Теория о расширении вселенной. Астрономия

Исследования американских астрономов подтверждают информацию из книг Анастасии Новых. Скорость расширения Вселенной оказалась гораздо выше, чем показывали предыдущие расчёты. Учёные приходят к выводу, что данный факт может указывать на наличие некоего тёмного излучения или на неполноту теории относительности. принята к публикации в Astrophysical Journal.

Американский астрофизик, нобелевский лауреат Адам Рисс (Adam Riess) отмечает, что данное открытие может помочь понять, чем является тёмная материя, а также тёмная энергия и тёмное излучение. Это считается довольно важным, поскольку по оценкам современных учёных, различные комбинации тёмной материи составляют более 95% от общей массы Вселенной .

Ранее для измерения скорости расширения Вселенной изучались далёкие сверхновые и использовались данные зондов WMAP и Planck, с помощью которых изучают микроволновое "эхо" Большого Взрыва. В новом исследовании астрофизики решили изменить тактику работы и начали наблюдать за относительно близкими, переменными звёздами соседних галактик. Эти звёзды называют цефеидами. Они представляют интерес для исследователей, поскольку их пульсацию можно использовать для точного вычисления расстояний до далёких космических объектов. Группа Адама Рисса при помощи телескопа "Хаббл" наблюдала за такими звёздами в 18 соседних галактиках, где недавно произошли взрывы сверхновых первого типа. В результате исследований удалось вычислить расстояние до данных объектов, что помогло уточнить значение постоянной Хаббла и уменьшить погрешность при её вычислении с 3% до 2,4%. В результате оказалось, что две галактики, находящиеся друг от друга на расстоянии 3 миллионов световых лет, разлетаются со скоростью 73 километра в секунду. Таким образом, был получен неожиданный результат: скорость оказалась заметно выше, чем при подсчётах, полученных с помощью WMAP и Planck. Это значение скорости не могут объяснить существующие научные взгляды о механизме зарождения Вселенной и природе тёмной энергии.

Фотографии NASA/ ESA/ A.Riess

Адам Рисс предполагает, что такая высокая скорость расширения Вселенной может говорить о том, что в процессе "разгона", помимо тёмной энергии, участвует ещё одна невидимая субстанция . Учёный назвал её "тёмным излучением" (dark radiation). По мнению исследователей, это "излучение" по своим свойствам похоже на так называемые стерильные нейтрино, и оно существовало в первые дни жизни Вселенной, когда в ней преобладала энергия, а не материя. Учёные надеются, что дальнейшие исследования при помощи телескопа "Хаббл" и повышение точности наблюдений помогут понять, действительно ли нужно "тёмное излучение" для объяснения неожиданных результатов в исследованиях скорости расширения Вселенной.

То, что Вселенная не стоит на месте, а постепенно расширяется, в 1929 доказал астроном Эдвин Хаббл. Он совершил это открытие, наблюдая за движением далёких галактик. В конце 1990-х годов, исследуя сверхновые первого типа, астрофизикам удалось выяснить, что Вселенная расширяется не с постоянной скоростью, а с ускорением. Тогда был сделан вывод, что причиной этому является тёмная энергия.

Интересно, что результаты современных исследований в области астрономии зачастую подтверждают информацию из древних преданий многих народов планеты. Эти памятники культуры хранят в себе поразительную информацию о рождении Вселенной посредством Первичного Звука (который до сих пор наблюдается в виде фона определённых излучений), а также знания о мироустройстве. Достаточно вспомнить широко известные космогонические мифы догонов и бамбара. Частично понять информацию, которую сохранил этот народ, удалось совсем недавно, благодаря открытиям в астрономии. Но в мифах догонов сохранилась и такая информация , что уровень развития современной физики ещё не в состоянии дать ей научное объяснение.

Возвращаясь к вопросу расширения Вселенной, стоит отметить, что результаты нового исследования подтверждают то, что было обнародовано много лет назад в книгах Анастасии Новых , причём, совершённое открытие является лишь малой частью знаний, заложенных в в этих книгах. Так, например, в книгах "Сэнсэй-4" и "АллатРа" отмечается, что движение Вселенной происходит по спирали. Вообще, спиралевидный ход движения является перспективным направлением для изучения, он проявляется во всех процессах материального мира. Но самое интересное, что в книгах писательницы описан не только процесс зарождения Вселенной, но и предоставлена информация о том, что происходит и произойдёт в результате её расширения. Также в книгах даны ценные знания о силе, которая лежит в основе материи и всех её взаимодействий, проведен анализ современных научных взглядов в области изучения астрономических явлений, анализ древних преданий со всего мира и многое другое, что может стать толчком для эпохальных открытий в современной науке.

Например, в книге "АллатРа" описана довольно интересная информация об общей массе Вселенной:

Ригден: ...Количество материи (её объём, плотность и так далее), да и сам факт её присутствия во Вселенной не влияют на общую массу Вселенной. Люди привыкли воспринимать материю с присущей ей массой только с позиции трёхмерного пространства. Но чтобы глубже понять смысл данного вопроса, необходимо знать о многомерности Вселенной. Объём, плотность и другие характеристики видимой, то есть привычной для людей материи во всём её разнообразии (включая и так называемые ныне «элементарные» частицы) изменяются уже в пятом измерении. Но масса остаётся неизменной, так как является частью общей информации о «жизни» этой материи до шестого измерения включительно. Масса материи — это всего лишь информация о взаимодействии одной материи с другой в определённых условиях. Как я уже говорил, упорядоченная информация создаёт материю, задаёт ей свойства, в том числе и массу. С учётом многомерности материальной Вселенной, её масса всегда равна нулю. Суммарная масса материи во Вселенной будет огромна лишь для Наблюдателей третьего, четвёртого и пятого измерений...

Анастасия: Масса Вселенной равна нулю? Это же указывает на иллюзорность мира, как такового, о чём говорилось во многих древних легендах народов мира...

Ригден: Наука будущего, если выберет указанный в твоих книгах путь, сможет вплотную подойти к ответам на вопросы о происхождении Вселенной и её искусственного создания.

Читать продолжение в книге "АллатРа", стр. 42

Согласно существующим в науке взглядам, "если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света".

Имеется и другой взгляд на процесс расширения Вселенной, который можно проследить и мифах народов мира, где говорилось и о сокращении дней, и о Первичном Звуке. В книге "Сэнсэй-4" можно прочитать следующее:

— ...В ближайшем будущем человечество столкнётся ещё с одним феноменом Вселенной. За счёт возрастающего ускорения Вселенной, в связи с истощением силы Аллата , человечество будет ощущать стремительное сокращение времени. Феномен будет заключаться в том, что условные двадцать четыре часа в сутки как были, так и останутся, но время будет пролетать гораздо быстрее. И люди будут чувствовать это стремительное сокращение временных промежутков как на физическом уровне, так и на уровне интуитивного восприятия.
— Так это будет связано именно с расширением Вселенной? — уточнил Николай Андреевич.
— Да. С возрастающим ускорением. Чем больше расширяется Вселенная, тем быстрее бежит время и так до полной аннигиляции материи.

Благодаря учёным, которые заинтересовались знаниями из книг А.Новых и начали вникать в их суть, недавно вышел доклад "ИСКОННАЯ ФИЗИКА АЛЛАТРА" . Как написано в докладе, основная закладка знаний для научных исследований была сделана автором в работах "АллатРа" и "Эзоосмос". В докладе учёных информация из книг автора дополняется новыми данными. В частности, появляются такие понятия как эзоосмическая решётка, септонное поле, септон, которые являются основополагающими для понимания происходящих в мире процессов как на микро-, так и на макроуровне.

"В основе материальной Вселенной находится своеобразный "пространственный каркас", нематериальная структура - ЭЗООСМИЧЕСКАЯ РЕШЁТКА.В представлении жителя 3-х мерного измерения эта энергетическая "конструкция" в целом напоминала бы по внешнему очертанию сильно уплощенный объект, приблизительно похожий на плоский кирпич, высота боковой грани которого составляет 1/72 от величины её основания. Другими словами, эзоосмическая решётка обладает плоской геометрией. Возможность расширения материальной Вселенной ограничена размерами эзоосмической решётки.

В пределах эзоосмической решётки существует 72 измерения (примечание: подробнее о 72 измерениях см. в книге "АллатРа"). Всё, что современной наукой именуется "материальной Вселенной", существует лишь в пределах первых 6 измерений, а остальные 66 измерений - это, по своей сути, контролирующие надстройки, сдерживающие "материальный мир" в определённых ограничительных рамках - шести измерениях. Согласно древним знаниям, 66 измерений (с 7 по 72 включительно) тоже относятся к материальному миру, но не являются таковыми по своей сути.

За пределами эзоосмической решётки, что также утверждается в древних священных преданиях разных народов мира, находится духовный мир - качественно иной мир, не имеющий ничего общего с материальным миром, его законами и проблемами."

Когда мы смотрим на далекую Вселенную, мы всюду видим галактики - во всех направлениях, на миллионы и даже миллиарды световых лет. Поскольку есть два триллиона галактик, которые мы могли бы наблюдать, сумма всего, что за ними, больше и круче самых смелых наших представлений. Один из самых интересных фактов состоит в том, что все галактики, которые мы когда-либо наблюдали, подчиняются (в среднем) одним и тем же правилам: чем они дальше от нас, тем быстрее они от нас и удаляются. Это открытие, сделанное Эдвином Хабблом и его коллегами еще в 1920-х годах, привело нас к картине расширяющейся Вселенной. Но что с того, что она расширяется? Наука знает, а теперь и вы узнаете.

На первый взгляд этот вопрос может показаться здравым. Потому что все, что расширяется, обычно состоит из вещества и существует в пространстве и времени Вселенной. Но сама Вселенная - это пространство и время, содержащее материю и энергию в себе. Когда мы говорим, что «Вселенная расширяется», мы имеем в виду расширение самого пространства, в результате которого отдельные галактики и скопления галактик удаляются друг от друга. Проще всего было бы представить шарик теста с изюмом внутри, который выпекается в печи, считает Этан Зигель.

Модель расширяющейся «булочки» Вселенной, в которой относительные расстояния увеличиваются по мере расширения пространства

Это тесто - ткань пространства, а изюминки - связанные структуры (вроде галактик или скоплений галактик). С точки зрения любой изюминки, все остальные изюмы будут от нее отходить, и чем они дальше - тем быстрее. Только в случае Вселенной печи и воздуха за пределами теста не существует, есть только тесто (пространство) и изюм (вещество).

Красное смещение создают не просто удаляющиеся галактики, а скорее пространство между нами

Откуда мы знаем, что это пространство расширяется, а не галактики удаляются?

Если вы видите, что во всех направлениях от вас удаляются объекты, есть только одна причина, способная это объяснить: расширяется пространство между вами и этими объектами. Также можно было бы предположить, что вы находитесь возле центра взрыва, и многие объекты просто находятся дальше и удаляются быстрее, потому что получили больше энергии взрыва. Если бы это было так, мы могли бы доказать это двумя способами:

  • На больших расстояниях и высоких скоростях будет меньше галактик, поскольку со временем они сильно распространились бы в пространстве
  • Отношение красного смещения и расстояния будет принимать конкретную форму на больших расстояниях, которая будет отличаться от формы, если бы расширялась ткань пространства

Когда мы смотрим на большие расстояния, мы находим, что дальше во Вселенной плотность галактик выше, чем ближе к нам. Это согласуется с картиной, в которой пространство расширяется, потому что смотреть дальше - то же самое, что смотреть в прошлое, где произошло меньше расширения. Мы также обнаруживаем, что отдаленные галактики имеют отношение красного смещения и расстояния, соответствующее расширению пространства, и совсем нет - если бы галактики просто быстро удалялись от нас. Наука может ответить на этот вопрос двумя разными способами, и оба ответа поддерживают расширение Вселенной.

Всегда ли Вселенная расширялась с одной скоростью?

Мы называем ее постоянной Хаббла, но она является постоянной только в пространстве, а не во времени. Вселенная в настоящий момент расширяется медленнее, чем в прошлом. Когда мы говорим о скорости расширения, мы говорим о скорости на единицу расстояния: около 70 км/c/Мпк сегодня. (Мпк - это мегапарсек, примерно 3 260 000 световых лет). Но скорость расширения зависит от плотностей всех разных вещей во Вселенной, включая материю и излучение. По мере расширения Вселенной материя и излучение в ней становятся менее плотными, а вместе с падением плотности падает и скорость расширения. Вселенная расширялась быстрее в прошлом и замедляется со времен Большого Взрыва. Постоянная Хаббла - это неверное название, ее стоило бы назвать параметром Хаббла.

Далекие судьбы Вселенной предлагают разные возможности, но если темная энергия действительно постоянна, как показывают данные, мы будем следовать красной кривой

Будет ли Вселенная расширяться вечно или когда-нибудь остановится?

Несколько поколений астрофизики и космологи ломали голову над этим вопросом, и ответить на него можно, только определив скорость расширения Вселенной и все типы (и количества) энергии, присутствующие в ней. Мы уже успешно измерили, сколько имеется обычной материи, излучения, нейтрино, темной материи и темной энергии, а также скорость расширения Вселенной. Основываясь на законах физики и произошедшем в прошлом, складывается впечатление, что Вселенная будет расширяться вечно. Хотя вероятность этого не 100%; если нечто вроде темной энергии будет вести себя иначе в будущем по сравнению с прошлым и настоящим, все наши выводы придется пересмотреть.

Галактики движутся быстрее скорости света? Разве это не запрещено?

С нашей точки зрения, расширяется пространство между нами и удаленной точкой. Чем дальше она от нас, тем быстрее, как нам кажется, она удаляется. Даже если скорость расширения была бы крошечной, далекий объект однажды пересек бы порог любой предельной скорости, потому что скорость расширения (скорость на единицу расстояния) многократно умножилась бы при достаточном расстоянии. ОТО одобряет такой сценарий. Закон того, что ничто не может двигаться быстрее скорости света, применяется только к движению объекта через пространство, а не к самому расширению пространства. В реальности сами галактики движутся на скорости всего в несколько тысяч километров в секунду, что намного ниже предела в 300 000 км/с, установленного скоростью света. Именно расширение Вселенной вызывает рецессию и красное смещение, а не истинное движение галактики.

В пределах наблюдаемой Вселенной (желтый круг) находится приблизительно 2 триллиона галактик. Галактики, которые находятся ближе, чем на треть пути до этой границы, мы никогда уже не сможем догнать из-за расширения Вселенной. Для освоения силами людей открыто всего 3% объема Вселенной

Расширение Вселенной является необходимым следствием того, что материя и энергия наполняют пространство-время, которое подчиняется законам общей теории относительности. Пока есть материя, есть и гравитационное притяжение, так что либо гравитация победит и все снова сожмется, либо гравитация проиграет и победит расширение. Нет никакого центра расширения и нет ничего вне пространства, которое расширяется; именно сама ткань Вселенной расширяется. Что самое интересное, даже если бы мы покинули Землю на скорости света сегодня, мы смогли бы посетить всего 3% галактик в наблюдаемой Вселенной; 97% из них уже вне зоны нашей досягаемости. Вселенная сложна.

материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

Эффект Доплера

В 1920-е годы, когда астрономы начали изучать спектры звезд в других галактиках, было обнаружено нечто очень интересное: это оказались те же самые характерные наборы отсутствующих цветов, что и у звезд в нашей собственной галактике, но все они были смещены к красному концу спектра, причем в одинаковой пропорции. Физикам смещение цвета или частоты известно как эффект Доплера.

Мы все знакомы с тем, как это явление воздействует на звук. Прислушайтесь к звуку проезжающего мимо вас автомобиля. Когда он приближается, звук его двигателя или гудка кажется выше, а когда машина уже проехала мимо и стала удаляться, звук понижается. Полицейский автомобиль, едущий к нам со скоростью сто километров в час, развивает примерно десятую долю скорости звука. Звук его сирены представляет собой волну, чередование гребней и впадин. Напомним, что расстояние между ближайшими гребнями (или впадинами) называется длиной волны. Чем меньше длина волны, тем большее число колебаний достигает нашего уха каждую секунду и тем выше тон, или частота, звука.

Эффект Доплера вызван тем, что приближающийся автомобиль, испуская каждый следующий гребень звуковой волны, будет находиться все ближе к нам, и в результате расстояния между гребнями окажутся меньше, чем если бы машина стояла на месте. Это означает, что длины приходящих к нам волн становятся меньше, а их частота – выше. И наоборот, если автомобиль удаляется, длина улавливаемых нами волн становится больше, а их частота – ниже. И чем быстрее перемещается автомобиль, тем сильнее проявляется эффект Доплера, что позволяет использовать его для измерения скорости.

Когда источник, испускающий волны, движется по направлению к наблюдателю, длина волн уменьшается. При удалении источника она, напротив, увеличивается. Это и называют эффектом Доплера.

Свет и радиоволны ведут себя подобным же образом. Полиция использует эффект Доплера для определения скорости автомобилей путем измерения длины волны отраженного от них радиосигнала. Свет представляет собой колебания, или волны, электромагнитного поля. Длина волны видимого света чрезвычайно мала – от сорока до восьмидесяти миллионных долей метра. Человеческий глаз воспринимает световые волны разной длины как различные цвета, причем наибольшую длину имеют волны, соответствующие красному концу спектра, а наименьшую – относящиеся к синему концу. Теперь представьте себе источник света, находящийся на постоянном расстоянии от нас, например звезду, испускающую световые волны определенной длины. Длина регистрируемых волн будет такой же, как у испускаемых. Но предположим теперь, что источник света начал отдаляться от нас. Как и в случае со звуком, это приведет к увеличению длины волны света, а значит, спектр сместится в сторону красного конца.

Расширение Вселенной

Доказав существование других галактик, Хаббл в последующие годы занимался определением расстояний до них и наблюдением их спектров. В то время многие предполагали, что галактики движутся беспорядочно, и ожидали, что число спектров, смещенных в синюю сторону, будет примерно таким же, как число смещенных в красную. Поэтому полной неожиданностью стало открытие того, что спектры большинства галактик демонстрируют красное смещение – почти все звездные системы удаляются от нас! Еще более удивительным оказался факт, обнаруженный Хабблом и обнародованный в 1929 году: величина красного смещения галактик не случайна, а прямо пропорциональна их удаленности от нас. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется! Отсюда вытекало, что Вселенная не может быть статичной, неизменной в размерах, как считалось ранее. В действительности она расширяется: расстояние между галактиками постоянно растет.

Осознание того, что Вселенная расширяется, произвело настоящую революцию в умах, одну из величайших в двадцатом столетии. Когда оглядываешься назад, может показаться удивительным, что никто не додумался до этого раньше. Ньютон и другие великие умы должны были понять, что статическая Вселенная была бы нестабильна. Даже если в некоторый момент она оказалась бы неподвижной, взаимное притяжение звезд и галактик быстро привело бы к ее сжатию. Даже если бы Вселенная относительно медленно расширялась, гравитация в конечном счете положила бы конец ее расширению и вызвала бы сжатие. Однако, если скорость расширения Вселенной больше некоторой критической отметки, гравитация никогда не сможет его остановить и Вселенная продолжит расширяться вечно.

Здесь просматривается отдаленное сходство с ракетой, поднимающейся с поверхности Земли. При относительно низкой скорости тяготение в конце концов остановит ракету и она начнет падать на Землю. С другой стороны, если скорость ракеты выше критической (больше 11,2 километра в секунду), тяготение не может удержать ее и она навсегда покидает Землю.

В 1965 году два американских физика, Арно Пензиас и Роберт Вильсон из «Белл телефон лабораторис» в Нью-Джерси, отлаживали очень чувствительный микроволновый приемник. (Микроволнами называют излучение с длиной волны около сантиметра.) Пензиаса и Вильсона беспокоило, что приемник регистрировал больший уровень шума, чем ожидалось. Они обнаружили на антенне птичий помет и устранили другие потенциальные причины сбоев, но скоро исчерпали все возможные источники помех. Шум отличался тем, что регистрировался круглые сутки в течение всего года независимо от вращения Земли вокруг своей оси и ее обращения вокруг Солнца. Так как движение Земли направляло приемник в различные сектора космоса, Пензиас и Вильсон заключили, что шум приходит из-за пределов Солнечной системы и даже из-за пределов Галактики. Казалось, он шел в равной мере со всех сторон космоса. Теперь мы знаем, что, куда бы ни был направлен приемник, этот шум остается постоянным, не считая ничтожно малых вариаций. Так Пензиас и Вильсон случайно наткнулись на поразительный пример о том, что Вселенная одинакова во всех направлениях.

Каково происхождение этого космического фонового шума? Примерно в то же время, когда Пензиас и Вильсон исследовали загадочный шум в приемнике, два американских физика из Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались микроволнами. Они изучали предположение Георгия (Джорджа) Гамова о том, что на ранних стадиях развития Вселенная была очень плотной и добела раскаленной. Дик и Пиблс полагали, что если это правда, то мы должны иметь возможность наблюдать свечение ранней Вселенной, поскольку свет от очень далеких областей нашего мира приходит к нам только сейчас. Однако вследствие расширения Вселенной этот свет должен быть столь сильно смещен в красный конец спектра, что превратится из видимого излучения в микроволновое. Дик и Пиблс как раз готовились к поискам этого излучения, когда Пензиас и Вильсон, услышав об их работе, поняли, что уже нашли его. За эту находку Пензиас и Вильсон были в 1978 году удостоены Нобелевской премии (что кажется несколько несправедливым в отношении Дика и Пиблса, не говоря уже о Гамове).

На первый взгляд тот факт, что Вселенная выглядит одинаково в любом направлении, свидетельствует о том, что мы занимаем в ней какое-то особенное место. В частности, может показаться, что раз все галактики удаляются от нас, то мы должны находиться в центре Вселенной. Есть, однако, другое объяснение этого феномена: Вселенная может выглядеть одинаково во всех направлениях также и при взгляде из любой другой галактики.

Все галактики удаляются друг от друга. Это напоминает расползание цветных пятен на поверхности надуваемого воздушного шара. С ростом размеров шара увеличиваются и расстояния между любыми двумя пятнами, но при этом ни одно из пятен нельзя считать центром расширения. Более того, если радиус воздушного шара постоянно растет, то чем дальше друг от друга находятся пятна на его поверхности, тем быстрее они будут удаляться при расширении. Допустим, что радиус воздушного шара удваивается каждую секунду. Тогда два пятна, разделенные первоначально расстоянием в один сантиметр, через секунду окажутся уже на расстоянии двух сантиметров друг от друга (если измерять вдоль поверхности воздушного шара), так что их относительная скорость составит один сантиметр в секунду. С другой стороны, пара пятен, которые были отделены десятью сантиметрами, через секунду после начала расширения разойдутся на двадцать сантиметров, так что их относительная скорость будет десять сантиметров в секунду. Скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Тем самым красное смещение галактики должно быть прямо пропорционально ее удаленности от нас – это та самая зависимость, которую позднее обнаружил Хаббл. Российскому физику и математику Александру Фридману в 1922 году удалось предложить удачную модель и предвосхитить результаты наблюдений Хаббла, его работа оставалась почти неизвестной на Западе, пока в 1935 году аналогичная модель не была предложена американским физиком Говардом Робертсоном и британским математиком Артуром Уокером уже по следам открытого Хабблом расширения Вселенной.

Вследствие расширения Вселенной галактики удаляются друг от друга. С течением времени расстояние между далекими звездными островами увеличивается сильнее, чем между близкими галактиками, подобно тому как это происходит с пятнами на раздувающемся воздушном шаре. Поэтому наблюдателю из любой галактики скорость удаления другой галактики кажется тем больше, чем дальше она расположена.

Три типа расширения Вселенной

Первый класс решений (тот, который нашел Фридман) предполагает, что расширение Вселенной происходит достаточно медленно, так что притяжение между галактиками постепенно замедляет и в конечном счете останавливает его. После этого галактики начинают сближаться, а Вселенная – сжиматься. В соответствии со вторым классом решений Вселенная расширяется настолько быстро, что гравитация лишь немного замедлит разбегание галактик, но никогда не сможет остановить его. Наконец, есть третье решение, согласно которому Вселенная расширяется как раз с такой скоростью, чтобы только избежать схлопывания. Со временем скорость разлета галактик становится все меньше и меньше, но никогда не достигает нуля.

Удивительная особенность первой модели Фридмана – то, что в ней Вселенная не бесконечна в пространстве, но при этом нигде в пространстве нет никаких границ. Гравитация настолько сильна, что пространство свернуто и замыкается на себя. Это до некоторой степени схоже с поверхностью Земли, которая тоже конечна, но не имеет границ. Если двигаться по поверхности Земли в определенном направлении, то никогда не натолкнешься на непреодолимый барьер или край света, но в конце концов вернешься туда, откуда начал путь. В первой модели Фридмана пространство устроено точно так же, но в трех измерениях, а не в двух, как в случае поверхности Земли. Идея о том, что можно обогнуть Вселенную и вернуться к исходной точке, хороша для научной фантастики, но не имеет практического значения, поскольку, как можно доказать, Вселенная сожмется в точку прежде, чем путешественник вернется в к началу своего пути. Вселенная настолько велика, что нужно двигаться быстрее света, чтобы успеть закончить странствие там, где вы его начали, а такие скорости запрещены (теорией относительности). Во второй модели Фридмана пространство также искривлено, но иным образом. И только в третьей модели крупномасштабная геометрия Вселенной плоская (хотя пространство искривляется в окрестности массивных тел).

Какая из моделей Фридмана описывает нашу Вселенную? Остановится ли когда-нибудь расширение Вселенной, и сменится ли оно сжатием, или Вселенная будет расширяться вечно?

Оказалось, что ответить на этот вопрос труднее, чем поначалу представлялось ученым. Его решение зависит главным образом от двух вещей – наблюдаемой ныне скорости расширения Вселенной и ее сегодняшней средней плотности (количества материи, приходящегося на единицу объема пространства). Чем выше текущая скорость расширения, тем большая гравитация, а значит, и плотность вещества, требуется, чтобы остановить расширение. Если средняя плотность выше некоторого критического значения (определяемого скоростью расширения), то гравитационное притяжение материи сможет остановить расширение Вселенной и заставить ее сжиматься. Такое поведение Вселенной отвечает первой модели Фридмана. Если средняя плотность меньше критического значения, тогда гравитационное притяжение не остановит расширения и Вселенная будет расширяться вечно – как во второй фридмановской модели. Наконец, если средняя плотность Вселенной в точности равна критическому значению, расширение Вселенной будет вечно замедляться, все ближе подходя к статическому состоянию, но никогда не достигая его. Этот сценарий соответствует третьей модели Фридмана.

Так какая же модель верна? Мы можем определить нынешние темпы расширения Вселенной, если измерим скорость удаления от нас других галактик, используя эффект Доплера. Это можно сделать очень точно. Однако расстояния до галактик известны не очень хорошо, поскольку мы можем измерять их только косвенно. Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет. Еще более расплывчаты наши знания о нынешней средней плотности Вселенной. Так, если мы сложим массы всех видимых звезд в нашей и других галактиках, сумма будет меньше сотой доли того, что требуется для остановки расширения Вселенной, даже при самой низкой оценке скорости расширения.

Но это далеко не все. Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики. Кроме того, большинство галактик входят в состав скоплений, и мы можем аналогичным образом сделать вывод о присутствии темной материи между галактиками в этих скоплениях по ее влиянию на движение галактик. Фактически количество темной материи во Вселенной значительно превышает количество обычного вещества. Если учесть всю темную материю, мы получим приблизительно десятую часть от той массы, которая необходима для остановки расширения.

Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить.

За последние несколько лет разные группы исследователей изучали мельчайшую рябь того микроволнового фона, который обнаружили Пензиас и Вильсон. Размер этой ряби может служить индикатором крупномасштабной структуры Вселенной. Ее характер, похоже, указывает, что Вселенная все-таки плоская (как в третьей модели Фридмана)! Но поскольку суммарного количества обычной и темной материи для этого недостаточно, физики постулировали существование другой, пока не обнаруженной, субстанции – темной энергии.

И словно для того, чтобы еще больше усложнить проблему, недавние наблюдения показали, что расширение Вселенной не замедляется, а ускоряется . Вопреки всем моделям Фридмана! Это очень странно, поскольку присутствие в пространстве вещества – высокой или низкой плотности – может только замедлять расширение. Ведь гравитация всегда действует как сила притяжения. Ускорение космологического расширения – это все равно что бомба, которая собирает, а не рассеивает энергию после взрыва. Какая сила ответственна за ускоряющееся расширение космоса? Ни у кого нет надежного ответа на этот вопрос. Однако, возможно, Эйнштейн все-таки был прав, когда ввел в свои уравнения космологическую постоянную (и соответствующий ей эффект антигравитации).

Расширение Вселенной могло быть предсказано в любой момент в девятнадцатом или восемнадцатом веке и даже в конце семнадцатого столетия. Однако вера в статическую Вселенную была столь сильна, что заблуждение сохраняло власть над умами до начала двадцатого столетия. Даже Эйнштейн был настолько уверен в статичности Вселенной, что в 1915 году внес специальную поправку в общую теорию относительности, искусственно добавив в уравнения особый член, получивший название космологической постоянной, который обеспечивал статичность Вселенной.

Космологическая постоянная проявлялась как действие некой новой силы – «антигравитации», которая, в отличие от других сил, не имела никакого определенного источника, а просто была неотъемлемым свойством, присущим самой ткани пространства-времени. Под влиянием этой силы пространство-время обнаруживало врожденную тенденцию к расширению. Подбирая величину космологической постоянной, Эйнштейн мог варьировать силу данной тенденции. С ее помощью он сумел в точности уравновесить взаимное притяжение всей существующей материи и получить в результате статическую Вселенную.

Позже Эйнштейн отверг идею космологической постоянной, признав ее своей «самой большой ошибкой». Как мы скоро убедимся, сегодня есть причины полагать, что в конце концов Эйнштейн мог все же быть прав, вводя космологическую постоянную. Но Эйнштейна, должно быть, более всего удручало то, что он позволил своей вере в неподвижную Вселенную перечеркнуть вывод о том, что Вселенная должна расширяться, предсказанный его же собственной теорией. Кажется, только один человек разглядел это следствие общей теории относительности и принял его всерьез. Пока Эйнштейн и другие физики искали, как избежать нестатичности Вселенной, российский физик и математик Александр Фридман, наоборот, настаивал на том, что она расширяется.

Фридман сделал относительно Вселенной два очень простых предположения: что она одинаково выглядит, в каком бы направлении мы ни смотрели, и что данное положение верно, независимо от того, из какой точки Вселенной мы смотрим. Опираясь на эти две идеи и решив уравнения общей теории относительности, он доказал, что Вселенная не может быть статической. Таким образом, в 1922 году, за несколько лет до открытия Эдвина Хаббла, Фридман в точности предсказал расширение Вселенной!

Столетия назад христианская церковь признала бы его еретическим, так как церковная доктрина постулировала, что мы занимаем особое место в центре мироздания. Но сегодня мы принимаем это предположение Фридмана по едва ли не противоположной причине, из своего рода скромности: нам показалось бы совершенно удивительным, если бы Вселенная выглядела одинаково во всех направлениях только для нас, но не для других наблюдателей во Вселенной!

Некоторая ирония природы состоит в том, что наиболее изобильная форма энергии во Вселенной есть и наиболее загадочная. После ошеломляющего открытия ускоренного расширения Вселенной довольно быстро возникла согласованная картина, указывающая на то, что 2/3 космоса «сделаны» из «темной энергии» - некоторого сорта гравитационно отталкивающего материала. Но достаточно ли убедительны доказательства, подтверждающие новые экзотические законы природы? Может имеются более простые астрофизические объяснения этих результатов?

Прообраз этой заметки был недавно опубликован в научно-популярном разделе Хабра, правда под замком так что возможно не всем заинтересованным она досталась. В этом варианте сделаны довольно существенные дополнения, как что всем должно быть интересною.

История темной энергии началась в 1998 году, когда два независимых коллектива исследовали удаленные сверхновые с целью обнаружить скорость замедления расширения Вселенной. Одна из них, Supernova Cosmology Project , приступила к работе в 1988-м, и руководил ею Сол Перлмуттер. Другая, возглавляемая Брайаном Шмидтом High-z Supernova Search Team , подключилась к исследованиям в 1994-м. Результат поверг их в шок: Вселенная достаточно давно находится в режиме ускоренного расширения.

Как детективы, космологи всего мира собирали досье на обвиняемого, ответственного за ускорение. Его особые приметы: гравитационно отталкивающий, препятствует образованию галактик (кластеризации материи в галактики), проявляется в растяжении пространства-времени. Кличка обвиняемого – «темная энергия». Многие теоретики предполагали, что обвиняемый – космологическая константа. Она безусловно соответствовала сценарию ускоренного расширения. Но хватало ли улик, чтобы полностью идентифицировать темную энергию с космологической постоянной?

Существование гравитационно-отталкивающей темной энергии должно было иметь драматические следствия для фундаментальной физики. Наиболее консервативное предположение состояло в том, что Вселенная заполнена однородным морем квантовой энергии нулевых колебаний или конденсатом новых частиц, масса которых в ${{10}^{39}}$ раз меньше электрона. Некоторые исследователи также предполагали необходимость изменения общей теории относительности, в частности, новые дальнодействующие силы, ослабляющие действие гравитации. Но даже в самых консервативных предложениях имелись серьезные недостатки. Например, плотность энергии нулевых колебаний оказалась на 120 неправдоподобных порядка меньше теоретических предсказаний. С точки зрения этих экстремальных предположений казалось более естественным искать решение в рамках традиционных астрофизических понятий: межгалактическая пыль (рассеяние фотонов на ней и связанное с этим ослабление потока фотонов) или разница между новыми и старыми сверхновыми звездами. Эта возможность поддерживалась многими космологами, бодрствующими в ночи.

Наблюдения сверхновых и их анализ проведенный С. Перлмуттером, Б. Шмидтом и А. Риссом, дали понять, что убывание их яркости с расстоянием происходит заметно быстрее, чем этого следовало бы ожидать, по принятым в то время космологическим моделям. Совсем недавно это открытие было отмечено . Такое дополнительное потускнение означает, что данному красному смещению соответствует некоторая эффективная добавка расстояния. Но это, в свою очередь, возможно только тогда, когда космологическое расширение происходит с ускорением, т.е. скорость удаления от нас источника света не убывает, а возрастает со временем. Важнейшая особенность новых экспериментов состояла и в том, что они позволили не только определить сам факт ускоренного расширения, но и сделать важное заключение о вкладе в плотность вещества во Вселенной различных составляющих.

До недавнего времени сверхновые звезды были единственным прямым доказательством ускоренного расширения и единственной убедительной опорой темной энергии. Точные измерения космического микроволнового фона, включающие WMAP (Wilkinson Microwave Anisotropy Probe) данные обеспечили независимое подтверждение реальности темной энергии. То же самое подтвердили и данные еще двух мощных проектов: крупномасштабное распределение галактик во Вселенной и Sloan Digital Sky Survey (SDSS).


Комбинация данных WMAP, SDSS и других источников, нашли, что гравитационное отталкивание, генерируемое темной энергией, замедляет коллапс сверхплотных областей материи во Вселенной. Реальность темной энергии сразу стала существенно более приемлемой.

Космическое расширение

Космическое расширение было открыто Эдвином Хабблом в конце 1920-х и, может, является самой важной особенностью нашей Вселенной. Не только астрономические тела двигаются под влиянием гравитационного взаимодействия своих соседей, но и крупномасштабные структуры еще в большей степени растягиваются космическим расширением. Популярная аналогия – движение изюминок в очень большом пироге, находящемся в печи. Когда пирог подходит, расстояние между любой парой изюминок, погруженных в пирог, растет. Если мы вообразим, что одна конкретная изюминка представляет нашу галактику, то мы обнаружим, что все другие изюминки (галактики) удаляются от нас по всем направлениям. Наша Вселенная расширялась из горячего плотного космического супа, созданного в процессе Большого Взрыва, в куда более холодное и более разряженное собрание галактик и кластеров галактик, которой мы наблюдаем сегодня.


Свет, испущенный звездами и газом в отдаленных галактиках, растягивается подобным же образом, удлиняя свою длину волны во время своего путешествия к Земле. Этот сдвиг в длине волны задается красным смещением $z=\left(\lambda_{obs}-\lambda_0\right)/\lambda_0$, где $\lambda_{obs}$ - длина света на Земле и $\lambda_{0}$-длина волны испущенного света. Например, лайман альфа переход в атоме водорода характеризуется длиной волны $\lambda_0=121.6$ нанометров (при возвращении в основное состояние). Этот переход можно обнаружить в излучении отдаленных галактик. В частности, он был использован для обнаружения рекордно большого красного смещения: ошеломляющее z=10 с линией лайман альфа при $\lambda_{obs}=1337.6$ нанометров. Но красное смещение описывает только изменение в масштабах космоса при испускании и поглощении света и не дает прямой информации о расстоянии до излучателя или возрасте Вселенной, когда свет был испущен. Если мы знаем как расстояние до объекта, так и красное смещение, мы можем попытаться получить важную информацию о динамике расширения Вселенной.

Наблюдения сверхновых звезд обнаружили некоторую гравитационно-отталкивающую субстанцию, которая управляет ускорением Вселенной. Астрономы не первый раз столкнулись с проблемой недостающей материи. Светящиеся массы галактик оказались существенно меньше гравитирующих масс. Эта разница была восполнена темной материей – холодной нерелятивистской материи, в основном, вероятно, состоящей из частиц, слабо взаимодействующих с атомами и светом.

Однако наблюдения указывали, что полное количество материи во Вселенной, включая и темную материю, составляет всего 1/3 от полной энергии. Это было подтверждено исследованием миллионов галактик в рамках 2DF и SDSS проектов. Но общая теория относительности предсказывает, что имеется точная связь между расширением и энергетическим содержанием Вселенной. Мы, следовательно, знаем, что общая плотность энергии всех фотонов, атомов и темной материи должна быть дополнена до некоторого критического значения, определяемого постоянной Хаббла $H_{0}$: ${{\rho}_{crit}}=3H_{0}^{2}/8\pi\cdot{G}$. Загвоздка в том, чего нет, но это совсем другая история.

Масса, энергия и кривизна пространства-времени непосредственно связаны в ОТО. Одно из объяснений, следовательно, может состоять в том, что щель между критической плотностью и наблюдаемой плотностью материи заполнена некоторой плотностью энергии, связанной с деформацией пространства на больших масштабах и наблюдаемой только на масштабах порядка $c/{{H}_{0}}\sim 4000\ Mpc$. К счастью, кривизна Вселенной может быть определена с помощью прецизионных измерений МКФ. Реликт, с происхождением 400.000 после Большого Взрыва, МКФ есть излучение абсолютно черного тела, источником которого является первичная плазма. Когда Вселенная остыла ниже $3000\ K$ плазма стала прозрачной для фотонов и они получили возможность свободно распространяться в пространстве. Сегодня почти 15 млрд лет спустя мы наблюдаем тепловой резервуар фотонов при температуре $2.726\ K$, что представляет результат красного смещения за счет космического расширения.

Замечательный образ МКФ был получен с помощью WMAP спутника, показывающий малейшие изменения фотонной температуры «неба». Эти вариации, известные как анизотропия МКФ отражают малые вариации плотности и движения ранней Вселенной. Эти вариации, которые возникают на уровне ${{10}^{-5}}$ являются зародышами крупномасштабной структуры (галактики, кластеры), которые мы наблюдаем сегодня.

Наиболее холодные/горячие пятна в космическим микроволновом фоне обязаны фотонам, которые выбрались из участков гравитационного потенциала наибольшей/наименьшей плотности. Размеры этих областей хорошо определены физикой плазмы. Когда мы рассматриваем полную Вселенную, видимый угловой размер этих анизотропий должен быть около ${{0.5}^{0}}$, если Вселенная имеет достаточную кривизну чтобы заполнить энергетическую щель и в два раза большие угловые размеры в отсутствие всякого искривления пространства. Наиболее простой способ представить в воображении этот геометрический эффект заключается в следующем: представим себе треугольник с фиксированным основанием и боковыми сторонами (просто сторонами?), нарисованный на поверхностях разной кривизны. Для cедловой поверхности/сферы внутренние углы будут меньше/больше, чем у того же треугольника, нарисованного на плоской поверхности (с эвклидовой геометрией).

С 1999 года был проведен целый ряд экспериментов (TOCO, MAXIMA, BOOMERANG, WMAP), которые показали, что пятна МКФ имеют размеры порядка${{1}^{0}}$. Это означает, что геометрия Вселенной плоская. С точки зрения проблемы недостающей энергии это означает, что нечто другое, чем кривизна должно быть ответственно за заполнение щели. Для некоторых космологов этот результат выглядел как déjà vu. Инфляция, лучшая теория происхождения первичных флуктуаций МКФ, предполагает, что очень раняя Вселенная испытывала период ускоренного расширения, который управлялся частицей, называемой инфлатоном. Инфлатон должен был растягивать любую крупномасштабную кривизну, делая геометрию Вселенной плоской или эвклидовой. Доказательство предполагает существование формы энергии, которая препятствует кластеризации галактик, которая гравитационно отталкивательная и которая, возможно, обязана частице, отличной от инфлатона.

Космическая гармония

Данные по реликтовому излучению и сверхновым звездам данные согласованно подтвердили, что источником космического ускорения является темная энергия. Но это было только начало. Комбинируя прецизионные измерения МКФ, полеченные WMAP, с радио, оптическим и рентгеновским зондирование крупномасштабных распределений материи астрофизики получили дальнейшие доказательства убыстрения скорости расширения Вселенной. Оказалось, что гравитационные потенциальные ямы плотности и уплотнения во Вселенной были растянуты и сглажены со временем, как будто под влиянием отталкивательной гравитации. Этот эффект известен как интегральный эффект (Sachs-Wolfe (ISW)). Он приводит к корреляции между температурной анизотропией в реликтового излучения и крупномасштабной структуре Вселенной. Хотя первичная плазма стала прозрачной для фотонов, когда Вселенная остыла, фотоны не путешествуют беспрепятственно. Космос изрешечен неоднородностями, которые сильны на малых расстояниях (где материя кластеризуется в звезды, галактики и туманности) и постепенно ослабевает на больших масштабах длины… Во время своего полета фотоны падают в гравитационные ямы и выбираются из них.

После того как космическое излучение было впервые детектировано (около 40 лет назад) Сакс и Вольф показали, что изменяющийся во времени потенциал должен приводить к энергетическому сдвигу МКФ проходящих через него фотонов. Фотон приобретает энергию, когда падает в гравитационную яму и тратит ее, когда выбирается из нее. Если потенциал стал глубже в ходе этого процесса, то, следовательно, фотон в целом потеряет энергию. Если потенциал станет мельче, фотон приобретет энергию.

Во Вселенной, где полная критическая плотность образуется только атомами и темной материей, слабые гравитационные потенциалы на очень больших пространственных масштабах (которые соответствуют плавным (gentle) волнам плотности материи) эволюционируют слишком медленно, чтобы оставить заметные следы на МКФ фотонах. Более плотные области просто захватывают окружающее вещество с той самой скоростью, с которой космическое расширение удлиняет волы, оставляя потенциал неизменным. Однако при более быстром расширении Вселенной, обязанному темной энергии, аккреция материи не может конкурировать с растяжением. Эффективно получается, что гравитационный коллапс замедляется отталкивающей темной материей. Следовательно, гравитационный потенциал имеет тенденцию к выполаживанию и фотоны приобретают энергию при прохождении этих областей. Подобным же образом фотоны теряют энергию, проходя через области пониженной плотности. (Не тривиально!)

Отрицательное давление

Величайшая загадка космического ускорения состоит не в том, что оно предполагает, что 2/3 субстанции, заполняющей Вселенную, мы не видим, а в том, что оно навязывает существование вещества с гравитационным отталкиванием. Чтобы рассмотреть это странное свойство темной энергии полезно ввести величину $w={{p}_{dark}}/{{\rho }_{dark}}$. Это выражение напоминает уравнение состояния газа. В ОТО скорость изменения космического расширения пропорциональна $-\left({{\rho }_{total}}+3{{p}_{total}} \right)$. Для ускоренного расширения эта величина должна быть положительной. Так как ${{\rho }_{total}}$ положительна, а среднее давление обычной и темной материи пренебрежимо мало (потому что она холодная и нерелятивистская), мы приходим к требованию $3w\times {{\rho }_{dark}}+{{\rho }_{total}}

Почему давление влияет на расширение Вселенной? Эйнштейн показал, что материя и энергия искривляют пространство-время. Поэтому для горячего газа кинетическая энергия его атомов дает вклад в их гравитационные силы, как это было измерено с помощью измерения ускорения удаленных тел. Однако силы, которые требуются для того, чтобы удержать или изолировать газ работают против этого избыточного давления. Вселенная с другой стороны не является ни изолированной, ни ограниченной. Расширение космоса, заполненного горячим газом, эффективно будет происходить медленнее (за счет самогравитации), чем расширение Вселенной, заполненной холодным газом. По этой же логике, среда с таким отрицательным давлением, что ${{\rho }_{total}}+3p

Отрицательное давление не такое редкое явление. Давление воды в некоторых высоких деревьях становится отрицательным по мере того как питание поднимается по их сосудистой системе. В однородном электрическом или магнитном поле также можно найти конфигурации обладающие отрицательным давлением. В этих случаях давление есть нечто похожее на растянутую пружину под напряжением, вызванном внутренними силами. На микроскопическом уровне резервуар хиггсовских бозонов (гипотетических частиц, генерирующих массу частиц в Стандартной Модели) создает отрицательное давление, когда его тепловые или кинетические возбуждения малы. Действительно, инфлатон можно рассматриватькак тяжелую версию хиггсовского бозона. Одна из предложенных версий темной энергии – квинтэссенция – может быть даже более легкой версией хиггсов.

В принципе, не существует нижней границы давления во Вселенной. Хотя странные вещи происходят, если $w$ опускается до значения меньше, чем $-1.$ Изолированные куски такого материала могут иметь отрицательную массу. …..Но одна вещь очевидна. Такое сильное отрицательное давление не имеет места для нормальных частиц и полей в ОТО. Многочисленные наблюдения приводят к более узкому диапазону параметров темной энергии, чем те, которые следуют из приведенных выше общих рассуждений.

Комбинация предсказаний различных теоретических моделей и лучших наблюдений реликтового излучения, крупномасштабных структур и сверхновых звезд приводят к $$\Omega_{dark}= 0.728^{+0.015}_{-0.016}$$ $$w= -0.980\pm0.053 $$

Краткая история темной энергии

Темная энергия, или нечто подобное ей, много раз возникала в истории космологии. Ящик Пандоры открыл Эйнштейн, который ввел в свои уравнения гравитационного поля. Космическое расширение тогда еще не было открыто и уравнения правильно «подсказывали», что Вселенная, содержащая материю, не может быть статичной без математического дополнения – космологической постоянной, которую принято обозначать $\Lambda$. Эффект эквивалентен заполнению Вселенной морем отрицательной энергии, в котором дрейфуют звезды и туманности. Открытие расширения устранило необходимость этого ad hoc дополнения теории.

В последующие десятилетия отчаянные теоретики периодически вводили $\Lambda$ в попытке объяснить новые астрономические явления. Эти возвраты были всегда кратковременными и обычно заканчивались более правдоподобными объяснениями полученных данных. Однако с 60-х годов начала пробиваться идея того, что вакуумная (нулевая) энергия всех частиц и полей должна неизбежно генерировать слагаемое, подобное $\Lambda$. Кроме того, есть основания полагать, что космологическая постоянная могла естественно возникнуть на ранних этапах эволюции Вселенной.

В 1980 была развита теория инфляции. В этой теории ранняя Вселенная испытала период ускоренного экспоненциального расширения. Расширение было обязано отрицательному давлению, обязанному новой частице – . Инфлатон оказался очень успешным. Он разрешил много . К этим парадоксам относятся проблемы горизонта и плоскостности Вселенной. Предсказания теории хорошо согласовывались различными космологическими наблюдениями.

Темная энергия и будущее Вселенной

С открытием темной энергии сильно изменились представления о том, каким может быть отдаленное будущее нашей Вселенной. До этого открытия вопрос о будущем однозначно связывался с вопросом о кривизне трехмерного пространства. Если бы, как многие раньше считали, кривизна пространства на 2/3 определяла современный темп расширения Вселенной, а темная энергия отсутствовала, то Вселенная расширялась бы неограниченно, постепенно замедляясь. Теперь же понятно, что будущее определяется свойствами темной энергии.

Поскольку мы эти свойства знаем сейчас плохо, предсказать будущее мы пока не можем. Можно только рассмотреть разные варианты. Про то, что происходит в теориях с новой гравитацией, сказать трудно, но другие сценарии есть возможность обсудить уже сейчас. Если темная энергия постоянна во времени, как в случае энергии вакуума, то Вселенная будет всегда испытывать ускоренное расширение. Большинство галактик в конце концов удалится от нашей на громадное расстояние, и наша Галактика вместе с немногими соседями окажется островком в пустоте. Если темная энергия - квинтэссенция, то в далеком будущем ускоренное расширение может прекратиться и даже смениться сжатием. В последнем случае Вселенная вернется в состояние с горячей и плотной материей, произойдет "Большой взрыв наоборот", назад во времени.


Энергетический бюджет нашей Вселенной. Стоит обратить внимание на то, что на долю привычного вещества (планеты, звезды, весь окружающий нас мир) приходится всего 4 процента, всё остальное составляют «темные» формы энергии.

Еще более драматическая судьба ожидает Вселенную, если темная энергия - фантом, причем такой, что его плотность энергии возрастает неограниченно. Расширение Вселенной будет все более и более быстрым, оно настолько ускорится, что галактики будут вырваны из скоплений, звезды из галактик, планеты из Солнечной системы. Дело дойдет до того, что электроны оторвутся от атомов, а атомные ядра разделятся на протоны и нейтроны. Произойдет, как говорят, большой разрыв.

Такой сценарий, однако, представляется не очень вероятным. Скорее всего, плотность энергии фантома будет оставаться ограниченной. Но и тогда Вселенную может ожидать необычное будущее. Дело в том, что во многих теориях фантомное поведение - рост плотности энергии со временем - сопровождается неустойчивостями . В таком случае фантомное поле во Вселенной будет становиться сильно неоднородным, плотность его энергии в разных частях Вселенной будет разной, какие-то части будут быстро расширяться, а какие-то, возможно, испытают коллапс. Судьба нашей Галактики будет зависеть от того, в какую область она попадет.

Все это, впрочем, относится к будущему, отдаленному даже по космологическим меркам. В ближайшие 20 миллиардов лет Вселенная будет оставаться почти такой же, как сейчас. У нас есть время для того, чтобы разобраться в свойствах темной энергии и тем самым более определенно предсказать будущее - а может быть, и повлиять на него.


Если, любопытствуя, мы возьмем в руки справочник или какое-нибудь научно-популярное пособие, то непременно наткнемся в них на одну из версий теории происхождения Вселенной – так называемой теории «большого взрыва». В кратком виде эту теорию можно изложить так: первоначально вся материя была сжата в одну «точку», имевшую необычайно высокую температуру, а затем эта «точка» взорвалась с огромной силой. В результате взрыва из постепенно расширявшегося во все стороны супергорячего облака субатомных частиц постепенно образовывались атомы, вещества, планеты, звезды, галактики и, наконец, жизнь. При этом расширение Вселенной продолжается, и неизвестно, как долго будет продолжаться: возможно, когда-нибудь оно достигнет своих границ.

Выводы космологии основываются и на законах физики, и на данных наблюдательной астрономии. Как любая наука, космология в своей структуре кроме эмпирического и теоретического уровней имеет также уровень философских предпосылок, философских оснований.

Так, в основании современной космологии лежит предположение о том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счете - на всю Вселенную. Это предположение об устойчивости законов природы в пространстве и времени относится к уровню философских оснований современной космологии.

Возникновение современной космологии связано с созданием релятивистской теории тяготения - общей теории относительности Эйнштейном (1916). Из уравнений Эйнштейна общей теории относительности следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии).

Применив общую теорию относительности ко Вселенной в целом, Эйншейн обнаружил, что такого решения уравнений, которому бы соответствовала не меняющаяся со временем Вселенная, не существует. Однако Эйнштейн представлял себе Вселенную как стационарную. Поэтому он ввел в полученные уравнения дополнительное слагаемое, обеспечивающее стационарность Вселенной.

В начале 20-х годов советский математик А.А.Фридман впервые решил уравнения общей теории относительности применительно ко всей Вселенной, не накладывая условия стационарности.

Он показал, что Вселенная, заполненная тяготеющим веществом, должна расширяться или сжиматься. Полученные Фридманом уравнения лежат в основе современной космологии.

В 1929 году американский астроном Э.Хаббл опубликовал статью "Связь между расстоянием и лучевой скоростью внегалактических туманностей", в которой пришел к выводу: "Далекие галактики уходят от нас со скоростью, пропорциональной удаленности от нас. Чем дальше галактика, тем больше ее скорость" (коэффициент пропорциональности получил название постоянной Хаббла).

Этот вывод Хаббл получил на основе эмпирического установления определенного физического эффекта - красного смещения, т.е. увеличения длин волн линий в спектре источника (смещения линий в сторону красной части спектра) по сравнению с линиями эталонных спектров, обусловленного эффектом Допплера, в спектрах галактик.

Открытие Хабблом эффекта красного смещения, разбегания галактик лежит в основе концепции расширяющейся Вселенной.

В соответствии с современными космологическими концепциями, Вселенная расширяется, но центр расширения отсутствует: из любой точки Вселенной картина расширения будет представляться той же самой, а именно, все галактики будут иметь красное смещение, пропорциональные расстоянию до них. Само пространство как бы раздувается.

Если на воздушном шарике нарисовать галактики и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга. Разница лишь в том, что нарисованные на шарике галактики и сами увеличиваются в размерах, реальные же звездные системы повсюду во Вселенной сохраняют свой объем из-за сил гравитации.

Одна из самых больших проблем, стоящих перед сторонниками теории «большого взрыва», как раз состоит в том, что ни один из предлагаемых ими сценариев возникновения Вселенной невозможно описать математически или физически. Согласно базовым теориям «большого взрыва», первоначальным состоянием Вселенной была точка бесконечно малых размеров с бесконечно большой плотностью и бесконечно высокой температурой. Однако такое состояние выходит за пределы математической логики и не поддается формальному описанию. Так что в действительности о первоначальном состоянии Вселенной ничего определенного сказать нельзя, и расчеты тут подводят. Поэтому это состояние получило в среде ученых название «феномена».

Так как этот барьер до сих пор не преодолен, то в научно-популярных изданиях для широкой публики тема «феномена» обычно опускается вообще, а в специализированных научных публикациях и изданиях, авторы которых пытаются как-то справиться с этой математической проблемой, о «феномене» говорят как о вещи, недопустимой с научной точки зрения, Стивен Хоукинг, профессор математики из Кембриджского университета, и Дж.Ф.Р. Эллис, профессор математики университета в Кейптауне, в своей книге «Длинная шкала структуры пространство-время» указывают: «Достигнутые нами результаты подтверждают концепцию, что Вселенная возникла конечное число лет назад. Однако отправной пункт теории возникновения Вселенной – так называемый «феномен» – находится за гранью известных законов физики». Тогда приходится признать, что во имя обоснования «феномена», этого краеугольного камня теории «большого взрыва», необходимо допустить возможность использования методов исследований, выходящих за рамки современной физики.

«Феномен», как и любой другой отправной пункт «начала Вселенной», включающий в себя что-то, что невозможно описать научными категориями, остается открытым вопросом. Однако возникает следующий вопрос: откуда появился сам «феномен», как он образовался? Ведь проблема «феномена» – это только часть гораздо большей проблемы, проблемы самого источника начального состояния Вселенной. Иными словами – если первоначально Вселенная была сжата в точку, то что привело ее в это состояние? И если мы даже откажемся от вызывающего теоретические трудности «феномена», то все равно останется вопрос: как образовалась Вселенная?

В попытках обойти эту трудность, некоторые ученые предлагают так называемую теорию «пульсирующей Вселенной». По их мнению, Вселенная бесконечно, раз за разом, то сжимается в точку, то расширяется до каких-то границ. Такая Вселенная не имеет ни начала, ни конца, существуют только цикл расширения и цикл сжатия. При этом авторы гипотезы утверждают, что Вселенная существовала всегда, тем самым вроде бы полностью снимая вопрос о «начале мира».

Но дело в том, что никто до сих пор не представил удовлетворительного объяснения механизма пульсации. Почему происходит пульсация Вселенной? Какими причинами она вызвана? Физик Стивен Вайнберг в своей книге «Первые три минуты» указывает, что при каждой очередной пульсации во Вселенной неизбежно должна возрастать величина соотношения количества фотонов к количеству нуклеонов, что ведет к угасанию новых пульсаций. Вайнберг делает вывод, что таким образом количество циклов пульсации Вселенной конечно, а значит, в какой-то момент они должны прекратиться. Следовательно, «пульсирующая Вселенная» имеет конец, а значит, имеет и начало.

В 2011 году нобелевская премия по физике была присуждена участнику проекта Supernova Cosmology Саулу Перлмуттеру из Национальной лаборатории Лоренса Беркли, а также членам исследовательской группы High-z Supernova Брайану П. Шмидту из Австралийского национального университета и Адаму Г. Риссу из Университета Джонса Хопкинса.

Трое ученых разделили премию за открытие ускорения расширения Вселенной путем наблюдения далеких сверхновых звезд. Они изучали особый вид сверхновых типа Ia. Это взорвавшиеся старые компактные звезды тяжелее Солнца, но размером с Землю. Одна такая сверхновая может излучать столько света, сколько целая звездная плеяда. Двум группам исследователей удалось обнаружить более 50 далеких сверхновых Ia, чей свет оказался слабее, чем ожидалось. Это было доказательством того, что расширение Вселенной ускоряется. Исследование неоднократно натыкалось на загадки и сложные проблемы, однако, в конце концов, обе команды ученых пришли к одинаковым заключениям об ускорении расширения Вселенной.

Это открытие на самом деле удивительно. Нам уже известно, что после Большого взрыва около 14 миллиардов лет назад Вселенная начала расширяться. Тем не менее, открытие того, что это расширение ускоряется, поразило самих первооткрывателей.

Причину загадочного ускорения приписывают гипотетической темной энергии, которая составляет по расчетам примерно три четверти Вселенной, но до сих пор остается самой большой загадкой современной физики.

Видео: Александр Фридман и Теория Расширяющейся Вселенной