Пигменты у растений. Состав и свойства растительных пигментов

Пигментная система живых существ - звено, связывающее световые условия окружающей среды и обмен веществ организма. Биологические пигменты играют важную роль в жизнедеятельности живых существ.

Группы биологических пигментов

Биологические пигменты подразделяются на несколько классов в зависимости от своего строения.

Каротиноиды

Каротиноиды - наиболее распространённый класс биологических пигментов. Они обнаружены у большинства живых существ, в том числе у всех без исключений растений , многих микроорганизмов . Каротиноиды обуславливают окраску многих животных, особенно насекомых , птиц и рыб . Каротиноиды и их производные, помимо прочего, являются основой зрительных пигментов, отвечающих за восприятие света и цвета у животных .

К каротиноидам относятся такие пигменты, как каротин , гематохром , ксантофилл , ликопин , лютеин , родопсин (зрительный пурпур) и другие.

Хиноны

Хиноны - химические соединения, производные моноциклических или полициклических ароматических углеводородов , в составе которых присутствует ненасыщеный циклический дикетон . Их окраска варьирует от бледно-жёлтой до оранжевой, красной, пурпурной, коричневой и почти чёрной. Обнаружены у многих грибов , лишайников и в некоторых группах беспозвоночных. Широко используемый краситель ализарин относится к группе хинонов .

Флавоноиды

Пигменты на основе порфирина

Другие

Биологическая роль

Природные пигменты выполняют множество функций. Они определяют окраску организмов, важную для их приспособления к внешней среде. Окраска отдельных частей растений служит для привлечения насекомых-опылителей и птиц, распространяющих семена, окраска тела у животных способствует защите от врагов, маскирует их при выслеживании добычи или предупреждает врагов о ядовитости. Также эти пигменты могут осуществлять защиту организма от ультрафиолетового излучения солнца. Многие природные пигменты принимают участие в фотохимических процессах, в частности, хлорофилл ,

Фотосинтетические пигменты высших растений делятся на две группы - хлорофиллы и каротиноиды. Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света. В табл. 9.4 перечислены пигменты, характерные для различных групп растений.

Хлорофиллы

Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. На рис. 9.9 показаны спектры поглощения хлорофиллов a и b - для сравнения - спектр каротиноидов.

Для хлорофиллов характерно наличие порфиринового кольца (рис. 9.10). Такая же структура имеется и в других важных биологических соединениях - в геме гемоглобина, миоглобина и цитохромов. Порфириновое кольцо - это плоская квадратная структура, состоящая из четырех меньших колец (I-IV), каждое из которых содержит по одному атому азота, способному взаимодействовать с атомами металлов; в хлорофиллах это магний, в геме-железо. К такой "голове" присоединен длинный углеводородный "хвост" - сложноэфирная связь образуется между спиртовой группой (-ОН) на конце фитола и карбоксильной группой (-СООН) на самой голове. У разных хлорофиллов разные боковые цепи, и это несколько изменяет их спектры поглощения.


Рис. 9.10. Строение хлорофилла. Координационная связь: Х-СН 3 - у хлорофилла а; -СНО - у хлорофилла b

Связь такой структуры с функцией можно описать следующим образом:

а) длинный хвост растворим в липидах (т. е. он гидрофобный) и таким образом удерживает молекулу в мембране тилакоида;

б) голова гидрофильная (т. е. обладает сродством к воде), и поэтому она обычно лежит на той поверхности мембраны, которая обращена к водной среде стромы;

в) для лучшего поглощения света плоскость головы расположена параллельно плоскости мембраны;

г) модификация боковых групп на голове приводит к изменениям в спектре поглощения, в результате чего меняется и количество поглощаемой энергии света;

д) поглощение световой энергии головой приводит к эмиссии электронов.

Хлорофилл а - фотосинтетический пигмент, представленный в наибольшем количестве; это единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.

9.6. Чем отличается спектр поглощения хлорофилла а от спектра поглощения хлорофилла b?

Каротиноиды

Каротиноиды - это желтые, оранжевые, красные или коричневые пигменты, которые сильно поглощают в сине-фиолетовой области. Обычно они замаскированы зелеными хлорофиллами, но хорошо выявляются перед листопадом, так как хлорофиллы в листьях распадаются первыми. Каротиноиды содержатся также в хромопластах некоторых цветков и плодов, яркая окраска которых служит для привлечения насекомых, птиц и других животных, участвующих в опылении цветков или распространении семян; например, красный цвет кожицы помидоров обусловлен присутствием одного из каротинов - ликопина.

Каротиноиды имеют три максимума поглощения в сине-фиолетовой области спектра (рис. 9.9); они не только функционируют как дополнительные пигменты, но и защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

Каротиноиды бывают двух типов - каротины и ксантофиллы. Каротины - это углеводороды, большую часть которых составляют тетратерпены (С 40 -соединения). Самым распространенным и самым важным из них является β-каротин (рис. 9.11), который знаком всем как оранжевый пигмент моркови. Позвоночные животные способны в процессе пищеварения расщеплять молекулу каротина надвое с образованием двух молекул витамина А. Ксантофиллы по химическому строению очень сходны с каротинами и отличаются от них только тем, что содержат кислород.

Спектры поглощения и спектры действия

При изучении какого-либо процесса, активируемого светом, в частности фотосинтеза, очень важно знать спектр действия для данного процесса - тогда можно попытаться идентифицировать пигменты, которые в нем участвуют. Спектр действия - это график, показывающий эффективность стимулирующего действия света с различной длиной волны на исследуемый процесс, в нашем случае - на фотосинтез; эту эффективность можно оценивать, например, по образованию кислорода. Спектр поглощения - это график, отображающий относительное поглощение света с различной длиной волны тем или иным пигментом. Спектр действия для фотосинтеза показан на рис. 9.12, вместе с объединенным спектром поглощения всех фотосинтетических пигментов. Обратите внимание на большое сходство этих двух графиков: оно свидетельствует о том, что именно пигменты, и в частности хлорофилл, ответственны за поглощение света при фотосинтезе.

Возбуждение пигментов светом

Пигменты - это химические соединения, которые поглощают видимый свет, что приводит к переходу некоторых электронов в возбужденное состояние , т. е. эти электроны поглощают энергию. Чем меньше длина волны, тем выше энергия света и тем больше его способность переводить электроны в возбужденное состояние. Такое состояние обычно неустойчиво, и вскоре молекула возвращается в свое основное состояние (т. е. исходное низкоэнергетическое состояние), теряя при этом энергию возбуждения. Эта энергия может использоваться разными способами, в том числе на процесс, обратный поглощению света и называемый флуоресценцией . При этом часть энергии теряется в виде тепла, поэтому излучаемый свет имеет несколько большую длину волны (и меньшую энергию), чем поглощенный. Это можно увидеть, если сначала осветить раствор хлорофилла, а затем посмотреть на него в темноте.

Во время световых реакций фотосинтеза возбужденные пигменты теряют электроны, и на их месте в молекулах остаются положительные "дырки", например:


Всякий потерянный электрон будет принят другой молекулой - так называемым акцептором электрона , так что в целом это окислительно-восстановительный процесс (см. Приложение 1.2). Хлорофилл окисляется, а акцептор электрона восстанавливается. Хлорофилл служит здесь донором электрона .

Главные и вспомогательные пигменты

Фотосинтетические пигменты бывают двух типов - главные и вспомогательные . Пигменты второго типа передают испускаемые ими электроны главному пигменту. Электроны, испускаемые главными пигментами, непосредственно доставляют энергию для реакций фотосинтеза.

Существует два главных пигмента, это две формы хлорофилла а; их обозначают Р690 и Р700 (см. ниже). Сокращение Р означает "пигмент" (pigment). К вспомогательным пигментам относятся другие формы хлорофилла (в том числе все остальные формы хлорофилла а) и каротиноиды.

9.7. Поскольку энергию нельзя передавать со 100%-ной эффективностью, переход электрона от одной молекулы пигмента к другой должен сопровождаться некоторой потерей энергии в виде тепла. Хлорофилл b передает электроны на хлорофилл а. Можете ли вы сказать заранее, какой из этих хлорофиллов - а или b - обладает меньшей энергией возбуждения (т. е. энергией, необходимой для того, чтобы пигмент испустил электрон)?

Фотосинтетические единицы и реакционные центры

За последние двадцать лет мы многое узнали о расположении пигментов и связанных с ними молекул в мембранах тилакоидов. В настоящее время принято считать, что существует два типа фотосинтетических единиц , которые называют фотосистемами I и II (ФСI и ФСII) . Каждая из этих единиц состоит из набора молекул вспомогательных пигментов, передающих энергию на одну молекулу главного пигмента. Последняя называется реакционным центром ; в нем энергия света используется для осуществления химической реакции. Именно здесь происходит преобразование световой энергии в химическую, и именно оно является центральным событием фотосинтеза.

Судя по результатам биохимических и электронно-микроскопических исследований, каждая фотосистема содержит около 300 молекул хлорофилла. Препараты для электронной микроскопии приготовлялись методом замораживания-скалывания, который описан в Приложении 2.5; это один из хороших примеров успешного применения такого метода. Как видно на рис. 9.13, в мембранах тилакоидов имеются частицы двух типов, расположенные в определенном порядке; такие частицы называются квантосомами . Как полагают, более мелкие частицы составляют фотосистему I, а более крупные - фотосистему ΙΙ. Для каждого типа частиц характерен свой специфический набор молекул хлорофилла (рис. 9.14). Частицы фотосистемы II, по-видимому, в основном связаны с гранами. На рис. 9.14 схематически показано, как энергия (в виде возбужденных электронов) "переливается" со вспомогательных светособирающих пигментов на главный пигмент, который представлен особой формой хлорофилла а - пигментом Р690 или Р700 (в соответствии с максимумом поглощения в нанометрах). Р690 и Р700 - это энергетические ловушки . Другие специфические формы хлорофилла а, например a670 или a680, можно считать такими же вспомогательными пигментами, как и хлорофилл b. На рис. 9.14 не показаны каротиноиды, но они, по-видимому, тоже играют роль вспомогательных пигментов. Электроны, попавшие в энергетическую ловушку, используются для запуска световых реакций.

Чтобы все ваши желания стали действительностью, вам необходимо вкусить блаженство с хорошими проститутками и заняться с ними любовью. Всегда индивидуалки помогут исполниться вашим самым порядочным голым фантазиям.

Для окрашивания продуктов питания применяют соки и экстракты из культурных и дикорастущих пло­дов и ягод - таких, как черника, ежевика, клюква, рябина, калина, черемуха, вишня, барбарис, виноград, черная смородина и т. п. Ягоды и соки из них сами по себе питательны и служат ценными вкусовыми и аро­матическими компонентами ряда пищевых продуктов: кондитерских и ликеро-наливочных изделий, напитков и т. п. Эти изделия, кроме того, нуждаются также в дополнительном подкрашивании. Но пригодны соки - красители далеко не во всех случаях, так как концент­рация красящих веществ в них относительно невелика.

Сырьем для изготовления натуральных красителей растительного происхождения кроме ягод являются также цветы и листья растений, плоды, корнеплоды и т. п. Наряду с культурными и дикорастущими расте­ниями важным источником натуральных пищевых кра­сителей могут быть отходы переработки растительного сырья на консервных и винодельческих заводах. При­менение этих отходов (выжимок ягод и т. п.) в произ­водстве некоторых пищевых продуктов наряду с лик­видацией дефицита в красителях способствует повыше­нию уровня «рентабельности использования раститель­ного сырья.

В винодельческой и плодоовощекоисервной отрас-. лях пищевой промышленности ежегодно образуется значительное количество растительных отходов, кото­рые могут служить ценным сырьем для получения на­туральных красителей. Так, в плодоовощной промыш­ленности сырье используется только на 70-90% (24].

Содержание красящих веществ в растительном сырье относительно невелико, а количество других при­сутствующих химических соединений может превышать его в несколько раз. Это сахаристые, пектиновые, бел­ковые вещества, органические кислоты, минеральные соли и т. п. Сами по себе эти вещества также полезны. Однако наличие их в сырье влияет на содержание кра­сящих веществ в конечном продукте; по мере необхо­димости указанные химические элементы могут быть удалены в ходе технологического процесса приготовле­ния красителя.

Следует учитывать и то, что в некоторых видах красильных растений могут присутствовать нежела­тельные примеси, такие, как алкалоиды, сильнодейст­вующие физиологически активные гликозиды. Осво­бождение от них в достаточной степени не всегда воз­можно, а следовательно, нет полной гарантии в безо­пасности применения в пищевых целях полученного из таких растений красителя. Поэтому из множества ра­стений, являющихся источниками красок различного назначения, лишь ограниченное количество их видов пригодно для получения натуральных пищевых краси­телей.

В связи с этим важнейшей задачей исследователей в этой области является выбор наиболее перспективно­го растительного сырья и оптимальных способов изго­товления из него пищевых красителей.

Красящие вещества растительного происхождения разнообразны по химическому составу и структуре. Наиболее широко распространены красящие вещества, относящиеся по химической природе к флавоиоидным и каротиноидным соединениям, которые являются ос­новой красных, оранжевых и желтых красителей.

Цвет растворимых в воде растительных пигментов 0.Уловлен в основном антоцианами.

Антоцианы - красящие вещества растений - от - к фенольным соединениям. Одной из харак - рных особенностей растительной клетки является

Образование фенольных соединений. Это вещества, со­держащие в своей молекуле ароматическое (бензоль­ное) кольцо, которое несет одну, две или более гид - роксильных группы . Важнейшая функция фе­нольных соединений в растительных тканях - их учас­тие в окислительно-восстановительных процессах.

Известное в природе огромное разнообразие фе­нольных соединений можно разделить па трн основ­ные группы в соответствии с их Углеродным скелетом: С6 - Ср, CG - Сз - и С6 - С3 - Сq-соединение.

К группе С6-Сі-соединений относятся оксибензой - ные кислоты: п-оксибеизойная, протокатеховая, вани­линовая, галловая и сиреневая. Они широко распрост­ранены в растениях. Присутствуют оксибензойные кис­лоты в растениях обычно в связанной форме и высво­бождаются при гидролизе. Галловая кислота обнару­жена в растениях как в свободном - виде, так и в виде димераметадигалловой кислоты. Депсиды (соединения со сложноэфирной связью, образуемой за счег феноль - ной гидроксильной группы одной молекулы фенолкар - боновой кислоты и карбоксильной группы другой) гал­ловой кислоты представляют собой исходные продукты для образования гидролизуемых дубильных веществ.

Из Сб - Сі-соединений широко используется в пище­вой промышленности, особенно в кондитерской отрасли, ванилин (альдегид ванилиновой кислоты), обладающий характерным приятным запахом. В виде глюкозида он содержится в плодах ванили.

Группа Се-Сз-соединений включает подгруппы ок - снкоричных кислот и кумаринов. Оксикорнчные кисло­ты- я-оксикоричная (я-кумаровая), кофейная, феру­ловая и синаповая - присутствуют в растениях как в свободном, так и в связанном виде.

В растениях часто встречаются сложные эфиры ок - сикоричных кислот (хинной и шикимовой), на-прнмер хлорогеновая (кофеил-3-хинная) кислота. Она широко распространена в растениях. Особенно большое количе­ство хлорогеновой кислоты обнаруживается в прораста­ющих семенах подсолнечника и необжаренных зернах кофе. Определена она в какао-бобах, где также присут­ствует и неохлорогеновая (кофеил-5-хинная) кислота.

Кумарин - бесцветное кристаллическое вещество с приятным запахом, напоминающим запах сена. Чистый кумарин и цветы донника, в которых он содержится в основном в виде гликозидов, используются как арома­тизаторы, чаще в парфюмерной промышленности.

Группа Сб - С3 - Сб-соединений особенно разнооб­разна. Фенольные соединения, относящиеся к этой груп­пе, называются также флавоноидами. В молекуле фла - воноида содержится два бензольных ядра и одно гете­роциклическое, содержащее кислород (называемое пирановым). Флавоноиды - производные флавана - в зависимости от степени окисленности (или восстанов - ленности) гетероциклического фрагмента могут быть разбиты на шесть основных подгрупп: катехины, лей - коантоцианы, флаваноны, антоцианы, флавоны и фла - вонолы . Отдельные группы флавоноидов от­личаются друг от друга по "степени окисленности трех - углеродного фрагмента. Химическим путем (окислени­ем или восстановлением) возможно осуществить пере­ход от одной группы флавоноидов к другой. Большое разнообразие природных флавоноидов обусловлено как их строением, наличием асимметрических атомов угле­рода, так и способностью большинства из них образо­вывать гликозиды с моно-, ди - и даже трасахаридами. Отдельные группы флавоноидов значительно отличают­ся друг от друга по свойствам и биологической актив­ности-

«Катехины - наиболее восстановленная группа фла - воноидных соединений.-Их строение может быть изобра­жено так

"Сатин ОН

^Лаг°Даря наличию в молекуле двух асимметричес - х атомов углерода катехины встречаются в четырех

Несколько реже встречаются в растениях (-)-эпи - галлокатехин и (+)-галлокатехин (R = OH; R" = H). Характерной особенностью катехинов является образова­ние зфиров с галловой кислотой (R"-галлоил): катехин - галлатов и галлокатехингаллатов.

Катехины представляют собой бесцветные кристал­лические вещества, легко окисляющиеся и склонные к полимеризации. Они широко распространены в расте­ниях, содержатся во многих съедобных плодах и ягодах (яблоки, груши, вишня, айва, персики, абрикосы, еже­вика, земляника, брусника, смородина, рябина, вино­град, малина и др.). Особенно богаты катехинами моло­дые побеги чайного растения, используемые для изго­товления чая, а также нестандартное чайное сырье, из которого готовят натуральные чайные красители. В чайных побегах обнаружены в основном (-)-эпикате­хин, (±)-катехин, (-)-эпигаллокатехин, (±)-галлока - техин, (-)-эпикатехингаллат, (-)-эпигаллокатехин-

Галлат, (-)-галлокатехингаллат и кверцетин {16, 18, 25, 28].

Окислительные превращения катехинов играют

ОН R,"= Н -нарингенин, ^~0\\-эрипдиктол. R=OCH3; \(=ОН-геслеритин

Содержатся они обычно в тканях растений в виде 7-моно - и ди-гликозидов следующих трех агликоиов: иарингенина (TR"= ОН; R" = Н), эриодиктиола (R = = R" = ОН) и гесиеретина (R = ОСН3; R" = ОН). На­пример, в кожуре грейпфрута присутствует 7-рамноглю - хозид иарингенина - нарингин, а в кожуре апельсина и мандарина - 7/-рамноглюкозид гесперетина - геспери - дин. Нарингин имеет горький вкус, гесперидин - нет. Вкус горечи зависит от строения сахарного остатка .

Флавоны - вещества, имеющие желтую окраску. В растениях обычно встречаются в виде гликозидов. Име­ют следующее строение:

Эти агликоны наиболее распространены в расти­тельном мире. Так, в петрушке, цветах хризантемы, в плодах кислого апельсина (Citrus aurantium) обнару­жен апигенин, в пшенице и рисе - трицин.

Флавонолы - наиболее широко распространенные в растениях желтые красящие вещества. Образуют мно­жество разнообразных глнкозидов, чаще всего являю­щихся производными агликонов: кемпферола (R = - R" = Н), кверцетина ("R = ОН; R" = Н) и мирицети - на (TR"=R"=OH)- Строение флавонолов следующее:

Из листьев чая выделен 3-глюкозид кемпферола ас - трагалин и 3-рамнозид кверцетина кверцитрин. Послед­ний содержится в ягодах винограда - 3-рамноглюкозид кверцетина рутин встречается в растениях очень часто (28, 39].

Основу красящих веществ большинства натураль­ных красных красителей, как уже отмечалось, состав­ляют антоцианы, широко распространенные в раститель­ном мире. Пигменты красного цвета содержатся в раз­нообразных частях многих растений: в лепестках цве­тов, ягодах, корнеплодах и т. п. Сырьем для получения натуральных красных пищевых красителей в большин­стве случаев служат ягоды культивируемых и дикорас­тущих растений, лепестки цветков отдельных видов рас­тений, некоторые корнеплоды. Из ягод непосредствен­но перерабатываются на краситель в основном несъе­добные в сыром виде и не используемые в производств"5 соков, вина и других продуктов питания. В этих случа­ях для приготовления красителя используют сок ягод. Например, натуральные красные красители получают кз сока ягод бузины, вороники и т. п.

В большинстве случаев красные красители получа­ют из выжимок соответствующих ягод, остающихся при переработке их на соки или вино на консервных и ви­нодельческих заводах. Так получают красители из вы­жимок темных сортов винограда, черноплодной ряби­ны, черной смородины, черники и т. п.

Натуральный красный пищевой краситель получают также из сока столовой свеклы, красный цвет которой обусловлен наличием в ней азотсодержащих пигментов пирроловой природы - бетацианов. Из лепестков цве­тов получают натуральные красные красители, основу которых также составляют антоциановые пигменты. Они обладают индикаторными свойствами.

Характер и интенсивность окраски антоциановьгх пигментов изменяется в зависимости от реакций среды. В кислых растворах антоцианьг образуют истинные со­ли, в которых носителем красной окраски является катион флавилия. При уменьшении концентрации водо­родных ионов снижается и интенсивность окраски, ко­торая при рН>8 переходит в фиолетовую, и при даль­нейшем подщелачивании до рН 11 раствор окрашива­ется в синий цвет. Эти изменения цвета раствора обус­ловлены происходящими в молекуле антоцианов струк­турными изменениями под влиянием реакции среды.. Возникновение фиолетовой окраски по мере смещения рН среды в щелочную сторону связано с образованием основания красящего пигмента. Поэтому активная кис­лотность- величина рН натуральных красных пище­вых красителей должна быть не более 3,5. Для полу­чения интенсивных красных тонов окрашиваемые анто - циановьгми красителями пищевые изделия должны иметь кислую реакцию или в процессе окрашивания их следу­ет подкислять.

^Способы получения натуральных пищевых красите­лей различны и зависят от вида перерабатываемого растительного сырья, его свойств и растворимости из­влекаемого пигмента в том или ином растворителе.

При изготовлении аитоциановых красителей, а так­же при их применении следует по возможности избегать Длительного нагревания, воздействия высоких темпера - ТУР и щелочной среды.

Желтые или оранжевые окрашивающие натуральные гменты ОТНОСЯТСЯ |F=TW4UlЈ-X>r>raHH4PPK4Y соединений,

Называемых каротиноидами. Эти соединения нераство­римы в воде, но растворяются в органических раствори­телях. Каротиноиды относятся к группе сильно ненасы­щенных углеводородов терпенового характера . На­иболее известными представителями натуральных жел­тых красящих веществ являются ликопин и каротин - пигмент, придающий специфическую окраску моркови, а также ксантофилл - желтый пигмент, который наряду с каротином содержится в зеленых частях растений. К ним близки по химическому строению и физико-хими­ческим свойствам многие кислородсодержащие пигмен­ты. Желтые растительные пигменты по предложению М. С. Цвета были объединены в одну группу и названы каротиноидами по красящему веществу моркови каро­тину. Они называются также липохромными красящи­ми веществами, так как жирорастворимы и содержатся в животных и растительных жирах {89, 90].

Окраска семян.желтой кукурузы обусловлена со­держащимися в них каротином и каротиноидами- зеаксантином С40Н56О2 и криптоксантином. Красная ок­раска помидоров, плодов шиповника и многих других плодов определяется в основном каротиноидом ликопи - ном; эмпирическая формула его С40Н56. Ликопин имеет 13 двойных связей, которые могут быть каталитически восстановлены. В результате образуется насыщенный углеводород С4оН82. Это показывает, что ликопин явля­ется алифатическим углеводородом.

Желто-красная окраска ликопина и легкая его окис - ляемость кислородом воздуха, свойственная также большинству других каротиноидов, обусловлены сопря­жением многочисленных двойных связей. Этим же объ­ясняется и интенсивное синее окрашивание, которое дают ликопин и другие каротиноиды с концентриро­ванной серной кислотой (или с трихлоруксусной кисло­той и др.). По-видимому, это окрашивание обусловле­но образованием неустойчивых карбониевых солей . * Группа каротиноидов включает около 65-70 при­родных. пигментов. Каротиноиды содержатся в боль­шинстве растений (за исключением некоторых грибов) и, вероятно, во всех животных организмах . Но кон­центрация каротиноидов почти всегда очень низка - В зеленых листьях она составляет примерно 0,07-0,2% на сухое вещество. 18

А-Каротин отличается от (3-изомера иным располо­жением двойных связей. а-Каротин плавится при тем­пературе 187°С, р-каротин -при 183°С и у-каротин - при 178°С. Все три изомера каротина легко растворяют­ся в хлороформе, сероуглероде и бензоле, но мало раст - оримы в петролейном эфире и почти нерастворимы в ирте. Каротин способен также к аутоокяслению. 2* 19

Эйлер установил, что каротин является стимулято­ром роста, необходимым животным и человеку. В жи­вотном организме каротин превращается в жирораст­воримый витамин роста, - витамин А, представляющий собой продукт расщепления р-каротина.

* Каротины - это вещества, из которых образуется витамин А. Все другие природные каротиноиды явля­ются производными ликопина и трех изомеров: а-, (і - и л-каротинов. Образуются они из указанных углеводо­родов путем введения гидроксильных, карбонильных или метоксильиых групп или путем частичной гидроге­низации или окисления. -

Каротиноиды играют важную роль в обмене веществ у растений и животных. В организме животных и чело­века они имеют большое значение как исходные ве­щества, из которых образуются витамины группы А, а также так называемый зрительный пурпур, участвую­щий в зрительном акте. Физиологическая роль каротп - ноидов в организме растений, как предполагают, прояв­ляется в участии их в процессе фотосинтеза, дыхания и роста растений {39]. Однако окончательно это не выяс­нено. Химическое строение каротиноидов, содержащих значительное количество двойных связей, позволяет предположить, что в растениях они принимают участие в окислительно-восстановительных процессах. Различ­ные кислородсодержащие растительные пигменты, в ко­торых атомы кислорода полностью или большей частью содержатся в виде гидроксильных групп, представляют собой производные каротина.

"Способы получения желтых натуральных красите­лей основаны главным образом, на выделении каротн - ноидиых пигментов из растительного сырья. ♦ Хлорофилл, так же как и каротиноиды, относится к группе натуральных растительных пигментов, раствори­мых в жирах. Он обусловливает зеленую окраску расте­ний и играет важную роль в процессе ассимиляции уг­лекислого газа зеленым растением на свету - в процессе фотосинтеза. Зеленое красящее вещество ра­стений - хлорофилл - находится в хлоропластах вме­сте с желтыми красителями: каротином, ксантофиллом и эпоксиксантофиллом, довольно широко распростра­ненными в растительном мире.

Красящее вещество зеленого цвета растений неод-

Нородно и состоит из двух частей - сине-зеленого хло­рофилла а" и желто-зеленого хлорофилла Ь. В молеку­ле обоих соединений содержится магний, и они имеют

Характер диэфиров.

Чистый хлорофилл в воде нерастворим, но образует

Коллоидный раствор. В спирте и водно-спиртовых сме­сях он дает истинные растворы. Для извлечения хлоро­филла растительный материал обычно экстрагируют уг­леводородами с добавкой спирта, чистым спиртом или ацетоном. Следует отметить, что хлорофилл неустойчив в кислых средах, так как вследствие замены комплекс­но связанного магния на водород образует феофитин бу­рого цвета. Для повышения устойчивости хлорофилла осуществляют замену магния на медь. Так получают водорастворимый медный комплекс хлорофиллина - продукта частичного гидролиза хлорофилла.

Как отмечал Ч. Дарвин, хлорофилл представляет собой одно из интереснейших органических соединений живой, природы. Свойства хлорофилла в настоящее время изучены весьма подробно благодаря исследова­ниям М. В. Ненцкого, К - А. Тимирязева, М. С. Цвета,

Р. Вильштеттера, Г. Фишера и др.

Как уже отмечалось, существует два основных вида

Хлорофилла: хлорофилл а - Csa^Os^Mg и хлоро­филл b - C55H7oOgN4Mg. От наличия хлорофилла зави­сит зеленый цвет многих плодов, так же как и других частей растений. Хлорофилл не только сам придает зеленую окраску, по часто маскирует присутствие дру­гих пигментов. Получение зеленых натуральных краси­телей из растительного сырья основано, главным обра­зом, на выделении из - него хлорофиллового пигмента.

* Натуральный краситель синего цвета получают из тропического растения индиго. В настоящее время ши­рокое распространение имеет синтетический краситель - индиго, который получают из антраниловой кислоты.

Производстве пищевых продуктов, особенно кон - д терских изделий, для их окраски наиболее приемле - ны"й ЦпЄтом является красный, желтый и отчасти зеле - до д Другие Разн°образные оттенки - от оранжевого вания°ЛЄТ0В0Г° ~~ полУчают в основном путем использо - лен разрешенных для применения в пищевой промыш - диго ТИ СИНтетических красителей -тартразина и ин-

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Заключение

Список используемой литературы

Введение

Среди пигментов в растительном мире наиболее распространен антоциан. Он принадлежит к безазотистым соединениям, близким к глюкозидам, и в растворенном состоянии (редко кристаллическом) входит в состав клеточного сока. В составе антоциана - глюкоза и различные антоцианидины с присоединением либо щелочного вещества (тогда антоциан синий), либо кислого (тогда антоциан краснеет). В зависимости от реакций, какие он претерпевает в клеточном соке с солями, кислотами, дубильными веществами, он придает различную окраску клеточному соку.

Необычное разнообразие окраски цветков у растений, а также листьев связано чаще всего с антоцианом. Красные маки, покрывающие весенние степи Средней Азии, темно-лиловые генцианы на субальпийских лугах Кавказа, красные головки клевера, синие васильки, красные розы- все это богатство расцветок создается антоцианом. Окраска красных и лиловых плодов вишни, черешни, сливы, яблони, ежевики, винограда и пр. также объясняется наличием антоциана. Черные семена фасоли, гороха содержат в клетках и под кожицей фиолетовый антоциан.

1. Антоцианы - красящие вещества в клетках растений

Поэтому в соцветиях медуницы лекарственной можно одновременно найти полураспустившиеся цветки с розоватым венчиком, расцветшие - пурпуровой окраски и уже отцветающие - синего цвета. Это обусловлено тем, что в бутонах клеточный сок имеет кислую реакцию, которая по мере распускания цветков переходит в нейтральную, а потом и в щелочную. Подобные изменения окраски лепестков наблюдаются и у цветков жасмина комнатного, незабудки болотной, синюхи голубой, льна обыкновенного, цикория обыкновенного и сочевичника весеннего. Возможно, такие "возрастные" явления в цветке частично связаны и с процессом его оплодотворения. Имеются сведения, что насекомые-опылители у медуницы посещают только расцветшие розовые и пурпурные цветки. Но только ли окраска венчика при этом служит для них ориентиром?

Разнообразие окраски цветков зависит от числа гидроксильных групп в молекулах антоцианов: с их увеличением окраска становится более синей (из-за наличия дельфинидина). При метилировании гидроксилов образуется пигмент мальвидин, придающий лепесткам красный цвет. Расцветка венчиков обусловливается и соединениями антоцианов с ионами различных металлов. Так, например, соли магния и кальция способствуют преобладанию синей окраски, а соли калия - пурпурной. Определенное разнообразие оттенков вносит и дополнительное присутствие желтых пигментов (халконов, флавонолов, флавонов, ауронов и т. п.).

Естественные красители содержатся не только в цветках, но и в других частях растений, играя многостороннюю роль. Взять хотя бы не бросающуюся в глаза окраску клубней картофеля. У клубней картофеля различная окраска кожуры, глазков, проростков и мякоти также зависит от содержания в них фенольных соединений, иначе называемых биофлавоноидами. Они имеют разнообразную гамму красок: белую, желтую, розовую, красную, синюю, темно-фиолетовую и даже черную. Картофель с черной окраской кожуры клубней растет на его родине на острове Чилоэ. Различная окраска картофельной кожуры и мякоти зависит от содержащихся в них следующих биофлавоноидов: белая - от бесцветных лейкоантоцианов или катехинов, желтая - от флавонов и флавоноидов, красная и фиолетовая - от антоцианов. Группа антоцианов наиболее многочисленна, насчитывает около 10 видов. В нее входят и дающие пурпурный и розовый цвета пионидин, пеларгонидин и мальвидин, и окрашивающие в синий цвет цианидин и дельфинидин, и бесцветный пигмент петунидин. Установлено, что окрашенные клубни картофеля, как правило, богаче необходимыми для нашего организма веществами. Так, например, клубни с желтой мякотью имеют повышенное содержание жира, каротиноидов, рибофлавина и комплекса флавоноидов.

За счет способности антоцианов менять свою окраску можно наблюдать изменение цвета клубней картофеля в зависимости от состояния погоды, интенсивности освещения, реакции почвенной среды, применения минеральных удобрений и ядохимикатов. При выращивании картофеля на торфяных почвах, например, клубни часто имеют синеватый оттенок, при внесении фосфорного удобрения они бывают белыми, сульфат калия может придать им розовый цвет. Окраска клубней нередко меняется и под влиянием ядохимикатов, содержащих медь, железо, серу, фосфор и другие элементы.

Сказочная осенняя окраска листьев с оранжевыми, красно-бурыми и красными оттенками тоже зависит от содержания в их клеточном соке антоцианов. Наиболее активному процессу их образования в этот период способствуют понижение температуры, яркое освещение и задержка по этим причинам в листве питательных веществ, особенно сахаров.

Искусственно ускорить образование антоцианов в листьях калины обыкновенной, черемухи обыкновенной, осины, бересклета бородавчатого или клена платановидного можно следующим путем. Весной на одной из их ветвей посередине ее длины снимают кольцо коры шириной в 2-2,5 см. Это приведет к усиленному накоплению углеводов в изолированной верхней части ветви и вызовет здесь более раннее и интенсивное покраснение листьев, чем ниже кольца или на неповрежденных ветвях.

Полагаем, что если уважаемый читатель пожелает повторить этот опыт, то постарается выполнить его с надлежащей аккуратностью и бережным отношением к живому дереву - нашему верному другу.

Антоцианы в клетках растений выполняют не только роль вещества, придающего их тканям яркую привлекательную окраску. Оказывается, что эти пигменты, появляющиеся в листьях и стеблях при воздействии пониженных температур, в ранневесенний и осенний периоды служат своего рода "ловушкой" солнечных лучей, избирательно работающим фильтром. В молодых побегах и листьях бузины красной, пырея ползучего, ржи озимой, лисохвоста лугового, мятлика лугового и некоторых других растений антоцианы ранней весной превращают световую энергию в тепловую и защищают их от холода.

Наблюдения свидетельствуют также о том, что фиолетовая окраска семян, листьев и стеблей у растений является индикатором на содержание в них легкоферментируемых углеводов - сахарозы, фруктозы и глюкозы, в значительной степени обусловливающих холодостойкость растений. По этому характерному показателю (тесту) в перспективе можно будет оперативно вести предварительный отбор на морозоустойчивость и повышенное содержание сахаров, что особенно необходимо при выведении новых сортов многолетних кормовых трав.

В листьях липы мелколистной, березы повислой, вяза шершавого вместо антоцианов в основном содержатся каротиноиды (каротины и ксантофиллы). В этом случае перед листопадом после разрушения хлорофилла листья приобретают золотисто-желтую окраску.

Следовательно, багряные оттенки, в которые окрашиваются многие наши деревья перед листопадом, не играют какой-либо особой физиологической роли, а являются лишь показателем затухания процесса фотосинтеза, предвестником наступления периода зимнего покоя растений.

Откуда же осенью появляются антоциан и ксантофилл? Оказывается, что в зеленых листьях деревьев с самого начала их жизни одновременно содержатся и хлорофилл, и антоциан (или ксантофилл). Однако антоциан и ксантофилл имеют менее интенсивную плотность окраски, поэтому они становятся заметными только после того, как под воздействием определенных условий окружающей среды произойдет разрушение зерен хлорофилла. В ноябре - декабре, когда образование хлорофилла сдерживается недостатком солнечного света и его неполным спектром, у комнатных роз молодые побеги и распускающиеся листья имеют ярко-красный цвет. При ярком солнечном освещении они сразу стали бы зелеными.

У некоторых растений изменение зеленой окраски листьев на красную носит обратимый характер. Наглядным примером этого является поведение многих видов алоэ, культивируемых в комнатных условиях. Зимой и ранней весной, пока солнечный свет еще сравнительно слаб, они окрашены в зеленый цвет. Но если эти растения в июне или июле выставить на яркое солнечное освещение, их листья станут красно-бурыми. Перенесение же растений в затененное место снова обеспечит быстрое возвращение листьям зеленой окраски.

Желтая окраска цветков происходит от содержащихся в них флавонов (каротина, ксантофилла и антохлора), которые в соединении со щелочами дают довольно широкий спектр оттенков от ярко-оранжевого до бледно-желтого.

Среди многообразия красок в растительном мире довольно значительное место занимает белый цвет. Но для того чтобы его создать, обычно не нужно никакого красящего вещества. Он обусловлен наличием воздуха в межклеточных пространствах растительных тканей, который полностью отражает свет, благодаря чему лепестки цветка кажутся белыми. Это можно наблюдать на примере цветущих растений нивяника обыкновенного, кувшинки белой, ландыша майского и др. За счет плотного опушения белую окраску имеют и растения эдельвейса альпийского, сушеницы топяной, жабника полевого, мать-и-мачехи. Содержащийся в омертвевших волосках воздух также в результате отражения света делает их опушенную поверхность белой. А белая окраска березовой коры, придающая в любое время года стволам березы нарядный вид, обусловливается наполняющими клетки перидермы снежно-белыми нитевидными кристаллами бетулина ("березовой камфоры").

2. Роль красящих веществ в жизни растений

Весь процесс, обеспечивающий создание в растениях различных цветов, на первый взгляд может представиться весьма простым. Однако существующие в природе многочисленные расцветки и тона являются результатом сложного взаимодействия основных пигментов в различных сочетаниях со средой. Зависят они и от порядка размещения естественных красителей в растительных тканях.

Современными исследованиями установлено, что естественные красители (в основном из группы фенолов), содержащиеся в различных частях растений, играют большую роль в их жизни.

Чашечковидные венчики цветков у горных и арктических растений действуют как своеобразные вогнутые собирательные зеркала - рефлекторы, концентрируя солнечный свет в центре цветка, где температура может превышать температуру окружающей среды на 6...8 градусов Цельсия. Поворачиваясь постоянно в течение светового дня к солнцу, цветки максимально используют его энергию. А с наступлением сумерек, закрывая венчик или наклоняя цветок книзу, растение создает благоприятные условия для наилучшей сохранности аккумулированной энергии.

Высокая концентрация пигментов способствует и защите наследственного аппарата растений от мутагенных воздействий.

Окраска растений полезна и для их защиты от избытка солнечного света. Поэтому в горной местности с увеличением высоты цветки имеют более яркую и плотную окраску. В этом отношении наибольшее значение имеет пигмент - меланин. Благодаря особенностям своей структуры он как бы является "молекулярным ситом", в ячейках которого застревают и обезвреживаются радикалы, образуемые под действием ультрафиолетовых лучей. Штаммы микроорганизмов, содержащие меланин, настолько приобретают устойчивость к ультрафиолетовому облучению и действию космических лучей, что живут и размножаются в высоких слоях атмосферы, в горах, в пустынях, в Арктике и Антарктике, т. е. там, где их неокрашенные родичи гибнут. Наличие меланина в оболочках клеток, спор и гиф грибов надежно защищает микроорганизмы от воздействия на них ферментов, выделяемых микробами-антагонистами.

У бактерий и грибов имеются и другие пигменты. Азотфиксирующие бактерии синтезируют, например, пигменты из фенолокислот (З,4-диоксибензойной) и аминокислот (аланина и серина). Встречаются пигменты, производные бензо-, нафто- и антрахинона, сходные по свойствам с меланином.

3. Использование людьми действия растительных пигментов

Различная окраска растений неодинаково влияет на наш организм, так как каждый цвет спектра имеет свою длину волны. Наиболее короткие волны фиолетового, синего, голубого и зеленого цветов, являясь холодными (пассивными), действуют на нервную систему успокаивающе, способствуют отдыху. Цветки с лепестками красного, оранжевого и желтого колеров, имеющих более длинные волны, считаются теплыми, активными; они возбуждают организм, повышают его тонус и работоспособность. Цветки желтой окраски не случайно называют "земным солнцем". В зависимости от их оттенков наш организм может приходить в состояние возбуждения или, наоборот, успокаиваться. Белый и черный цвета относятся к нейтральным.

Эти обстоятельства свидетельствуют о том, что в режиме труда и отдыха настроением человека в значительной мере можно управлять, создавая определенную цветовую гамму фитодизайна. Так, например, растения с ярко-красными цветками (гвоздики, пионы, тюльпаны, гладиолусы, розы), оказывающие возбуждающее действие, желательно иметь в служебных помещениях (для профилактики утомления), в кафе, столовых, ресторанах, при проведении торжественных совещаний и других массовых мероприятий. Возбуждающий (бодрящий) эффект создают также растения фиолетового и пурпурного цветов. Цветовая гамма ярко-красного, пурпурного и фиолетового колеров повышает нервно-психический тонус и работоспособность, увеличивает напряжение мышц, способствует ускорению ритма дыхания и усилению кровообращения.

Для предотвращения меланхолического настроения используют растения с цветками розовой окраски (бальзамин, азалия, деклитра, розы, астры, левкои, пеларгония, гортензия, фуксия). При депрессии, вялости, плохом аппетите рекомендуется вводить в интерьеры растения с оранжевыми цветками (кальцеолярия, бархатцы, календула, настурция, монбреция). При напряженной умственной, зрительной работе полезно иметь в помещении цветущие растения желтой и золотистой окраски (хризантемы, рудбекия, анютины глазки, примула, нарциссы, лантана камара), так как среди других цветов солнечного спектра желтый наиболее спокойно воспринимается нашим глазом, не вызывая его утомления, способствует поддержанию тонуса и бодрого настроения. Зеленый цвет растений оказывает положительное воздействие на организм человека благодаря улучшению кровообращения и нормализации кровяного давления. Он, как и желтый цвет, является физиологически оптимальным и самым привычным для зрительного восприятия. Эти предпосылки подтверждают целесообразность культивирования в комнатных условиях наряду с цветущими растениями декоративных вечнозеленых растений.

Для отдыха организма, сопровождаемого торможением функции нервной системы, снижением напряжения мышц, замедлением ритма дыхания, урежением пульса и снижением кровяного давления, в фойе театров, залах ожидания вокзалов, приемных и вестибюлях административных зданий желательно иметь растения с цветками голубой и синей успокаивающей окраски (незабудки, анютины глазки, васильки, колокольчики, глоксиния, ирисы, дельфиниум, аквилегия).

Оригинальные наблюдения психологов показали, что восприятие цветов людьми неодинаково. Женщины, например, преимущественно предпочитают цветущие растения красной окраски, мужчины - голубой. У детей вкусы меняются: в 4-9-летнем возрасте наибольшее впечатление на них производят розовый, карминовый и пурпурный цвета; в 10-12 лет они считают любимыми зеленый, желтый и красный цвета; в 13-16 лет - синий, оранжевый и зеленый, а к 17-19 годам кумиром становится тонизирующая красно-оранжевая расцветка.

4. Другие растительные пигменты

Из желтых пигментов в клеточном соке довольно обычен антохлор, который встречается в цветках, например, лядвенца, желтого мака, георгина, коровяка, льнянки, а также в плодах некоторых цитрусовых, реже - в лепестках львиного зева. В клеточном соке имеется ряд других пигментов. В клетках бывают разнообразные кристаллы: они образуются в цитоплазме и попадают в вакуоли. Очень распространены кристаллы щавелевокислой извести. Эти образования содержаться в вакуолях клеток многих растений. Они легко растворяются в соляной кислоте. Роль их в клетках не выяснена.

Помимо одиночных кристаллов, встречаются рафиды - пучки игловидных кристаллов (у многих однодольных растений, например в листьях гиацинта, американской агавы, в паренхиме чемерицы и пр.), друзы, имеющие вид «хрустальных» сростков кристаллов и встречающиеся в клетках паренхимной ткани листьев и стеблей многочисленных растений. Под микроскопом друза ярко блестит. Иногда друзы блокируют ядро клетки, и она становится безъядерной (у рододендрона).

Заключение

Широко распространенными в растительном мире красящими веществами являются антоцианы. В отличие от хлорофилла они не связаны внутри клетки с пластидными образованиями, а чаще всего растворены в клеточном соке, иногда встречаются в виде мелких кристаллов. Антоцианы легко извлечь из любых синих или красных частей растения. Если, к примеру, прокипятить нарезанный корнеплод столовой свеклы или листья краснокочанной капусты в небольшом количестве воды, то скоро она окрасится от антоциана в лиловый или грязно-красный цвет. Но достаточно к этому раствору прибавить несколько капель уксусной, лимонной, щавелевой или любой другой кислоты, как он сразу же примет интенсивную красную окраску. Присутствие антоцианов в клеточном соке растений придает цветкам колокольчиков синий цвет, фиалок - фиолетовый, незабудок - небесно-голубой, тюльпанов, пионов, роз, георгинов - красный, а цветкам гвоздик, флоксов, гладиолусов - розовый. Почему же этот краситель является таким многоликим? Дело в том, что антоциан в зависимости от того, в какой среде он находится (в кислой, нейтральной или щелочной), способен быстро изменять свой оттенок. Соединения антоциана с кислотами имеют красный или розовый цвет, в нейтральной среде - фиолетовый, а в щелочной - синий.

Поэтому в соцветиях медуницы лекарственной можно одновременно найти полураспустившиеся цветки с розоватым венчиком, расцветшие - пурпуровой окраски и уже отцветающие - синего цвета. Это обусловлено тем, что в бутонах клеточный сок имеет кислую реакцию, которая по мере распускания цветков переходит в нейтральную, а потом и в щелочную. Подобные изменения окраски лепестков наблюдаются и у цветков жасмина комнатного, незабудки болотной, синюхи голубой, льна обыкновенного, цикория обыкновенного и сочевичника весеннего. Возможно, такие "возрастные" явления в цветке частично связаны и с процессом его оплодотворения. Имеются сведения, что насекомые-опылители у медуницы посещают только расцветшие розовые и пурпурные цветки.

Наличие в клетках растений красящих веществ помогает им наиболее эффективно поглощать и использовать солнечные лучи. Все пигменты растений представляют собой избирательно работающие физико-химические фильтры - ловушки солнечного света. Если хлорофилл листьев поглощает только красные и сине-фиолетовые лучи, используемые в процессе фотосинтеза для образования сложных органических соединений из простых минеральных веществ почвы и воздуха, то ярко-окрашенные цветки, благодаря содержанию в них разнообразных пигментов, улавливают лучи иной длины волны и превращают их в другие формы энергии. Эти формы энергии используются растениями для созревания пыльцы и яйцеклеток, синтеза ароматических веществ, повышения температуры в органах размножения, что ускоряет течение обменных процессов.

С давних пор люди используют защитное и лекарственное действие растительных пигментов. Известно, что они оказывают многостороннее благотворное влияние на организм человека, укрепляя сосудистую систему и улучшая состав крови за счет участия в синтезе галактоуроновой кислоты. Пигменты обладают противовирусными, бактерицидными и противовоспалительными свойствами. Конденсаты биофлавоноидов (меланины) способны обезвреживать ионизирующие излучения. Антоцианы, в состав которых входит активная цианистая группа, являются сердечными стимуляторами.

Особенность полифенольных веществ - растительных пигментов - заключается в том, что они всегда действуют совместно с аскорбиновой кислотой. Аскорбиновая кислота защищает фенольные соединения от окисления, а фенольные вещества, в свою очередь, предохраняют от разрушения аскорбиновую кислоту, крайне необходимую растениям. Если, например, в 100 г картофельного сока внести всего 25 мг аскорбиновой кислоты, он не будет темнеть в течение нескольких часов.

Растительные пигменты нетоксичны, обладают ценными антиокислительными и Р-витаминными свойствами, благодаря чему их целесообразно широко использовать в качестве пищевых красителей вместо ранее применявшихся синтетических веществ, сейчас признанных небезвредными.

антоциан пигмент красящий растение

Список используемой литературы:

1. Беликов П.С. Физиология растений: Учебное пособие. / П.С. Беликов, Г.А. Дмитриева. - М.: Изд-во РУДН, 2002. - 248 с.

2. Веретенников А.В. Физиология растений; Учебник.-/А.В.Веретенников. -М.: Академический Проект. 2006. - 480 с.

3. Кретович В.Л. Биохимия растений /В.Л. Кретович. - М.: Высшая школа, 2000. - 445 с.

4. Кузнецов В.В. Физиология растений / В.В. Кузнецов, Г.А. Дмитриева. - М.: Высшая школа, 2005. - 736 с.

5. Курсанов А.Л. Транспорт ассимилятов в растении /А.Л. Курсанов. - М.: Наука, 1999. - 648 с

6. Лебедев С.И. Физиология растений / С.И. Лебедев. - М.: Колос, 2008. - 544 с.

7. Либберт Э. Физиология растений / Э. Либберт. - М.: Мир, 2006. - 580 с.

8. Медведев, С.С. Физиология растений: Учебник. / С.С. Медведев. - СПб.: Изд-во Санкт-Петерб. ун-та, 2004. - 336 с.

9. Плешков Б.П. Биохимия сельскохозяйственных растений / Б.П. Плешков. - М.: Агропромиздат, 2007. - 494 с.

10. Полевой В.В. Физиология растений / В.В. Полевой. - М.: Высшая школа, 2006. - 464 с.

Размещено на Allbest.ru

Подобные документы

    Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.

    контрольная работа , добавлен 12.07.2010

    Виды геоботанических карт. Этапы процесса картографирования запасов лекарственных растений. Методические подходы и обработка исходной информации при подготовке карт. Биологически активные вещества и сроки заготовки лекарственных растительных средств.

    контрольная работа , добавлен 25.04.2014

    Экологические группы растений: гидатофиты, гидрофиты, гигрофиты, мезофиты и ксерофиты. Общая характеристика ультрафиолетового излучения и его роль в эволюции живого. Влияние УФ-радиации на содержание фотосинтетических пигментов. Понятие стресса растений.

    курсовая работа , добавлен 07.11.2015

    Сущность понятия "фотопериодизм". Нейтральные, длиннодневные, короткодневные растения. Свет и его роль в жизни растений. Экологические группы растений по отношению к свету. Адаптация растений к световому режиму. Локализация фотопериодических реакций.

    курсовая работа , добавлен 20.05.2011

    Исследование сущности фотосинтеза и необходимых для него условий. Этапы деления клетки. Выделительные системы растений (железистые волоски, выделительные ходы, млечники.). Типы почек по происхождению. Биологическая роль распространения плодов и семян.

    контрольная работа , добавлен 23.03.2011

    Общая характеристика ядовитых растений, их значение, распространение и роль в природе и жизни человека. Первая помощь при отравлении ядовитыми растениями. Биолого-морфологическая характеристика ядовитых растений. Ядовитые растения Нижегородской области.

    курсовая работа , добавлен 03.09.2011

    Пищевая ценность дикорастущих растений. Характеристика биогологически активных веществ лекарственных растений. Распределение дикорастущих пищевых, лекарственных и ядовитых растений по природным зонам. Правила сбора и употребления пищевых растений.

    реферат , добавлен 22.03.2010

    История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.

    презентация , добавлен 23.10.2010

    Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация , добавлен 18.11.2014

    Явления в жизни растений, связанные с наступлением лета. Роль человека, влияющего на жизнь растений в природных сообществах. Связь растений с окружающей средой. Луговая флора Республики Беларусь. Геоботаническое описание луговой растительности.

У высших растений имеется три группы пигментов: хлорофиллы, каротиноиды и фикобилины.

Основными пигментами, осуществляющими поглощение квантов света в процессе фотосинтеза, являются хлорофиллы, пигменты, содержащие Mg-порфириновый комплекс. Обнаружено несколько форм хлорофиллов, различающихся по химическому строению. Спектр поглощения различных форм хлорофиллов охватывает видимую, ближнюю ультрафиолетовую и ближнюю инфракрасную области спектра (у высших растений от 350 до 700 нм, а у бактерий - от 350 до 900 нм). Хлорофилл а является основным пигментом и характерен для всех организмов, осуществляющих фотосинтез с выделением кислорода (рис 6.5).

У фотосинтезирующих организмов кроме хлорофилла a имеются хлорофиллы b , с и d , которые расширяют спектр поглощения света.

Рис. 6.5 . Строение хлорофилла а

В поглощении световой энергии участвуют каротиноиды (пигменты полиизопреноидной природы) - у фотосинтезирующих эукариот, и фикобилины (пигменты с открытой тетрапиррольной структурой) - у цианобактерий и красных водорослей.

В клетке молекулы хлорофилла вместе с другими пигментами, участвующими в процессах поглощения квантов света и передачи энергии, образуют светособирающие хлорофилл-белковые комплексы (ССК). Молекулы ССК имеют максимум поглощения при разной длине волны и расположены от пигмента с максимумом поглощения при меньшей длине волны к пигменту с большей.

Важнейшим структурно-функциональным звеном фотосинтетического аппарата является фотосистема - совокупность ССК, фотохимического реакционного центра и переносчиков электрона.

В процессе фотосинтеза у растений принимают участие две фотосистемы.

Фотосистема I включает светособирающий комплекс и фотохимический реакционный центр I, в состав которого входит димер хлорофилла, поглощающий свет с длиной волны 700 нм (П700).

Фотосистема II включает светособирающий комплекс и фотохимический реакционный центр II, в состав которого входит димер хлорофилла, поглощающий свет с длиной волны 680 нм (П680).

Свет поглощается двумя фотосистемами раздельно, и нормальное осуществление фотосинтеза требует их одновременного участия.

Световая фаза фотосинтеза

Фотосинтез начинается с поглощения квантов света молекулами хлорофилла и другими связанными с ним пигментами. Энергия поглощенных квантов света стекается от сотен молекул пигментов ССК к молекуле пигмента П700 (Е 0 = + 0,43В), которая переходит в возбужденное состояние (Е 0 = ‒ 0,80 В) и легко отдает электрон первичному акцептору (фотохимическая реакция). Электрон с первичного акцептора, которым является мономерная форма хлорофилла а , передается на филлохинон (витамин К) – вторичный акцептор и затем на железосерные белки. Следующим переносчиком является железосодержащий белок ферредоксин (Е 0 = ‒ 0,43В). Ферредоксин содержит два атома железа в негеминовой форме. От ферредоксина электрон переносится на НАДФ (Е 0 = ‒ 0,32В). Этот перенос осуществляется с помощью специфического белка-фермента (ферредоксин-НАДФ-редуктазы), коферментом которого является ФАД.

Последовательность расположения переносчиков определяется величиной окислительно-восстановительного потенциала: электроны спонтанно текут в сторону менее отрицательного окислительно-восстановительного потенциала (рис. 6.6).

Рис 6.6. Электрон-транспортная цепь в мембране тилакоида

Отдав электрон, П700 остается в виде ионизированной молекулы. При этом потенциал П700становится снова + 0,43 В (основное состояние). Благодаря этому он является прекрасным акцептором электронов. Источником электрона, заполняющего эту «дырку», является фотосистема II. Она ответственна за реакции, связанные с разложением воды и выделением кислорода.

В состав реакционного центра фотосистемы II входит хлорофилл а , поглощающий свет с длиной волны 680 нм (П680). Под влиянием поглощенного кванта света возбужденный электрон от П680 (Е 0 = ‒ 0,7 В) воспринимается первичным акцептором, которым является молекула феофитина. Затем электрон передается на пластохиноны, переносящие как электроны, так и протоны. От пластохинона электроны поступают на b/f-комплекс и передаются через железосерный белок на цитохром. Цитохром относится к группе цитохромов с (Е 0 = +0 ,36 В). Воспринимая электрон, цитохром восстанавливается: Fe 3+ + е - -> Fe 2+ . Следующий переносчик - пластоцианин - это медьсодержащий белок, в котором на каждую молекулу белка приходится два атома меди (Е 0 = + 0,37 В), осуществляющих электронный транспорт: Cu 2+ + е - -> Сu + . Пластоцианин выполняет роль связующего звена между b/f-комплексом и фотосистемой I. От пластоцианина электрон заполняет электронную «дырку» у П700.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав фотосистемы II входит водоокисляющий комплекс , содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Водоокисляющий комплекс находится со стороны внутритилакоидного пространства, и полученные 4 протона выбрасываются внутрь тилакоида.

2Мn 4+ + 2Н 2 0 -> 2Мn 2+ + 4Н + + 4е - + 0 2

Таким образом, в результате работы фотосистемы II происходит окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве. Протоны внутрь тилакоида перекачиваются также через b/f-комплекс за счет энергии, которая выделяется в окислительно-восстановительной реакции при транспорте электронов. В результате на мембране тилакоида создается электрохимический потенциал, который является промежуточной формой запасания энергии и используется для синтеза АТФ протонной АТФ-синтазой.

Помимо полного нециклического пути переноса электрона, описанного выше, может протекать и циклический путь. В этом случае ферредоксин вместо НАДФ + восстанавливает пластохинон, который переносит электрон назад на b/f-комплекс. В результате образуется бóльший протонный градиент и больше АТФ, но не восстанавливается НАДФ + .

Темновая фаза фотосинтеза протекает в строме и не является светозависимой.

С3-фотосинтез (цикл Кальвина, восстановительный пентозофосфатный цикл) состоит из трёх стадий (рис. 6.7):

    карбоксилирование;

    восстановление;

    регенерация акцептора CO 2 .

Рис. 6.7. Цикл Кальвина

На первой стадии к рибулозо-1,5-бисфосфату присоединяется CO 2 под действием фермента рибулозобисфосфаткарбоксилазы.. Этот белок составляет основную фракцию белков хлоропласта и является наиболее распространённым ферментом в природе. В результате образуется промежуточное неустойчивое соединение (С 6), распадающееся на две молекулы 3-фосфоглицериновой кислоты (ФГК), которая является первичным продуктом фотосинтеза.

Во второй стадии ФГК фосфорилируется и восстанавливается с образованием глицеральдегид-3-фосфата (ФГА).

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 молекулы рибулозо-1,5-бисфосфата.

Две молекулы ФГА необходимы для синтеза глюкозы. Таким образом, для синтеза 1 молекулы глюкозы требуется 6 оборотов цикла, 6 CO 2 , 12 НАДФН∙Н + и 18 АТФ.

Интенсивность фотосинтеза зависит в первую очередь от интенсивности и спектрального состава света, концентрации СО 2 и О 2 , температуры, водного режима растения, минерального питания и других факторов внешней среды.