земной поверхности имеет вид:

B – LE – P±G = 0 ,

где В – радиационный баланс земной поверхности, LE – затрата тепла на испарение (L –удельная теплота испарения, £ – масса испарившейся воды), Р – турбулентный теплообмен между подстилающей поверхностью и атмосферой, G – теплообмен с подстилающей поверхностью (рис. 28). Потеря тепла поверхностью на нагрев деятельного слоя днем и летом почти полностью компенсируется его поступлением обратно из глубин к поверхности ночью и зимой, поэтому средняя многолетняя годовая температура верхних слоев почвы и воды Мирового океана считается постоянной и G практически для любой поверхности можно считать равной нулю. Поэтому в многолетнем выводе годовой тепловой баланс поверхности суши и Мирового океана расходуется на испарение и теплообмен между подстилающей поверхностью и атмосферой.

Распределение теплового баланса по поверхности Земли отличается большей сложностью, чем радиационного, из-за многочисленных влияющих на него факторов: облачности, осадков, нагрева поверхности и др. На разных широтах значения теплового баланса отличаются от 0 в ту или другую сторону: в высоких широтах он отрицательный, а в низких – положительный. Недостаток тепла в северных и южных полярных областях компенсируется переносом его из тропических широт главным образом с помощью океанических течений и воздушных масс, тем самым между различными широтами земной поверхности устанавливается тепловое равновесие.

Тепловой баланс атмосферы записывается следующим образом: –B + LE + P = 0.

Очевидно, что взаимодополняющие друг друга тепловые режимы поверхности и атмосферы Земли уравновешивают друг друга: всю солнечную радиацию, поступающую на Землю (100%), уравновешивают потери радиации Земли за счет отражения (30%) и излучения (70%), поэтому в целом тепловой баланс Земли, как и радиационный, равен 0. Земля находится в лучистом и тепловом равновесии, и любое его нарушение может привести к перегреву или охлаждению нашей планеты.

Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства процессов, происходящих в географической оболочке, и прежде всего термический режим тропосферы.

Радиационным балансом называют приходо-расход лучистой энергии, поглощаемой и излучаемой подстилающей поверхностью, атмосферой или системой земля-атмосфера за различные промежутки времени (6, с. 328).

Приходную часть радиационного баланса подстилающей поверхности R составляют прямая солнечная и рассеянная радиация, а также противоизлучение атмосферы, поглощенные подстилающей поверхностью. Расходная часть определяется потерей тепла за счёт собственного теплового излучения подстилающей поверхности (6, с. 328).

Уравнение радиационного баланса:

R=(Q+q) (1-A)+д-

где Q - поток (или сумма) прямой солнечной радиации, q - поток (или сумма) рассеянной солнечной радиации, А - альбедо подстилающей поверхности, - поток (или сумма) противоизлучения атмосферы и - поток (или сумма) собственного теплового излучения подстилающей поверхности, д - поглощательная способность подстилающей поверхности (6, с. 328).

Радиационный баланс земной поверхности за год положительный повсюду на Земле, кроме ледяных плато Гренландии и Антарктиды (рис. 5). Это означает, что годовой приток поглощенной радиации больше, чем эффективное излучение за то же время. Но это вовсе не значит, что земная поверхность год от года становится все теплее. Избыток поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух путем теплопроводности и при фазовых преобразованиях воды (при испарении с земной поверхности и последующей конденсации в атмосфере).

Следовательно, для земной поверхности не существует радиационного равновесия в получении и отдаче радиации, но существует тепловое равновесие: приток тепла к земной поверхности как радиационными, так и нерадиационными путями равен его отдаче теми же способами.

Уравнение теплового баланса:

где величина радиационного потока тепла - R, турбулентный поток тепла между подстилающей поверхностью и атмосферой - Р, поток тепла между подстилающей поверхностью и нижележащими слоями - А и затрата тепла на испарение (или выделение тепла при конденсации) - LE (L - скрытая теплота испарения, Е - скорость испарения или конденсации) (4, с. 7).

В соответствии с приходом и расходом тепла по отношению к подстилающей поверхности составляющие теплового баланса могут иметь положительные или отрицательные значения. В многолетнем выводе средняя годовая температура верхних слоёв почвы и воды Мирового океана считается постоянной. Поэтому вертикальный и горизонтальный теплообмен в почве и в Мировом океане в целом практически можно приравнять нулю.

Таким образом, в многолетнем выводе годовой тепловой баланс для поверхности суши и Мирового океана складывается из радиационного баланса, затрат тепла на испарение и турбулентного теплообмена между подстилающей поверхностью и атмосферой (рис. 5, 6). Для отдельных частей океана кроме указанных составляющих теплового баланса нужно учитывать перенос тепла морскими течениями.

Рис. 5. Радиационный баланс Земли и приход солнечной радиации за год