Зачем нужны ядерные реакторы. Ядерный реактор

У ядерных реакторов одна задача: расщепить атомы в результате контролируемой реакции и использовать выделенную энергию, чтобы генерировать электрическую мощность. На протяжении многих лет реакторы рассматривались и как чудо, и как угроза.

Когда первый коммерческий реактор США вошел в строй в Shippingport, штат Пенсильвания, в 1956 году, эта технология была расценена как источник энергии будущего, а некоторые полагали, что реакторы сделают выработку электричества слишком дешевой. Сейчас во всем мире построено 442 атомных реактора, около четверти из этих реакторов находятся в США. Мир пришел в зависимость от ядерных реакторов, вырабатывающих 14 процентов электроэнергии . Футуристы фантазировали даже об атомных автомобилях.

Когда в 1979 году на реакторе Блок 2 на электростанции Three Mile Island в штате Пенсильвания возникла неисправность системы охлаждения и, как следствие, частичное расплавление его радиоактивного топлива, теплые чувства по поводу реакторов радикально изменились. Несмотря на то, что было проведено блокирование разрушенного реактора и не возникло никакого серьезного радиоактивного излучения, многие люди начали рассматривать реакторы как слишком сложные и уязвимые, с потенциально катастрофическими последствиями. Люди также обеспокоились радиоактивными отходами из реакторов. В результате, строительство новых атомных станций в Соединенных Штатах остановилось. Когда более серьезная авария произошла на Чернобыльской АЭС в Советском Союзе в 1986 году, ядерная энергетика казалась обреченной.

Но в начале 2000-х, ядерные реакторы начали возвращаться, благодаря растущей потребности в энергии и уменьшении поставок ископаемого топлива, а также растущей обеспокоенности по поводу изменения климата в результате выбросов двуокиси углерода

Но в марте 2011 года случился еще один кризис — на этот раз от землетрясения сильно пострадала Фукусима 1 — атомная электростанция в Японии.

Использование ядерной реакции

Попросту говоря, в ядерном реакторе расщепляются атомы и высвобождают энергию, которая держит их части вместе.

Если вы подзабыли физику средней школы, мы напомним вам, как ядерное деление работает. Атомы похожи на крошечные солнечные системы, с ядром, вроде Солнца , и электронами, как планетами на орбите вокруг него. Ядро состоит из частиц, называемых протонами и нейтронами, которые связаны друг с другом. Силу, которая связывает элементы ядра — трудно даже представить. Она во много миллиардов раз сильнее, чем сила земного тяготения. Несмотря на эту огромную силу, можно расщепить ядро — стреляя по нему нейтронами. Когда это будет сделано, выделится много энергии. Когда атомы распадаются, их частицы врезаются в близлежащие атомы, расщепляя и их, а те, в свою очередь следующие, следующие и следующие. Возникает, так называемая, цепная реакция .

Уран, элемент с большими атомами, идеально подходит для процесса расщепления, потому, что сила, связывающая частицы его ядра, является относительно слабой по сравнению с другими элементами. Ядерные реакторы используют определенный изотоп, называемый У ран- 235 . Уран-235 является редким в природе, руда из урановых рудников содержит лишь около 0,7% Урана-235. Вот почему реакторы используют обогащенный У ран , который создается путем выделения и концентрирования Урана-235 посредством процесса диффузии газа.

Процесс цепной реакции можно создать в атомной бомбе, подобной тем, что были сброшены на японские города Хиросиму и Нагасаки во время Второй мировой войны. Но в ядерном реакторе цепная реакция контролируется вставкой управляющих стержней, изготовленных из материалов, таких, как кадмий, гафний или бор, которые поглощают часть нейтронов. Это по-прежнему позволяет процессу деления выделять достаточно энергии, чтобы нагреть воду до температуры около 270 градусов Цельсия и превратить ее в пар, который используется для вращения турбин электростанции и генерирования электричества. В принципе, в этом случае контролируемая ядерная бомба работает вместо угля, создавая электроэнергию, за исключением того, что энергия для вскипания воды происходит от расщепления атомов, вместо сжигания углерода.

Компоненты ядерных реакторов

Есть несколько различных типов ядерных реакторов, но все они имеют некоторые общие характеристики. Все они имеют запас радиоактивных топливных гранул — обычно оксида урана, которые расположены в трубах, чтобы сформировать топливные стержни в активной зон е реактора .

Реактор также имеет ранее упомянутые управляющи е стержн и — из поглощающего нейтроны материала, такого как кадмий, гафний или бор, которые вставляются для контроля или остановки реакции.

Реактор также имеет модератор , вещество, которое замедляет нейтроны и помогает контролировать процесс деления. Большинство реакторов в Соединенных Штатах используют обычную воду, но реакторы в других странах иногда используют графит, или тяжел ую вод у , в которой водород заменен дейтерием, изотопом водорода с одним протоном и одним нейтроном. Еще одной важной частью системы является охлаждающ ая жидкост ь , как правило, обычная вода, которая поглощает и передает тепло от реактора для создания пара для вращения турбины и охлаждает зону реактора так, чтобы он не достиг температуры, при которой уран расплавится (около 3815 градусов по Цельсию).

Наконец, реактор заключен в оболочк у , большую, тяжелую конструкцию, толщиной обычно несколько метров из стали и бетона, которая держит радиоактивные газы и жидкости внутри, где они не могут никому навредить.

Есть целый ряд различных конструкций реакторов в использовании, но один из самых распространенных — водо-водяной энергетический реактор (ВВЭР) . В таком реакторе, вода нагнетается в контакт с сердечником, а затем остается там под таким давлением, что не может превратиться в пар. Эта вода затем в парогенераторе вступает в контакт с водой, поданной без давления, которая и превращается в пар, вращающий турбины. Есть также конструкция реактора большой мощности канального типа (РБМК) с одним водяным контуром и реактор на быстрых нейтронах с двумя натриевыми и одним водяным контуром.

Насколько безопасен ядерный реактор?

Ответить на этот вопрос довольно сложно и это зависит от того, кого вы спросите и как вы понимаете «в безопасности». Вас беспокоит излучение или радиоактивные отходы, образующиеся в реакторах? Или вы больше беспокоитесь о возможности катастрофического несчастного случая? Какую степень риска вы считаете приемлемым компромиссом для выгоды ядерной энергетики? И в какой степени вы доверяете правительству и атомной энергетике?

«Радиация» является веским аргументом, в основном, потому, что мы все знаем, что большие дозы радиации, например, от взрыва ядерной бомбы, могут убить многие тысячи людей.

Сторонники ядерной энергетики, однако, отмечают, что все мы регулярно подвергаются облучению из различных источников, в том числе космическими лучами и естественной радиацией, испускаемой Землей . Среднегодовая доза облучения составляет около 6,2 миллизивертов (мЗв), половина из него из природных источников, а половина из искусственных источников, начиная от рентгена грудной клетки, детекторов дыма и светящихся часовых циферблатов. Сколько мы получаем радиации от ядерных реакторов? Лишь незначительная часть процента от нашего типичного годового облучения — 0,0001 мЗв.

В то время как все атомные станции неизбежно допускают утечку небольшого количества радиации, комиссии-регуляторы держат операторов АЭС в жестких требованиях. Они не могут подвергать людей, живущих вокруг станции, более, чем 1 мЗв излучения в год, а рабочие на заводе имеют порог 50 мЗв в год. Это может показаться много, но, по словам Комиссии по ядерному регулированию, нет никаких медицинских доказательств того, что годовые дозы излучения ниже 100 мЗв создают какие-либо риски для здоровья человека.

Но важно отметить, что не все согласны с такой благодушной оценкой радиационных рисков. Например, организация «Врачи за социальную ответственность», давний критик атомной промышленности, изучали детей, живущих вокруг немецких АЭС. Исследование показало, что люди, живущие в пределах 5 км от станций, имели двойной риск заражения лейкозом в сравнении с теми, кто живет дальше от АЭС.

Ядерные отходы реактора

Ядерная энергетика рекламируется ее сторонниками, как «чистая» энергия, потому, что реактор не выбрасывает большие объемы парниковых газов в атмосферу, в сравнении с угольными электростанциями. Но критики указывают на другую экологическую проблему — утилизацию ядерных отходов. Некоторые из отходов отработанного топлива из реакторов, по-прежнему выделяют радиоактивность. Другой ненужный материал, который должен быть сохранен, является радиоактивными отходами высокого уровня , жидким остатком от переработки отработанного топлива, в котором частично остался уран. Прямо сейчас большинство этих отходов хранится локально на атомных электростанциях в прудах воды, которые поглощают часть оставшегося тепла, произведенного отработанным топливом и помогают оградить рабочих от радиоактивного облучения

Одна из проблем, с отработавшим ядерным топливом в том, что оно было изменено в процессе деления.Когда большие атомы урана расщепляются, они создают побочные продукты — радиоактивные изотопы нескольких легких элементов, таких как Цезий-137 и Стронций-90, называемые продукты деления . Они горячие и очень радиоактивные, но в конце концов, за период в 30 лет, они распадаются на менее опасные формы. Этот период для них называется п ериод ом полураспада . Для других радиоактивных элементов период полураспада будет разным. Кроме того, некоторые атомы урана также захватывают нейтроны, образуя более тяжелые элементы, такие как Плутоний. Эти трансурановые элементы не создают столько тепла или проникающего излучения как продукты деления, но они требуют намного дольше времени, чтобы распадаться. Плутоний-239, например, имеет период полураспада 24000 лет.

Эти радиоактивны е отход ы высокого уровня из реакторов являются опасными для человека и других форм жизни потому, что они могут выделять огромную, смертельную дозу радиации даже от короткой экспозиции. Через десять лет после удаления остатков топлива из реактора, например, они испускают в 200 раз больше радиоактивности в час, чем это требуется, чтобы убить человека. И если отходы оказываются в грунтовых водах или реках, они могут попадать в пищевую цепь и поставить под угрозу большое количество людей.

Поскольку отходы так опасны, многие люди находятся в сложном положении. 60000 тонн отходов находится на атомных станциях, близких к крупным городам. Но найти безопасное место, чтобы хранить отходы — очень нелегко.

Что может пойти не так с ядерным реактором?

С государственными регуляторами, оглядываясь на свой опыт, инженеры потратили много времени на протяжении многих лет проектируя реакторы для оптимальной безопасности. Просто так они не ломаются, работают должным образом и имеют резервные меры безопасности, если что-то происходит не по плану. В результате, год за годом, атомные станции, кажутся довольно безопасными по сравнению, скажем, с воздушным транспортом , который регулярно убивает от 500 до 1100 человек в год во всем мире.

Тем не менее, ядерные реакторы настигают крупные поломки. По международной шкале ядерных событий, в которой несчастные случаи с реакторами оцениваются от 1 до 7, было пять аварий с 1957 года, которые оценили от 5 до 7.

Худшим кошмаром является поломка системы охлаждения, что приводит к перегреву топлива. Топливо превращается в жидкость, а затем прожигает защитную оболочку, извергая радиоактивное излучение. В 1979 году Блок 2 на АЭС Three Mile Island (США) был на грани этого сценария. К счастью, хорошо продуманная система сдерживания была достаточно сильна, чтобы остановить радиацию от выхода.

СССР повезло меньше. Тяжелая ядерная авария случилась в апреле 1986 года на 4-м энергоблоке на Чернобыльской АЭС. Это было вызвано сочетанием системных поломок, конструктивных недостатков и плохо обученным персоналом. Во время обычной проверки, реакция вдруг усилилась, а контрольные стержни заклинило, предотвращая аварийное отключение. Внезапное накопление пара вызвало два тепловых взрыва, выбрасывая графитовый замедлитель реактора в воздух. В отсутствии чего-либо для охлаждения топливных стержней реактора, начался их перегрев и полное разрушение в результате которого топливо приняло жидкий вид. Погибло много работников станции и ликвидаторов аварии. Большое количество излучения распространилось на площади 323 749 квадратных километров. Количество смертей, вызванных радиацией, до сих пор неясно, но Всемирная организация здравоохранения утверждает, что это, возможно, вызвало 9000 смертей от рака.

Создатели ядерных реакторов дают гарантии, основанные на вероятностной оценк е , в которой они пытаются сбалансировать потенциальный вред от случая с вероятностью, с которой он на самом деле происходит. Но некоторые критики говорят, что они должны готовиться, вместо этого, для редких, самых неожиданных, но очень опасных событий. Показательный пример — авария в марте 2011 года на атомной станции Фукусима 1 в Японии. Станция, по сообщениям, была разработана, чтобы выдерживать сильное землетрясение, но не такое катастрофическое, как землетрясение в 9,0 баллов, которое подняло 14-метровую волну цунами над дамбами, призванными противостоять 5,4-метровой волне. Натиск цунами уничтожил резервные дизель генераторы, которые предназначались для питания системы охлаждения шести реакторов АЭС, в случае отключения электричества.Таким образом, даже после того, как регулирующие стержни реакторов Фукусима прекратили реакцию деления, все еще ​​горячее топливо позволило температуре опасно подняться внутри разрушенных реакторов.

Японские чиновники прибегли к крайней мере — затоплению реакторов огромным количеством морской воды с добавкой борной кислоты, что смогло предотвратить катастрофу, но разрушило реакторное оборудование. В конце концов, с помощью пожарных машин и барж, японцы оказались в состоянии перекачивать пресную воду в реакторы. Но к тому времени мониторинг уже показал тревожные уровни радиации в окружающей земле и воде. В одной деревне в 40 км от этой АЭС, радиоактивный элемент Цезий-137, оказался на уровнях гораздо более высоких, чем после Чернобыльской катастрофы, что вызвало сомнение о возможности проживания людей в этой зоне.

Каж­дый день мы исполь­зуем элек­три­че­сто и не заду­мы­ва­емся над тем, как оно про­из­во­дится и как оно к нам попало. А тем не менее это одна из самых важ­ных частей совре­мен­ной циви­ли­за­ции. Без элек­три­че­ства не было бы ничего - ни света, ни тепла, ни движения.

Все знают про то, что элек­три­чевто выра­ба­ты­ва­ется на элек­тро­стан­циях, в том числе и на атом­ных. Сердце каж­дой АЭС - это ядер­ный реак­тор . Именно его мы будем раз­би­рать в этой статье.

Ядер­ный реак­тор , устрой­ство в кото­ром про­ис­те­кает управ­ля­е­мая цеп­ная ядер­ная реак­ция с выде­ле­нием тепла. В основ­ном ти устрой­ства исполь­зу­ются для выра­ботки элек­тро­энер­гии и в каче­стве при­вода боль­ших кораб­лей. Для того, чтобы пред­ста­вить себе, мощ­ность и эко­но­мич­ность ядер­ных реак­то­ров можно при­ве­сти при­мер. Там где сред­нему ядер­ному реак­тору потре­бу­ется 30 кило­грамм урана, сред­ней ТЭЦ потре­бу­ется 60 ваго­нов угля или 40 цистерн мазута.

Про­об­раз ядер­ного реак­тора был построен в декабре 1942 года в США под руко­вод­ством Э. Ферми. Это была так назы­ва­е­мая “Чикаг­ская стопка”. Chicago Pile (впо­след­ствии слово “Pile” наряду с дру­гими зна­че­ни­ями стало обо­зна­чать ядер­ный реак­тор). Такое назва­ние дали ему из-за того, что он напо­ми­нал собой боль­шую стопку гра­фи­то­вых бло­ков, поло­жен­ных один на другой.

Между бло­ками была поме­щены шаро­об­раз­ные “рабо­чие тела”, из при­род­ного урана и его диоксида.

В СССР пер­вый реак­тор был построен под руко­вод­ством ака­де­мика И. В. Кур­ча­това. Реак­тор Ф-1 был зара­бо­тал 25 декабря 1946 г. Реак­тор был в форме шара, имел в диа­метре около 7,5 мет­ров. Он не имел системы охла­жде­ния, поэтому рабо­тал на очень малых уров­нях мощности.


Иссле­до­ва­ния про­дол­жи­лись и в 27 июня 1954 года всту­пила в строй пер­вая в мире атом­ная элек­тро­стан­ция мощ­но­стью 5 МВт в г. Обнинске.

Прин­цип дей­ствия атом­ного реактора.

При рас­паде урана U 235 про­ис­хо­дит выде­ле­ние тепла, сопро­вож­да­е­мое выбро­сом двух-трех ней­тро­нов. По ста­ти­сти­че­ским дан­ным - 2,5. Эти ней­троны стал­ки­ва­ются с дру­гими ато­мами урана U 235 . При столк­но­ве­нии уран U 235 пре­вра­ща­ется в неста­биль­ный изо­топ U 236 , кото­рый прак­ти­че­ски сразу же рас­па­да­ется на Kr 92 и Ba 141 + эти самые 2–3 ней­трона. Рас­пад сопро­вож­да­ется выде­ле­нием энер­гии в виде гамма излу­че­ния и тепла.

Это и назы­ва­ется цеп­ная реак­ция. Атомы делятся, коли­че­ство рас­па­дов уве­ли­чи­ва­ется в гео­мет­ри­че­ской про­грес­сии, что в конеч­ном итоге при­во­дит к мол­ние­нос­ному, по нашим мер­кам высво­бож­де­нию огром­ного коли­че­ства энер­гии - про­ис­хо­дит атом­ный взрыв, как послед­ствие неуправ­ля­е­мой цеп­ной реакции.

Однако в ядер­ном реак­торе мы имеем дело с управ­ля­е­мой ядер­ной реак­цией. Как такая ста­но­вится воз­мож­ной - рас­ска­зано дальше.

Устрой­ство ядер­ного реактора.

В насто­я­щее время суще­ствует два типа ядер­ных реак­то­ров ВВЭР (водо-водяной энер­ге­ти­че­ский реак­тор) и РБМК (реак­тор боль­шой мощ­но­сти каналь­ный). Отли­чие в том, что РБМК - кипя­щий реак­тор, а ВВЭР исполь­зует воду под дав­ле­нием в 120 атмосфер.

Реак­тор ВВЭР 1000. 1 - при­вод СУЗ; 2 - крышка реак­тора; 3 - кор­пус реак­тора; 4 - блок защит­ных труб (БЗТ); 5 - шахта; 6 - выго­родка актив­ной зоны; 7 - топ­лив­ные сборки (ТВС) и регу­ли­ру­ю­щие стержни;

Каж­дый ядер­ный реак­тор про­мыш­лен­ного типа пред­став­ляет собой котел, сквозь кото­рый про­те­кает теп­ло­но­си­тель. Как пра­вило это обыч­ная вода (ок. 75% в мире), жид­кий гра­фит (20%) и тяже­лая вода (5%). В экс­пе­ри­мен­таль­ных целях исполь­зо­вался бери­лий и пред­по­ла­гался углеводород.

ТВЭЛ - (теп­ло­вы­де­ля­ю­щий эле­мент). Это стержни в цир­ко­ни­е­вой обо­лочке с нио­бий­ным леги­ро­ва­нием, внутри кото­рых рас­по­ло­жены таб­летки из диок­сида урана.

ТВЭЛы в кас­сете выде­лены зеленым.


Топ­лив­ная кас­сета в сборе.

Актив­ная зона реак­тора состоит из сотен кас­сет, постав­лен­ных вер­ти­кально и объ­еди­нен­ных вме­сте метал­ли­че­ской обо­лоч­кой - кор­пу­сом, игра­ю­щим также роль отра­жа­те­лем ней­тро­нов. Среди кас­сет, с регу­ляр­ной часто­той встав­лены управ­ля­ю­щие стержни и стержни ава­рий­ной защиты реак­тора, кото­рые в слу­чае пере­грева при­званы заглу­шить реактор.

При­ве­дем в при­мер дан­ные по реак­тору ВВЭР-440:

Управ­ля­ю­щие могут пере­ме­щаться вверх и вниз погру­жа­ясь или наобо­рот, выходя из актив­ной зоны, где реак­ция идет интен­сив­нее всего. Это обес­пе­чи­вают мощ­ные элек­тро­мо­торы, в сово­куп­но­сти с систе­мой управления.Стержни ава­рий­ной защиты при­званы заглу­шить реак­тор в слу­чает нештат­ной ситу­а­ции, упав в актив­ную зону и погло­тив больше коли­че­ство сво­бод­ных нейтронов.

Каж­дый реак­тор имеет крышку, через кото­рую про­из­во­дится погрузка и выгрузка отра­бо­тав­ших и новых кассет.

Поверх кор­пуса реак­тора обычно уста­нав­ли­ва­ется теп­ло­изо­ля­ция. Сле­ду­ю­щим барье­ром идет био­ло­ги­че­ская защита. Это как пра­вило желе­зо­бе­тон­ный бун­кер, вход в кото­рый закры­ва­ется шлю­зо­вой каме­рой с гер­ме­тич­ными дверьми. Био­ло­ги­че­ская защита при­звана не выпу­стить в атмо­сферу радио­ак­тив­ный пар и куски реак­тора, если все таки про­изой­дет взрыв.

Ядер­ный взрыв в совре­мен­ных реак­тора крайне мало воз­мо­жен. Потому что топ­ливо доста­точно мало обо­га­щено, и раз­де­лено на ТВЕЛы. Даже если рас­пла­вится актив­ная зона, топ­ливо не смо­жет настолько активно про­ре­а­ги­ро­вать. Маси­мум что может про­изойти - теп­ло­вой взрыв как на Чер­но­быле, когда дав­ле­ние в реак­торе достигло таких вели­чин, что метал­ли­че­ский кор­пус про­сто разо­рвало, а крышка реак­тора, весом в 5000 тонн сде­лала пры­жок с пере­во­ро­том, про­бив крышу реак­тор­ного отсека и выпу­стив пар наружу. Если бы чер­но­быль­ская АЭС была осна­щена пра­виль­ной био­ло­ги­че­ской защи­той, напо­до­бие сего­дняш­него сар­ко­фага, то ката­строфа обо­шлась чело­ве­че­ству намного дешевле.

Работа атом­ной электростанции.

Если в двух сло­вах, то рабо­боа выгля­дит так.

Атом­ная элек­тро­стан­ция. (Кликабельно)

После поступ­ле­ния в актив­ную зону реак­тора с помо­щью насо­сов, вода нагре­ва­ется с 250 до 300 гра­ду­сов и выхо­дит с “дру­гой сто­роны” реак­тора. Это назы­ва­ется пер­вым кон­ту­ром. После чего направ­ля­ется в теп­л­об­мен­ник, где встре­ча­ется со вто­рым кон­ту­ром. После чего пар под дав­ле­нием посту­пает на лопатки тур­бин. Тур­бины выра­ба­ты­вают электричество.




























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Образовательные: актуализация имеющихся знаний; продолжить формирование понятий: деление ядер урана, цепная ядерная реакция, условия её протекания, критическая масса; ввести новые понятия: ядерный реактор, основные элементы ядерного реактора, устройство ядерного реактора и принцип его действия, управление ядерной реакцией, классификация ядерных реакторов и их использование;
  • Развивающие: продолжить формирование умений наблюдать и делать выводы, а также развивать интеллектуальные способности и любознательность учащихся;
  • Воспитательные: продолжить воспитание отношения к физике как к экспериментальной науке; воспитывать добросовестное отношение к труду, дисциплинированность, положительное отношение к знаниям.

Тип урока: изучение нового материала.

Оборудование: мультимедийная установка.

Ход урока

1. Организационный момент.

Ребята! Сегодня на уроке мы с вами повторим деление ядер урана, цепную ядерную реакцию, условия её протекания, критическую массу, узнаем, что такое ядерный реактор, основные элементы ядерного реактора, устройство ядерного реактора и принцип его действия, управление ядерной реакцией, классификацию ядерных реакторов и их использование.

2. Проверка изученного материала.

  1. Механизм деления ядер урана.
  2. Расскажите о механизме протекания цепной ядерной реакции.
  3. Приведите пример ядерной реакции деления ядра урана.
  4. Что называется критической массой?
  5. Как идет цепная реакция в уране, если его масса меньше кри­тической, больше критической?
  6. Чему равна критическая масса урана 295, можно ли умень­шить критическую массу?
  7. Какими способами можно изменить ход цепной ядерной ре­акции?
  8. С какой целью замедляют быстрые нейтроны?
  9. Какие вещества используют в качестве замедлителей?
  10. За счет каких факторов можно увеличить число свободных нейтронов в куске урана, обеспечив тем самым возможность протекания в нем реакции?

3. Объяснение нового материала.

Ребята, ответьте на такой вопрос: А что является главной частью любой атомной электростанции? (ядерный реактор )

Молодцы. Итак, ребята сейчас более подробно остановимся на этом вопросе.

Историческая справка.

Игорь Васильевич Курчатов- выдающийся советский физик, академик, основатель и первый директор Института атомной энергии с 1943 г. по 1960 г., главный научный руководитель атомной проблемы в СССР, один из основоположников использования ядерной энергии в мирных целях. Академик АН СССР (1943). Испытания первой атомной советской бомбы проводились в 1949 году. Через четыре года проводились успешные испытания первой в мире водородной бомбы. А в 1949 году Игорь Васильевич Курчатов начал работу над проектом атомной электростанции. Атомная электростанция – вестник мирного использования атомной энергии. Проект был успешно закончен: 27 июля 1954 наша атомная электростанция стала первой в мире! Курчатов ликовал и веселился как ребенок!

Определение ядерного реактора.

Ядерным реактором называется устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И. В. Курчатова.

Основными элементами ядерного реактора являются:

  • ядерное горючее(уран 235, уран 238, плутоний 239);
  • замедлитель нейтронов (тяжелая вода, графит и др.);
  • теплоноситель для вывода энергии, образующейся при работе реактора (вода, жидкий натрий и др.);
  • Регулирующие стержни (бор, кадмий) - сильно поглощающие нейтроны
  • Защитная оболочка, задерживающая излучения (бетон с же­лезным наполнителем).

Принцип действия ядерного реактора

Ядерное топливо располагается в активной зоне в виде вертикальных стержней, называемых тепловыделяющими элементами (ТВЭЛ). ТВЭЛы предназначены для регулирования мощности реактора.

Масса каждого топливного стержня значительно меньше критической, поэтому в одном стержне цепная реакция происходить не может. Она начинается после погружения в активную зону всех урановых стержней.

Активная зона окружена слоем вещества, отражающего нейтроны (отражатель) и защитной оболочкой из бетона, задерживающего нейтроны и другие частицы.

Отвод тепла от топливных элементов. Теплоноситель- вода омывает стержень, нагретая до 300°С при высоком давлении, поступает в теплообменники.

Роль теплообменника - вода, нагретая до 300°С, отдает тепло обычной воде, превращается в пар.

Управление ядерной реакцией

Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор. При выдвинутых из активной зоны реактора стержнях К > 1, а при полностью вдвинутых - К < 1. Вдвигая стержни внутрь активной зоны, можно в любой момент времени приостановить развитие цепной реакции. Управление ядерными реакторами осуществляется дистанционно с помощью ЭВМ.

Реактор на медленных нейтронах.

Наиболее эффективное деление ядер урана-235 происходит под действием медленных нейтронов. Такие реакторы называются реакторами на медленных нейтронах. Вторичные нейтроны, образующиеся в результате реакции деления, являются быстрыми. Для того чтобы их последующее взаимодействие с ядрами урана-235 в цепной реакции было наиболее эффективно, их замедляют, вводя в активную зону замедлитель - вещество, уменьшающее кинетическую энергию нейтронов.

Реактор на быстрых нейтронах.

Реакторы на быстрых нейтронах не могут работать на естественном уране. Реакцию можно поддерживать лишь в обогащенной смеси, содержащей не менее 15% изотопа урана. Преимущество реакторов на быстрых нейтронах в том, что при их работе образуется значительное количество плутония, который затем можно использовать в качестве ядерного топлива.

Гомогенные и гетерогенные реакторы.

Ядерные реакторы в зависимости от взаимного размещения горючего и замедлителя подразделяются на гомогенные и гетерогенные. В гомогенном реакторе активная зона представляет собой однородную массу топлива, замедлителя и теплоносителя в виде раствора, смеси или расплава. Гетерогенным называется реактор, в котором топливо в виде блоков или тепловыделяющих сборок размещено в замедлителе, образуя в нем правильную геометрическую решетку.

Преобразование внутренней энергии атомных ядер в электрическую энергию.

Ядерный реактор является основным элементом атомной электростанции (АЭС), преобразующей тепловую ядерную энергию в электрическую. Преобразование энергии происходит по следующей схеме:

  • внутренняя энергия ядер урана -
  • кинетическая энергия нейтронов и осколков ядер -
  • внутренняя энергия воды -
  • внутренняя энергия пара -
  • кинетическая энергия пара -
  • кинетическая энергия ротора турбины и ротора генератора -
  • электрическая энергия.

Использование ядерных реакторов.

В зависимости от назначения ядерные реакторы бывают энергетические, конверторы и размножители, исследовательские и многоцелевые, транспортные и промышленные.

Ядерные энергетические реакторы используются для выработки электроэнергии на атомных электростанциях, в судовых энергетических установках, атомных теплоэлектроцентралях, а также на атомных станциях теплоснабжения.

Реакторы, предназначенные для производства вторичного ядерного топлива из природного урана и тория, называются конверторами или размножителями. В реакторе-конверторе вторичного ядерного топлива образуется меньше первоначально израсходованного.

В реакторе-размножителе осуществляется расширенное воспроизводство ядерного топлива, т.е. его получается больше, чем было затрачено.

Исследовательские реакторы служат для исследований процессов взаимодействия нейтронов с веществом, изучения поведения реакторных материалов в интенсивных полях нейтронного и гамма-излучений, радиохимических в биологических исследований, производства изотопов, экспериментального исследования физики ядерных реакторов.

Реакторы имеют различную мощность, стационарный или импульсный режим работы. Многоцелевыми называются реакторы, служащие для нескольких целей, например, для выработки энергии и получения ядерного топлива.

Экологические катастрофы на АЭС

  • 1957 г. – авария в Великобритании
  • 1966 г. – частичное расплавление активной зоны после выхода из строя охлаждения реактора неподалеку от Детройта.
  • 1971 г. – много загрязненной воды ушло в реку США
  • 1979 г. – крупнейшая авария в США
  • 1982 г. – выброс радиоактивного пара в атмосферу
  • 1983 г. – страшная авария в Канаде (20 минут вытекала радиоактивная вода – по тонне в минуту)
  • 1986 г. – авария в Великобритании
  • 1986 г. – авария в Германии
  • 1986 г. – Чернобыльская АЭС
  • 1988 г. – пожар на АЭС в Японии

Современные АЭС оснащены ПК, а раньше даже после аварии реакторы продолжали работать, так как не было автоматической системы отключения.

4. Закрепление материала.

  1. Что называют ядерным реактором?
  2. Что является ядерным горючим в реакторе?
  3. Какое вещество служит замедлителем нейтронов в ядерном реакторе?
  4. Каково назначение замедлителя нейтронов?
  5. Для чего нужны регулирующие стержни? Как ими пользуются?
  6. Что используется в качестве теплоносителя в ядерных реакторах?
  7. Для чего нужно, чтобы масса каждого уранового стержня была меньше критической массы?

5. Выполнение теста.

  1. Какие частицы участвуют в делении ядер урана?
    А. протоны;
    Б. нейтроны;
    В. электроны;
    Г. ядра гелия.
  2. Какая масса урана является критической?
    А. наибольшая, при которой возможно протекание цепной реакции;
    Б. любая масса;
    В. наименьшая, при которой возможно протекание цепной реакции;
    Г. масса, при которой реакция прекратится.
  3. Чему приблизительно равна критическая масса урана 235?
    А. 9 кг;
    Б. 20 кг;
    В. 50 кг;
    Г. 90 кг.
  4. Какие вещества из перечисленных ниже могут быть использованы в ядерных реакторах в качестве замедлителей нейтронов?
    А. графит;
    Б. кадмий;
    В. тяжёлая вода;
    Г. бор.
  5. Для протекания цепной ядерной реакции на АЭС нужно, чтобы коэффициент размножения нейтронов был:
    А. равен 1;
    Б. больше 1;
    В. меньше 1.
  6. Регулирование скорости деления ядер тяжелых атомов в ядерных реакторах осуществляется:
    А. за счет поглощения нейтронов при опускании стержней с поглотителем;
    Б. за счет увеличения теплоотвода при увеличении скорости теплоносителя;
    В. за счет увеличения отпуска электроэнергии потребителям;
    Г. за счет уменьшения массы ядерного топлива в активной зон при вынимании стержней с топливом.
  7. Какие преобразования энергии происходят в ядерном реакторе?
    А. внутренняя энергия атомных ядер превращается в световую энергию;
    Б. внутренняя энергия атомных ядер превращается в механическую энергию;
    В. внутренняя энергия атомных ядер превращается в электрическую энергию;
    Г. среди ответов нет правильного.
  8. В 1946 году в Советском Союзе был построен первый ядерный реактор. Кто был руководителем этого проекта?
    А. С. Королев;
    Б. И. Курчатов;
    В. Д. Сахаров;
    Г. А. Прохоров.
  9. Какой путь вы считаете самым приемлемым для повышения надежности АЭС и предотвращения заражения внешней среды?
    А. разработка реакторов, способных автоматически охладить активную зону реактора независимо от воли оператора;
    Б. повышение грамотности эксплуатации АЭС, уровня профессиональной подготовленности операторов АЭС;
    В. разработка высокоэффективных технологий демонтажа АЭС и переработки радиоактивных отходов;
    Г. расположение реакторов глубоко под землей;
    Д. отказ от строительства и эксплуатации АЭС.
  10. Какие источники загрязнения окружающей среды связаны с работой АЭС?
    А. урановая промышленность;
    Б. ядерные реакторы разных типов;
    В. радиохимическая промышленность;
    Г. места переработки и захоронения радиоактивных отходов;
    Д. использование радионуклидов в народном хозяйстве;
    Е. ядерные взрывы.

Ответы : 1 Б; 2 В; 3 В; 4 А, В; 5 А; 6 А; 7 В;. 8 Б; 9 Б. В; 10 А, Б, В, Г, Е.

6. Итоги урока.

Что нового узнали сегодня на уроке?

Что понравилось на уроке?

Какие есть вопросы?

СПАСИБО ЗА РАБОТУ НА УРОКЕ!

Ядерный реактор, принцип действия, работа ядерного реактора.

Каждый день мы используем электричесто и не задумываемся над тем, как оно производится и как оно к нам попало. А тем не менее это одна из самых важных частей современной цивилизации. Без электричества не было бы ничего – ни света, ни тепла, ни движения.

Все знают про то, что электричевто вырабатывается на электростанциях, в том числе и на атомных. Сердце каждой АЭС – это ядерный реактор . Именно его мы будем разбирать в этой статье.

Ядерный реактор , устройство в котором проистекает управляемая цепная ядерная реакция с выделением тепла. В основном ти устройства используются для выработки электроэнергии и в качестве привода больших кораблей. Для того, чтобы представить себе, мощность и экономичность ядерных реакторов можно привести пример. Там где среднему ядерному реактору потребуется 30 килограмм урана, средней ТЭЦ потребуется 60 вагонов угля или 40 цистерн мазута.

Прообраз ядерного реактора был построен в декабре 1942 года в США под руководством Э. Ферми. Это была так называемая “Чикагская стопка”. Chicago Pile (впоследствии слово “Pile” наряду с другими значениями стало обозначать ядерный реактор). Такое название дали ему из-за того, что он напоминал собой большую стопку графитовых блоков, положенных один на другой.

Между блоками была помещены шарообразные “рабочие тела”, из природного урана и его диоксида.

В СССР первый реактор был построен под руководством академика И. В. Курчатова. Реактор Ф-1 был заработал 25 декабря 1946 г. Реактор был в форме шара, имел в диаметре около 7,5 метров. Он не имел системы охлаждения, поэтому работал на очень малых уровнях мощности.

Исследования продолжились и в 27 июня 1954 года вступила в строй первая в мире атомная электростанция мощностью 5 МВт в г. Обнинске.

Принцип действия атомного реактора.

При распаде урана U 235 происходит выделение тепла, сопровождаемое выбросом двух-трех нейтронов. По статистическим данным – 2,5. Эти нейтроны сталкиваются с другими атомами урана U 235 . При столкновении уран U 235 превращается в нестабильный изотоп U 236 , который практически сразу же распадается на Kr 92 и Ba 141 + эти самые 2-3 нейтрона. Распад сопровождается выделением энергии в виде гамма излучения и тепла.

Это и называется цепная реакция. Атомы делятся, количество распадов увеличивается в геометрической прогрессии, что в конечном итоге приводит к молниеносному, по нашим меркам высвобождению огромного количества энергии – происходит атомный взрыв, как последствие неуправляемой цепной реакции.

Однако в ядерном реакторе мы имеем дело с управляемой ядерной реакцией. Как такая становится возможной – рассказано дальше.

Устройство ядерного реактора.

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Каждый ядерный реактор промышленного типа представляет собой котел, сквозь который протекает теплоноситель. Как правило это обычная вода (ок. 75% в мире), жидкий графит (20%) и тяжелая вода (5%). В экспериментальных целях использовался берилий и предполагался углеводород.

ТВЭЛ – (тепловыделяющий элемент). Это стержни в циркониевой оболочке с ниобийным легированием, внутри которых расположены таблетки из диоксида урана.

ТВЭЛ раквтора РБМК. Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Также ТВЭЛ включает в себя пружинную систему удержания топливных таблеток на одном уровне, что позволяет точнее регулировать глубину погружения/выведения топлива в активную зону. Они собраны в кассеты шестигранной формы, каждая из которых включает в себя несколько десятков ТВЭЛов. По каналам в каждой кассете протекает теплоноситель.

ТВЭЛы в кассете выделены зеленым.

Топливная кассета в сборе.

Активная зона реактора состоит из сотен кассет, поставленных вертикально и объединенных вместе металлической оболочкой – корпусом, играющим также роль отражателем нейтронов. Среди кассет, с регулярной частотой вставлены управляющие стержни и стержни аварийной защиты реактора, которые в случае перегрева призваны заглушить реактор.

Приведем в пример данные по реактору ВВЭР-440:

Управляющие могут перемещаться вверх и вниз погружаясь или наоборот, выходя из активной зоны, где реакция идет интенсивнее всего. Это обеспечивают мощные электромоторы, в совокупности с системой управления.Стержни аварийной защиты призваны заглушить реактор в случает нештатной ситуации, упав в активную зону и поглотив больше количество свободных нейтронов.

Каждый реактор имеет крышку, через которую производится погрузка и выгрузка отработавших и новых кассет.

Поверх корпуса реактора обычно устанавливается теплоизоляция. Следующим барьером идет биологическая защита. Это как правило железобетонный бункер, вход в который закрывается шлюзовой камерой с герметичными дверьми. Биологическая защита призвана не выпустить в атмосферу радиоактивный пар и куски реактора, если все таки произойдет взрыв.

Ядерный взрыв в современных реактора крайне мало возможен. Потому что топливо достаточно мало обогащено, и разделено на ТВЕЛы. Даже если расплавится активная зона, топливо не сможет настолько активно прореагировать. Масимум что может произойти – тепловой взрыв как на Чернобыле, когда давление в реакторе достигло таких величин, что металлический корпус просто разорвало, а крышка реактора, весом в 5000 тонн сделала прыжок с переворотом, пробив крышу реакторного отсека и выпустив пар наружу. Если бы чернобыльская АЭС была оснащена правильной биологической защитой, наподобие сегодняшнего саркофага, то катастрофа обошлась человечеству намного дешевле.

Работа атомной электростанции.

Если в двух словах, то рабобоа выглядит так.

Атомная электростанция. (Кликабельно)

После поступления в активную зону реактора с помощью насосов, вода нагревается с 250 до 300 градусов и выходит с “другой стороны” реактора. Это называется первым контуром. После чего направляется в теплобменник, где встречается со вторым контуром. После чего пар под давлением поступает на лопатки турбин. Турбины вырабатывают электричество.

Необъятная энергия крохотного атома

«Хороша наука - физика! Только жизнь коротка». Эти слова принадлежат ученому, сделавшему в физике удивительно много. Их однажды произнес академик Игорь Васильевич Курчатов , создатель первой в мире атомной электростанции.

27 июня 1954 года эта уникальная электростанция вступила в строй. У человечества появился еще один могучий источник электроэнергии.

Путь к овладению энергией атома был долгим и нелегким. Начался он в первые десятилетия XX века с открытия естественной радиоактивности супругами Кюри, с постулатов Бора, планетарной модели атома Резерфорда и доказательства такого, как сейчас кажется, очевидного факта - ядро любого атома состоит из положительно заряженных протонов и нейтральных нейтронов.

В 1934 году супруги Фредерик и Ирен Жолио-Кюри (дочь Мари Склодовской-Кюри и Пьера Кюри) обнаружили, что бомбардировкой альфа-частицами (ядрами атомов гелия) можно превратить обычные химические элементы в радиоактивные. Новое явление получило название искусственной радиоактивности .

И. В. Курчатов (справа) и А. И. Алиханов (в центре) со своим учителем А. Ф. Иоффе. (Начало 30-х годов.)

Если такую бомбардировку вести очень быстрыми и тяжелыми частицами, то начинается каскад химических превращений. Элементы с искусственной радиоактивностью постепенно уступят свое место стабильным элементам, которые уже не будут распадаться.

С помощью облучения или бомбардировки легко сделать явью мечту алхимиков - изготовить золото из других химических элементов. Только стоимость такого превращения значительно превысит цену полученного золота…

Деление ядер урана

Больше пользы (и, к сожалению, тревог) принесло человечеству открытое в 1938-1939 годах группой немецких физиков и химиков деление ядер урана . При облучении нейтронами тяжелые ядра урана распадаются на более легкие химические элементы, принадлежащие к средней части периодической системы Менделеева, и выделяют несколько нейтронов. Для ядер легких элементов эти нейтроны оказываются лишними… При «раскалывании» ядер урана может начаться цепная реакция: каждый из двух- трех полученных нейтронов способен в свою очередь произвести на свет несколько нейтронов, попав в ядро соседнего атома.

Общая масса продуктов такой ядерной реакции оказалась, как подсчитали ученые, меньше массы ядер исходного вещества - урана.

По уравнению Эйнштейна, связывающему массу с энергией, можно легко определить, что при этом должна выделиться огромная энергия! Причем произойдет это за ничтожно малое время. Если, конечно, цепная реакция станет неуправляемой и пройдет до конца…

На прогулке после конференции Э. Ферми (справа) со своим учеником Б. Понтекорво. (Базель, 1949 г.)

Огромные физические и технические возможности, скрытые в процессе деления урана, одним из первых оценил Энрико Ферми , в те далекие тридцатые годы нашего столетия еще очень молодой, но уже признанный глава итальянской школы физиков. Задолго до второй мировой войны он с группой талантливых сотрудников исследовал поведение различных веществ при нейтронном облучении и определил, что эффективность процесса деления урана можно значительно повысить… замедлив движение нейтронов. Как это ни странно на первый взгляд, при уменьшении скорости нейтронов увеличивается вероятность их захвата ядрами урана. Эффективными «замедлителями» нейтронов служат вполне доступные вещества: парафин, углерод, вода…

Переехав в США, Ферми продолжал быть мозгом и сердцем проводимых там ядерных исследований. Два дарования, обычно исключающие друг друга, сочетались в Ферми: выдающегося теоретика и блестящего экспериментатора. «Пройдет еще очень много времени, прежде чем мы сможем увидеть равного ему человека»,- писал крупный ученый У. Зинн после безвременной кончины Ферми от злокачественной опухоли в 1954 году в возрасте 53 лет.

Коллектив ученых, сплотившихся вокруг Ферми в годы второй мировой войны, решил на основе цепной реакции деления урана создать оружие невиданной разрушительной силы - атомную бомбу . Ученые спешили: вдруг нацистская Германия сумеет раньше всех изготовить новое оружие и использует его в своем бесчеловечном стремлении к порабощению других народов?

Строительство в нашей стране атомного реактора

Ученым удалось уже в 1942 году собрать и запустить на территории стадиона Чикагского университета первый атомный реактор . Стержни из урана в реакторе перемежались угольными «кирпичами» - замедлителями, а если цепная реакция все же становилась слишком бурной, ее можно было быстро остановить, введя в реактор пластины из кадмия, разъединявшие урановые стержни и полностью поглощавшие нейтроны.

Исследователи очень гордились придуманными ими простыми приспособлениями к реактору, которые сейчас вызывают у нас улыбку. Один из сотрудников Ферми в Чикаго, известный физик Г. Андерсон вспоминает, что кадмиевую жесть прибивали к деревянному бруску, который при необходимости мгновенно опускался в котел под действием собственной тяжести, что послужило поводом дать ему название «миг». Г. Андерсон пишет: «Перед запуском котла этот стержень следовало вытянуть наверх и закрепить веревкой. При аварии веревку можно было бы перерезать и «миг» занял бы свое место внутри котла».

На атомном реакторе была получена управляемая цепная реакция, проверены теоретические расчеты и предсказания. В реакторе шла цепь химических превращений, в результате которых накапливался новый химический элемент - плутоний. Его, как и уран, можно использовать для создания атомной бомбы.

Ученые определили, что существует «критическая масса» урана или плутония. Если атомного вещества достаточно много, цепная реакция приводит к взрыву, если мало, меньше «критической массы», то происходит просто выделение тепла.

Строительство атомной электростанции

В атомной бомбе простейшей конструкции уложены рядом два куска урана или плутония, причем масса каждого немного не «дотягивает» до критической. В нужный момент запал из обычного взрывчатого вещества соединяет куски, масса атомного горючего превышает критическое значение - и выделение разрушительной энергии чудовищной силы происходит мгновенно…

Ослепительное световое излучение, ударная волна, сметающая все на своем пути, и проникающее радиоактивное излучение обрушились на жителей двух японских городов - Хиросимы и Нагасаки - после взрыва американских атомных бомб в 1945 году, поселив с тех пор в сердцах людей тревогу перед страшными последствиями применения атомного оружия.

Под объединяющим научным началом И. В. Курчатова советские физики разработали атомное оружие.

Но руководитель этих работ не переставал думать и о мирном использовании атомной энергии. Ведь атомный реактор приходится интенсивно охлаждать, почему же это тепло не «отдать» паровой или газовой турбине, не применить для обогрева домов?

Через атомный реактор пропустили трубки с жидким легкоплавким металлом. Разогретый металл поступал в теплообменник, где передавал свое тепло воде. Вода превращалась в перегретый пар, начинала работать турбина. Реактор окружили защитной оболочкой из бетона с металлическим наполнителем: радиоактивное излучение не должно вырываться наружу.

Атомный реактор превратился в атомную электростанцию, несущую людям спокойный свет, уютное тепло, желанный мир…