Печатные платы блоков питания своими руками. Хороший лабораторный бп своими руками

Представляю самый простой миниатюрный импульсный блок питания, который может быть успешно повторён начинающим радиолюбителем. Он отличается надежностью, работает в широком диапазоне питающих напряжений, имеет компактные размеры.

Блок питания обладает относительно небольшой мощностью, в пределах 2-х ватт, зато он буквально неубиваемый, не боится даже долговремнных коротких замыканий.

Схема проще даже самых простых импульсных источников питания, к которым относятся зарядные устройства для мобильных телефонов.

Блок питания представляет собой маломощный импульсный источник питания автогенераторного типа, собранный всего на одном транзисторе. Автогенератор запитывается от сети через токоограничительный резистор R1 и однополупериодный выпрямитель в виде диода VD1.


Импульсный трансформатор имеет три обмотки, коллекторная или первичная, базовая обмотка и вторичная.


Важным моментом является намотка трансформатора, и на печатной плате и на схеме указаны начала обмоток, так что проблем возникнуть не должно. Расчетов не делал, а количество витков обмоток позаимствованы от трансформатора для зарядки сотовых телефонов, так как схематика почти та же, количество обмоток тоже. Первой мотается первичная обмотка, которая состоит из 200 витков, диаметр провода от 0,08 до 0,1 мм, затем ставиться изоляция и таким же проводом мотается базовая обмотка, которая содержит от 5 до 10 витков. Поверх мотаем выходную обмотку, количество ее витков зависит от того, какое напряжение вам нужно, по моим скромным подсчетам получается около 1 вольта на один виток.

Сердечник для трансформатора можно найти в нерабочих блоках питания от мобильных телефонов, светодиодных драйверов и прочих маломощных источников питания, которые как правило построены именно на базе однотактных схем, в состав которых входит нужный трансформатор.


Один момент - блок однотактный и между половинками сердечника должен быть немагнитный зазор, такой зазор имеется у сердечников с зарядных устройств сотовых телефонов. Зазор относительно небольшой (пол миллиметра хватит сполна). Если не находите трансформаторов с зазором, его можно сделать искусственным образом, подложив между половинками сердечника один слой офисной бумаги.


Готовый трансформатор собирают обратно, половинки сердечника стягиваются скажем скотчем либо намертво склеиваются суперклеем.


Схема не имеет стабилизации выходного напряжения и узлов защиты от коротких замыканий, но как не странно ей не страшны никакие короткие замыкания. При коротких замыканиях естественно повышается ток в первичной цепи, но он ограничивается ранее упомянутым резистором, и все лишнее рассеивается на резисторе в виде тепла, так что блок можно смело замыкать, даже долговременно. Такое решение снижает КПД источника питания в целом, но зато делает его буквально неубиваемым, в отличии от тех же самых зарядок для мобильных телефонов.




Резистор указанного номинала ограничивает входной ток на уровне 14, 5 мА, по закону ома, зная напряжение в сети легко можно рассчитать мощность, которая составляет в районе 3,3 ватт, это мощность на входе, с учетом кпд преобразователя выходная мощность будет процентов на 20-30 меньше этого. Увеличить мощность можно, для этого достаточно снизить сопротивление указанного резистора.

Силовой транзистор - это маломощный высоковольтный биполярный транзистор обратной проводимости, подойдут ключи типа MJE13001, 13003, 13005, более мощные ставить нет смысла, первого варианта вполне хватает.

На выходе схемы установлен выпрямитель на базе импульсного диода, для снижения потерь советую использовать диод шоттки, рассчитанный на ток 1А. Далее фильтрующий конденсатор, светодиодный индикатор включения и пара резисторов.



Детали

Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 - 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
В архиве можно скачать схему и плату:

(cкачиваний: 1555)



Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.


Схема импульсного блока питания на 12 В

Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.


В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.


Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.


Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

Проверка блока

Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.
Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.


В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.


Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.

Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать? Батарейки? Аккумуляторы? Нет! Блок питания, о нём и пойдёт речь.

Схема его очень проста и надёжна, она имеет защиту от КЗ, плавную регулировку выходного напряжения.
На диодном мосте и конденсаторе C2 собран выпрямитель, цепь C1 VD1 R3 стабилизатор опорного напряжения, цепь R4 VT1 VT2 усилитель тока для силового транзистора VT3, защита собрана на транзисторе VT4 и R2, резистором R1 выполняется регулировка.

Трансформатор я брал из старого зарядного от шуруповерта, на выходе я получил 16В 2А
Что касается диодного моста (минимум на 3 ампера), брал его из старого блока ATX также как и электролиты, стабилитрон, резисторы.

Стабилитрон использовал на 13В, но подойдёт и советский Д814Д.
Транзисторы были взяты из старого советского телевизора, транзисторы VT2, VT3 можно заменить на один составной например КТ827.

Резистор R2 проволочный мощностью 7 Ватт и R1 (переменный) я брал нихромовый, для регулировки без скачков, но в его отсутствии можно поставить обычный.

Состоит из двух частей: на первой собран стабилизатор и защита и, а на второй силовая часть.
Все детали монтируются на основной плате (кроме силовых транзисторов), на вторую плату припаяны транзисторы VT2, VT3 их крепим на радиатор с использованием термопасты, корпуса (коллекторы) изолировать ненужно.Схема повторялась много раз в настройке не нуждается. Фотографии двух блоков приведены ниже С большим радиатором 2А и маленьким 0,6А.

Индикация
Вольтметр: для него нам нужен резистор на 10к и переменный на 4,7к и индикатор я брал м68501 но можно и другой. Из резисторов соберём делитель резистор на 10к не даст головке сгореть, а резистором на 4,7к выставим максимальное отклонение стрелки.

После того как делитель собран и индикация работает нужно от градуировать его, для этого вскрываем индикатор и наклеиваем на старую шкалу чистую бумагу и вырезаем по контуру, удобнее всего обрезать бумагу лезвием.

Когда все приклеено и высохло, подключаем мультиметр параллельно нашему индикатору, и всё это к блоку питания, отмечаем 0 и увеличиваем напряжение до вольта отмечаем и т.д.

Амперметр: для него берём резистор на 0,27 ома!!! и переменный на 50к, схема подключения ниже, резистором на 50к выставим максимальное отклонение стрелки.

Градуировка такая-же только изменяется подключение см ниже в качестве нагрузки идеально подходит галогеновая лампочка на 12 в.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2, VT4 Биполярный транзистор

КТ815Б

2 В блокнот
VT3 Биполярный транзистор

КТ805БМ

1 В блокнот
VD1 Стабилитрон

Д814Д

1 В блокнот
VDS1 Диодный мост 1 В блокнот
C1 100мкФ 25В 1 В блокнот
C2, C4 Электролитический конденсатор 2200мкФ 25В 2 В блокнот
R2 Резистор

0.45 Ом

1 В блокнот
R3 Резистор

1 кОм

1 В блокнот
R4 Резистор

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

Блоки питания постоянного тока нужны не только радиолюбителям. Они имеют очень широкую сферу применения, и поэтому ими в той или иной степени пользуется большинство домашних мастеров. В этой статье описаны основные типы преобразователей напряжения, их характерные отличия и области применения и то, как сделать простой блок питания своими руками.

Самостоятельное изготовление позволит получить экономию немалых денежных средств. Разобравшись с устройством и принципом работы можно легко выполнить ремонт этого устройства.

Области применения

Эти устройства имеют очень широкую сферу применения. Давайте рассмотрим основные способы использования. Для экономии ресурса аккумуляторных батарей к самодельным блокам питания подключают низковольтный электроинструмент. Такие приборы используются для подключения светодиодных осветительных приборов, установке освещения в помещениях с высокой влажностью и опасностью поражения электрическим током и для многих других целей, не имеющих прямого отношения к радиоэлектронике.


Классификация устройств

Большинство блоков питания преобразуют сетевое переменное напряжение величиной 220 вольт в постоянное напряжение заданной величины. При этом устройства характеризуется большим перечнем рабочих параметров, которые необходимо учитывать при покупке или конструировании.

Основными рабочими параметрами является выходной ток, напряжение и возможность стабилизации и регулировки выходного напряжения. Все эти преобразователи по способу преобразования классифицируются на две большие группы: аналоговые и импульсные приборы. Эти группы блоков питания имеют сильные отличия и легко различаются по фото с первого взгляда.

Ранее выпускались только аналоговые приборы. В них преобразование напряжения осуществляется с помощью трансформатора. Собрать такой источник не составляет труда. Его схема достаточна проста. Он состоит из понижающего трансформатора, диодного моста и стабилизирующего конденсатора.

Диоды преобразуют переменное напряжение в постоянное напряжение. Конденсатор дополнительно его сглаживает. Недостатком таких приборов являются большие габариты и масса.

Трансформатор мощностью 250 Ватт обладает массой несколько килограмм. Кроме того на выходе таких устройств напряжение может меняться от внешних факторов. Поэтому для стабилизации выходных параметров в таких аппаратах в электронную схему добавляются специальные элементы.

С использованием трансформаторов изготавливаются блоки питания повышенной мощности. Такие приборы целесообразно использовать для зарядки автомобильных аккумуляторов или для подключения электрических дрелей для экономии ресурса литиевых аккумуляторов.

Преимуществом такого устройства является гальваническая развязка между двумя обмотками (за исключением автотрансформаторов). Первичная обмотка, подключенная в сеть высокого напряжения, не имеет физического контакта с вторичной обмоткой. На ней генерируется пониженное напряжение.

Передача энергии осуществляется с помощью магнитного поля переменного тока в металлическом сердечнике трансформатора. При наличии минимальных знаний в радиоэлектронике своими руками легче собрать классический регулируемый блок питания с использованием трансформатора.


С развитием электронной техники стало возможным выпускать более дешевые полупроводниковые преобразователи напряжения. Они очень компактны, мало весят и обладают очень низкой ценой. Благодаря этому они стали лидерами рынка. В любой квартире используются несколько разных блоков питания.

К сожалению, в большинстве современных приборов отсутствует гальваническая развязка с питающей сетью. Из-за этого довольно часто гибнут люди, которые при зарядке сотового телефона или другой техники пользуются прибором и одновременно принимают ванну или умываются.

При соблюдении техники безопасности человеку ничего не грозит. Эти приборы обладают достаточно низкой стоимостью и при их поломке зачастую их не пытаются отремонтировать, а приобретают новое устройство. Тем не менее если разобраться со схемами и принципами работы импульсных блоков питания, то легко можно будет, как отремонтировать такой блок питания, так и собрать новый прибор.

Импульсные блоки питания

Давайте разберемся с устройством и принципом работы импульсных источников питания. В таких приборах на входе переменное сетевое напряжение преобразуется в высокочастотное напряжение. Для трансформации токов высокой частоты требуются не большие трансформаторы, а миниатюрные электромагнитные катушки. Поэтому такие преобразователи легко умещаются в маленьких корпусах. Например, они легко размещаются в пластиковом патроне энергосберегающей лампы.


Компоновка такого блока питания в приборе небольшого размера не вызывает никаких проблем. Для надежной работы необходимо предусмотреть возможность охлаждения на специальных металлических радиаторах нагревающихся элементов электронной схемы. Преобразованное напряжение выпрямляется с помощью быстродействующих диодов и сглаживается на выходном фильтре.

Недостатком таких приборов является неизбежное наличие высокочастотных помех на выходе преобразователя, несмотря даже на наличие специальных фильтров. Кроме того, в импульсных приборах используются специальные схемы стабилизации выходного напряжения.


Импульсный блок питания можно приобрести в виде отдельного блока, готового к монтажу в приборе. Также это устройство можно собрать самостоятельно, воспользовавшись широко распространенными схемами и инструкциями по сборке блоков питания.

При этом следует учесть, что самостоятельная сборка может обойтись дороже покупного изделия, приобретенного в интернете на азиатском рынке. Это может быть вызвано тем, что радиоэлектронные компоненты продаются с большей наценкой, чем наценка производителя в Китае на сборку изделия и его доставку. В любом случае, разобравшись с устройством таких приборов, можно будет не только собрать такой прибор самостоятельно, но и при необходимости отремонтировать. Такие навыки будут очень полезными.

При желании сэкономить, можно воспользоваться импульсными блоками питания от персональных компьютеров. Зачастую в вышедшем из строя персональном компьютере находится исправный блок. Они требуют минимальной доработки перед использованием.

Такие блоки питания имеют защиту от холостого хода. Они должны всё время находиться под нагрузкой. Поэтому для того, что бы избежать отключения в нагрузку включают постоянное сопротивление. Такие модернизированные блоки применяют в первую очередь для питания бытового электроинструмента.

Фото блоков питания своими руками