Основные следствия теории электромагнитного поля максвелла. Электромагнитная теория максвелла

Тема: Электромагнитная индукция

Урок: Электромагнитное поле. Теория Максвелла

Рассмотрим приведенную схему и случай, когда подключён источник постоянного тока (рис 1).

Рис. 1. Схема

К основным элементам цепи относят лампочку, обычный проводник, конденсатор - при замыкании цепи на обкладках конденсатора возникает напряжение равное напряжению на зажимах источника.

Конденсатор представляет собой две параллельные металлические пластины, между которыми находится диэлектрик. Когда подают разность потенциалов на обкладки конденсатора, они заряжаются, и внутри диэлектрика возникает электростатическое поле. При этом тока внутри диэлектрика при небольших напряжениях быть не может.

При замене постоянного тока на переменный свойства диэлектриков в конденсаторе не меняются, и в диэлектрике по-прежнему практически отсутствуют свободные заряды, но мы наблюдаем то, что лампочка горит. Возникает вопрос: что же происходит? Возникающий в данном случае ток Максвелл назвал током смещения.

Мы знаем о том, что при помещении токопроводящего контура в переменное магнитное поле, в нём возникает ЭДС индукции. Это обусловлено тем, что возникает вихревое электрическое поле.

А что если подобная же картина происходит при изменении электрического поля?

Гипотеза Максвелла: изменяющееся во времени электрическое поле вызывает появление вихревого магнитного поля.

Согласно этой гипотезе, магнитное поле после замыкания цепи образуется не только вследствие протекания тока в проводнике, но и вследствие наличия переменного электрического поля между обкладками конденсатора. Это переменное электрическое поле порождает магнитное поле в той же области между обкладками конденсатора. Причём, это магнитное поле точно такое же, как будто бы между обкладками конденсатора протекал ток, равный току во всей остальной цепи. В основе теории лежат четыре уравнения Максвелла, из которых следует, что изменение электрического и магнитного полей в пространстве и во времени происходят согласованным образом. Так, электрическое и магнитное поле образуют единое целое. Электромагнитные волны распространяются в пространстве в виде поперечных волн с конечной скоростью.

Указанная взаимосвязь между переменным магнитным и переменным электрическим полем говорит о том, что они не могут существовать обособленно друг от друга. Возникает вопрос: касается ли это утверждение статических полей (электростатического, создаваемого постоянными зарядами, и магнитостатического, создаваемого постоянными токами)? Такая взаимосвязь существует и для статических полей. Но важно понимать, что эти поля могут существовать по отношению к определённой системе отсчёта.

Покоящийся заряд создаёт в пространстве электростатическое поле (рис. 2) относительно определённой системы отсчёта. Относительно других систем отсчёта он может двигаться и, следовательно, в этих системах этот же заряд будет создавать магнитное поле.

Электромагнитное поле - это особая форма существования материи, которая создаётся заряжёнными телами и проявляется по действию на заряжённые тела. В ходе этого действия их энергетическое состояние может изменяться, следовательно, электромагнитное поле обладает энергией.

1. Исследование явлений электромагнитной индукции приводит к выводу о том, что переменное магнитное поле порождает вокруг себя вихревое электрическое.

2. Анализируя прохождение переменного тока через цепи, содержащие диэлектрики, Максвелл пришёл к выводу, что переменное электрическое поле может порождать магнитное поле за счёт тока смещения.

3. Электрическое и магнитное поле - компоненты единого электромагнитного поля, которое распространяется в пространстве в виде поперечных волн с конечной скоростью.

  1. Буховцев Б.Б., Мякишев Г.Я, Чаругин В.М. Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 17-е изд., преобраз. и доп. - М.: Просвещение, 2008.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
  1. Znate.ru ().
  2. Слово ().
  3. Физика ().
  1. Какое электрическое поле образуется при изменении магнитного поля?
  2. Каким током объясняется свечение лампочки в цепи переменного тока с конденсатором?
  3. Какое из уравнений Максвелла указывает зависимость магнитной индукции от тока проводимости и смещения?

Максвелл Джеймс Клерк (1831 – 1879) – величайший английский физик. Его работы посвящены электродинамике, молекулярной физике, общей статике, оптике, механике, теории упругости. Самым большим достижением Максвелла является теория электромагнитного поля - система нескольких уравнений, выражающих все основные закономерности электромагнитных явлений.

Эти четыре уравнения достойны восхищения − громадное многообразие электромагнитных явлений заключено в этих кратких выразительных формулах, если уметь ими пользоваться. Эта система уравнений впервые была записана в 1873 году великим английским физиком Джеймсом Клерком Максвеллом и носит его имя.

4. 1. Вихревое электрическое поле. 4. 2. Ток смещения. 4. 3. Система уравнений Максвелла в интегральной форме и физический смысл входящих в нее уравнений.

4. 1. Вихревое электрическое поле Ответим на вопрос, что является причиной движения зарядов, причиной возникновения индукционного тока?

1) Если перемещать проводник в однородном магнитном поле, то под действием силы Лоренца, электроны будут отклоняться вниз, а положительные заряды вверх – возникает разность потенциалов. 2) Это и будет - сторонняя сила, под действием которой течет ток. 3) Как мы знаем, для положительных зарядов F л = q+ [ , ]; для электронов Fл = –e- [ , ].

Если проводник неподвижен, а изменяется магнитное поле, какая сила возбуждает индукционный ток в этом случае? Возьмем обыкновенный трансформатор Как только мы замкнули цепь первичной обмотки, во вторичной обмотке сразу возникает ток. Но ведь сила Лоренца здесь ни причем, ведь она действует на движущиеся заряды, а они в начале покоились (находились в тепловом движении – хаотическом, а здесь нужно направленное движение). Ø

Ответ был дан Дж. Максвеллом в 1860 г. : всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле Е". Оно и является причиной возникновения индукционного тока в проводнике. То есть Е" возникает только при наличии переменного магнитного поля (на постоянном токе трансформатор не работает). Сущность явления электромагнитной индукции совсем не в появлении индукционного тока (ток появляется тогда, когда есть заряды и замкнута цепь), а в возникновении вихревого электрического поля (не только в проводнике, но и в окружающем пространстве, в вакууме). Это поле имеет совершенно иную структуру, нежели поле, создаваемое зарядами. Так как оно не создается зарядами, то силовые линии не могут начинаться и заканчиваться на зарядах, как это было в электростатике. Это поле вихревое, силовые линии его замкнуты.

Раз это поле перемещает заряды, следовательно, оно обладает силой. Введем вектор напряженности вихревого электрического поля. Сила с которой это поле действует на заряд: Но когда заряд движется в магнитном поле, на него действует сила Лоренца Эти силы должны быть равны в силу закона сохранения энергии: Здесь - скорость движения заряда q относительно Но для явления электромагнитной индукции важна скорость изменения магнитного поля. Поэтому можно записать: Где – скорость движения магнитного поля относительно заряда. .

ЭДС индукции пропорциональна скорости изменения магнитного поля: Так как и если S – const, то где и есть скорость изменения магнитного поля.

4. 2. Ток смещения. Если замкнуть ключ (рис.), то лампа при постоянном токе – гореть не будет: емкость C – разрыв в цепи постоянного тока. Но вот в моменты включения лампа будет вспыхивать. Рис.

При переменном токе – лампа горит, хотя нам ясно, что электроны из одной обкладки в другую не переходят – между ними изолятор (или вакуум). В промежутке между обкладками появляется магнитное поле

Для установления отношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел понятие ток смещения. Такой термин имеет смысл в таких веществах, как например диэлектрики. Там смещаются заряды под действием электрического поля. Но в вакууме зарядов нет – там смещаться нечему, а магнитное поле есть. Название Максвелла, «ток смещения» – не совсем удачное, но смысл, вкладываемый в него Максвеллом – правильный.

Максвелл сделал вывод: всякое переменное электрическое поле порождает переменное магнитное поле. Токи проводимости в проводнике замыкаются токами смещения в диэлектрике или в вакууме. Переменное электрическое поле в конденсаторе создает такое же магнитное поле, как если бы между обкладками существовал ток проводимости, имеющий величину равную току в металлическом проводнике.

Найдём величину тока смещения. В свое время мы с вами доказали, что поверхностная плотность поляризационных зарядов σ равна смещения: – вектору электрического Полный заряд на поверхности диэлектрика и, следовательно, на обкладках конденсатора q = σS (S – площадь обкладки), тогда

Отсюда т. е. ток смещения пропорционален скорости изменения вектора электрического смещения Поэтому он и получил такое название – ток смещения. Плотность тока смещения

Вихревое магнитное поле образующееся при протекании тока смещения связано с направлением вектора винта. - правилом правого

Из чего складывается ток смещения. Известно, что Где χ – диэлектрическая восприимчивость среды, ε – относительная диэлектрическая проницаемость. Поэтому: т. е. Следовательно – плотность тока смещения в вакууме; – плотность тока поляризации – плотность тока, обусловленная перемещением зарядов в диэлектри Эта составляющая тока смещения выделяет джоулево тепло (тепло выделяющееся при процедурах УВЧ, …). Ток смещения в вакууме и в металлах – джоулева тепла не выделяет.

4. 3. Система уравнений Максвелла в интегральной форме и физический смысл входящих в нее уравнений Переменное магнитное поле вызывает появление вихревого электрического поля. Переменное электрическое поле вызывает появление магнитного поля. Взаимно порождаясь они могут существовать независимо от источников заряда или токов которые первоначально создали одно из них. В сумме это есть электромагнитное поле (ЭМП) Превращение одного поля в другое и распространение в пространстве – есть способ существования ЭМП.

В 1860 г. знаменитый английский физик Джеймс Клерк Максвелл создал единую теорию электрических и магнитных явлений, в которой он использовал понятие ток смещения, дал определение ЭМП и предсказал существование в свободном пространстве электромагнитного излучения, которое распространяется со скоростью света. Конкретные проявления ЭМП – радиоволны, свет, γ – лучи и т. д. В учение об электромагнетизме уравнения Максвелла играют такую же роль, как уравнения (или законы) Ньютона в механике.

Система уравнений максвелла. Теорию ЭМП Максвелл сформулировал в виде системы нескольких уравнений. Первое уравнение: (1) Это следует из теоремы о циркуляции вектора напряжённости магнитного поля: но:

(1) Это уравнение является обобщением закона Био-Савар-Лапласа и показывает, что циркуляция вектора H по произвольному замкнутому контуру L равна сумме токов проводимости и токов смещения сквозь поверхность, натянутую на этот контур. В дифференциальной форме закон Био. Савара-Лапласа выглядит так:

2). Рассматривая явление электромагнитной индукции, мы сделали вывод, что ЭДС индукции Перейдем от вихревого электрического поля к магнитному: Второе уравнение: (2) Это уравнение описывает явление электромагнитной индукции (закон Фарадея) и устанавливает количественную связь между электрическими и магнитными полями: переменное электрическое поле порождает переменное магнитное поле и наоборот. В этом физический смысл уравнения.

В дифференциальной форме закон Фарадея выглядит так: (2) Где Различие в знаках этого уравнения Максвелла соответствует закону сохранения энергии и правилу Ленца. Если бы знаки при и были одинаковы, то бесконечно малое увеличение одного из полей вызвало бы неограниченное увеличение обоих полей, а бесконечно малое уменьшение одного из полей, приводило бы к полному исчезновению обоих полей. То есть различие в знаках является необходимым

3) Третье уравнение выражает теорему Остроградского-Гаусса для электрического поля (статического поля) (3) Поток вектора электрического смещения через замкнутую поверхность S равен сумме зарядов внутри этой поверхности. Это уравнение показывает так же, что силовые линии векторов и начинаются и заканчиваются на зарядах. В дифференциальной форме (3)

4) Четвертое уравнение - теорема Остроградского - Гаусса для магнитного поля: (4) Это уравнение выражает, то свойство магнитного поля, что линии вектора магнитной индукции всегда замкнуты и что магнитных зарядов нет. В дифференциальной форме (4)

5, 6, 7) Величины, входящие в эти четыре уравнения не независимы, и между ними существует связь: (5) (6) (7) здесь σ – удельная проводимость, сторонних токов. – плотность Эти уравнения называются уравнениями состояния или материальными уравнениями. Вид этих уравнений определяется электрическими и магнитными свойствами среды.

Уравнения (1 -7) составляют полную систему уравнений Максвелла. Они являются наиболее общими для электрических и магнитных полей в покоящихся средах. Уравнения Максвелла – инвариантны относительно преобразований Лоренца. Физический смысл уравнений Максвелла в дифференциальной и интегральной формах полностью эквивалентен.

Таким образом, полная система уравнений Максвелла дифференциальной и интегральной формах имеет вид: - обобщенный закон Био-Савара-Лапласа - закон Фарадея - теорема Гаусса - отсутствие магнитных зарядов

Пояснение к теории классической электродинамики. 1. Теорией Максвелла называется последовательная теория единого поля ЭМП, создаваемого произвольной системой зарядов и токов. В этой теории решается основная задача электродинамики – по заданному распределению зарядов и токов отыскиваются характеристики электрического и магнитного полей. Эта теория явилась обобщением важнейших законов, описывающих электрические и магнитные явления (аналогично уравнениям Ньютона и началам термодинамики).

2. В теории Максвелла рассматриваются макроскопические поля, которые создаются макрозарядами и макротоками. Расстояния от источников полей до рассматриваемых точек много больше размеров атомов. Периоды изменения переменных электрических и магнитных полей много больше периодов внутренних процессов.

3. Теория Максвелла имеет феноменологический характер. В ней не рассматривается внутренний механизм явлений в среде. Среда описывается с помощью трёх величин ε, μ и σ. 4. Теория Максвелла является теорией близкодействия, согласно которой электрические и магнитные взаимодействия происходят в электрических и магнитных полях и распространяются с конечной скоростью, равной скорости света в данной среде.

14. 5. Скорость распространения ЭМП Как только Максвелл понял, что существует единое ЭМП, которое может существовать независимо от источника, он вычислил скорость распространения этого ЭМП. Магнитное поле, создаваемое зарядом, движущимся в вакууме со скоростью равно (из закона Био – Савара – Лапласа): (4. 3. 1) Но точечный заряд создаёт и электрическое поле на расстоянии r: (4. 3. 2) Умножая (4. 3. 1) на и сравнивая (4. 3. 2) с (4. 3. 1) можно записать:

Заряд движется со скоростью, но вместе с ним движется и электрическое поле с той же скоростью. Раз поле перемещается следовательно оно переменное, а переменное электрическое поле создает переменное магнитное поле. Тогда (4. 3. 4) где – скорость распростр. электрического поля. С другой стороны при рассмотрении явления электромагнитной индукции мы получили, что магнитное поле, двигаясь со скоростью, порождает вихревое электрическое поле: (14. 5. 5)

Если переменное электрическое и магнитное поля порождают друга, то они обязаны двигаться с одинаковой скоростью (в противном случае явление электромагнитной индукции, и ток смещения мы наблюдали от случая к случаю, изредка, а не всегда, в любом случае). Итак

Теперь, заменив на, можно записать (4. 3. 6) (4. 3. 7) (4. 3. 8) (знак " указывает, что одно вихревое поле порождает другое и наоборот). Поскольку вектор выражаемый векторным произведением, всегда перпендикулярен к обоим перемножаемым векторам, то из (4. 3. 7) и (4. 3. 8) следует, что векторы и взаимно перпендикулярны.

Причём все три вектора образуют правовинтовую систему в направлении Так как векторы взаимно перпендикулярны, то Тогда абсолютные значения векторов и, или, следовательно это и есть скорость распространения ЭМП в вакууме и равна она скорости света с.

Src="http://present5.com/presentation/-29917128_138051989/image-43.jpg" alt="При распространении ЭМП в среде а т. к. ε > 1 и μ >1"> При распространении ЭМП в среде а т. к. ε > 1 и μ >1 то всегда υ

Релятивистская трактовка магнитных явлений (общие положения). Взаимодействие точечных неподвижных зарядов полностью описывается законом Кулона. Однако закона Кулона недостаточно для анализа взаимодействия движущихся зарядов. Такой вывод следует не из конкретных особенностей Кулоновского взаимодействия, а обусловливается релятивистскими свойствами пространства и времени релятивистскими уравнениями движения.

Релятивистское уравнение движения имеет одинаковый вид во всех инерциальных системах отсчёта (ИСО) Требования релятивисткой инвариантности уравнения движения приводит к тому, что силы оказываются связанными определенными соотношениями при переходе от одной ИСО к другой. Причём из формулы преобразования сил следует неизбежная зависимость силы от скорости в релятивистской теории.

Существования магнитной и электрической сил можно выявить из следующего примера взаимодействия зарядов: Имеем штрихованную систему K" отчёта, движущуюся со скоростью относительно неподвижной системы отсчёта К. Причём K" движется в направлении увеличения x (рис. 14. 4). Рис. 14. 4

Заряд q неподвижен в системе K", q 0 – движется в К со скоростью U а в K" со скоростью U". Рассмотрим взаимодействие этих двух зарядов в системе К и K". Для этого нам необходимо знать закон преобразования сил при переходе от одной инерциальной системы отчёта к другой и влияние перехода на величину заряда. Но! Мы уже отмечали, что величина заряда не зависит от выбора системы отчёта. Если бы это было не так, то многоэлектронный атом, в котором электроны движутся с разными скоростями, не был бы электрически нейтральным. Рассмотрим взаимодействие зарядов в системе: K" q – неподвижен, q 0 – движется. Таким образом сила с которой q действует на q 0 – кулоновская. Она будет зависеть от координат q и не зависеть от скорости q 0 эта сила определяется электростатическим полем, которое создаёт заряд q. Тогда где – сила электростатического взаимодействия.

Теперь рассмотрим взаимодействие этих же зарядов в системе К. Найдём силу, которая действует на заряд q в этой системе. Согласно формулам преобразования сил при переходе из одной системы отсчёта в другую (14. 6. 2) обозначим Тогда

Можно записать. Умножим и разделим правую часть на q 0 Если υ

Кроме кулоновской силы, на заряд действует другая сила, отличающаяся от кулоновской. Она возникает в результате движения зарядов и называется магнитной. То есть движение зарядов создаёт в пространстве магнитное поле или на движущийся заряд со стороны магнитного поля действует сила. Естественно было бы назвать – напряжённостью магнитного поля. Однако по историческим причинам эта величина носит название индукции магнитного поля Из сравнения и видно, что при υ ≈ с, является величиной второго порядка малости относительно – силы кулоновского взаимодействия.

Кроме кулоновской силы, на движущийся заряд действует другая сила, отличающаяся от кулоновской. Она возникает в результате движения зарядов и называется магнитной: F = F 1 + F 2 То есть движение зарядов создаёт в пространстве магнитное поле или на движущийся заряд со стороны магнитного поля действует сила

При υ

Таким образом при Полную силу, действующую на движущийся заряд q 0 со стороны заряда q в системе K можно записать, как Таким образом магнитное поле мы ввели исходя из инвариантности заряда и релятивистского закона преобразования сил. СТО вскрывает физическую природу магнетизма, как релятивистский эффект.

Рассмотренное нами поле заряда q может быть и чисто электрическим и одновременно электрическим и магнитным, в зависимости от того, в какой системе отсчёта мы его наблюдаем. Это обстоятельно подчеркивает единство электромагнитного поля, а проведённые нами выкладки свидетельствует, что основным законом электричества и магнетизма является закон Кулона. Все остальные законы магнитостатики могут быть получены из закона Кулона, инвариантности заряда и релятивистского закона преобразования сил (полей).

Эти четыре уравнения достойны восхищения − громадное многообразие электромагнитных явлений заключено в этих кратких выразительных формулах, если уметь ими пользоваться. Эта система уравнений впервые была записана в 1873 году великим английским физиком Джеймсом Клерком Максвеллом и носит его имя 1.

Сейчас практически каждый человек знает, что электрическое и магнитное поля непосредственно взаимосвязаны друг с другом. Даже существует особый раздел физики, изучающий электромагнитные явления. Но еще в 19 веке, пока не была сформулирована электромагнитная теория Максвелла, все было совершенно иначе. Считалось, например, что электрические поля присущи лишь частицам и телам, обладающим а магнитные свойства - совершенно другая область науки.

В 1864 году знаменитый британский физик Д. К. Максвелл указывает на прямую взаимосвязь электрических и магнитных явлений. Открытие получило название «теория электромагнитного поля Максвелла». Благодаря ей удалось решить ряд неразрешимых, с точки зрения электродинамики того времени, вопросов.

Большинство громких открытий всегда основывается на результатах работ предыдущих исследователей. Теория Максвелла - не исключение. Отличительной чертой является то, что Максвелл существенно расширил результаты, полученные его предшественниками. К примеру, он указал, что в может использоваться не только замкнутый контур из проводящего материала, но состоящий из любого материала. В данном случае контур является индикатором вихревого электрического поля, которое воздействует не только на металлов. При такой точке зрения при нахождении в поле диэлектрического материала более правильно говорить о токах поляризации. Они также совершают работу, которая заключается в нагреве материала до определенной температуры.

Первое подозрение на связь электрических и появилось в 1819 году. Х. Эрстед заметил, что если вблизи проводника с током расположить компас, то направление стрелки отклоняется от

В 1824 году А. Ампер сформулировал закон взаимодействия проводников, впоследствии получивший название «Закон Ампера».

И, наконец, в 1831 году Фарадей зафиксировал появление тока в контуре, находящемся в изменяющемся магнитном поле.

Теория Максвелла призвана решить основную задачу электродинамики: при известном пространственном распределении электрических зарядов (токов) можно определить некоторые характеристики генерируемых магнитных и электрических полей. Данная теория не рассматривает сами механизмы, лежащие в основе происходящих явлений.

Теория Максвелла предназначена для близкорасположенных зарядов, так как в системе уравнений считается, что происходят со вне зависимости от среды. Важной особенностью теории является тот факт, что на ее основании рассматриваются такие поля, которые:

Генерируются относительно большими токами и зарядами, распределенными в большом объеме (во много раз превышающем размер атома или молекулы);

Переменные магнитные и электрические поля изменяются быстрее, чем период процессов внутри молекул;

Расстояние между рассчитываемой точкой пространства и источником поля превышает размер атомов (молекул).

Все это позволяет утверждать, что теория Максвелла применима прежде всего к явлениям макромира. Современная физика все больше процессов объясняет с точки зрения квантовой теории. В формулах Максвелла квантовые проявления не учитываются. Тем не менее использование максвелловских систем уравнений позволяет успешно решать определенный круг задач. Интересно, что так как учитываются плотности электрических токов и зарядов, то теоретически возможно существование их же, но магнитной природы. На это в 1831 году указал Дирак, обозначив их магнитными монополями. В целом основные постулаты теории следующие:

Магнитное поле создается переменным электрическим полем;

Переменное магнитное поле генерирует электрическое поле вихревой природы.

1. Вихревое электрическое поле.

2. Ток смещения

3. Уравнения Максвелла для электромагнитного поля.

4. Электромагнитное поле. Электромагнитные волны. Энергетический спектр.

1. В проводящем контуре возникает индукционный ток, если поток вектора магнитной индукции, пронизывающий площадь, ограниченную контуром меняется во времени:

E i = - -З. Фарадея

Например, в контуре, находящемся в переменном м. поле. Силы Лоренца, в этом случае, не могут быть причиной возникновения тока, т.к. они действуют только на движущиеся заряды. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлениям Максвелла контур, в котором появляется ЭДС играет второстепенную роль являясь лишь индикатором, обнаруживающим это поле.

Итак, изменявшееся во времени магнитное поле порождает электрическое поле напряженностью Е в , циркуляция которого равна

Е В l – проекция вектора Е В на направления l .

Т.к. весь поток равен интегралу: Ф = и учитывая, что если поверхность и контур неподвижны, то операции интегрирования и дифференцирования можно поменять местами из выражение (13.1) получим:

Где символ частной производной подчеркивает тот факт, что интеграл является функцией только от времени.

Вспомним, что циркуляция вектора напряженности электростатического поля, создаваемого зарядом вдоль любого замкнутого контура = 0:

Т.е. между рассматриваемыми полями и имеется принципиальное различие: циркуляция ≠0 электродинамическое поле, порождаемое магнитным полем как и само магнитное поле является полем с замкнутыми силовыми линиями, т.е. вихревым электрическим полем .

2. Согласно Максвнллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющемся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения . Это название является условным, а точнее исторически сложившимся, так как ток смещения по своей сути - это изменяющееся со временем электрическое поле.

Рассмотрим цепь переменного тока, содержащую конденсатор. Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому согласно Мксвеллу, через конденсатор «протекают» токи смещения, причем в тех участках, где отсутствуют проводники. Токи проводимости и смещения при этом равны: I = I СМ. Ток проводимости вблизи обкладок будет:


Поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе. А так как . Тогда плотность тока смещения согласно (13.4) будет: …(13.5)

Из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно – способность создавать в окружающем пространстве магнитное поле.

3. Введения понятия тока смещения привело Максвелла к созданию макроскопической теории электромагнитного поля, позволяющей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых в последствии было подтверж-дено. В основе теории Максвелла лежат четыре уравнения:

1). Электрическое поле может быть как потенциальным, так и вихревым (и ), поэтому напряженность суммарного поля:Е = +

Т.к. циркуляция = 0, а для определяется выражением (13.2), то циркуляция вектора напряженности суммарного поля :

DS….(1 )

Это уравнение показывает, что источниками электрического поля могут быть не только заряды, но и изменяющиеся во времени магнитные поля.

2). Обобщенная теорема о циркуляции вектора напряженности магнитного поля (): = dS…(2 )

где – вектор электрического смещения

– плотность тока, =

Это уравнение показывает, что магнитные поля могут возбуждаться либо зарядами, либо переменными электрическими полями.

3). Теорема Гаусса для электрического поля D (вектора электрического смещения). …(3 )

Т.е. поток вектора смещения электрического.поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов.

Где 0, 0 – электрическая и магнитная постоянные

,– электрическая и магнитная проницаемости

– удельная проводимость.

Основные законы электрических и магнитных явлений являются обобщением экспериментальных фактов. При этом они описывали отдельно электрические и магнитные явления. В 60-х годах прошлого столетия Максвелл, основываясь на идеях Фарадея об электрических и магнитных полях, обобщил эти законы и разработал законченную теорию единого электромагнитного поля.

Теория Максвелла является макроскопической теорией. В ней рассматриваются электрические и магнитные поля, создаваемые макроскопическими зарядами и токами без учета внутренних механизмов, связанных с колебаниями атомов или электронов. Поэтому, расстояния от источников полей до рассматриваемых точек пространства предполагается много большими по сравнению с размерами молекул. Кроме того, частота колебаний электрических и магнитных полей в этой теории, принимается много меньшей частоты внутримолекулярных колебаний. В работах Максвелла идея Фарадея о тесной связи электрических и магнитных явлений получила окончательное оформление в виде двух основных положений и была в строгой форме выражена в виде уравнений Максвелла (1873).

Основные достижения теории Максвелла - обоснования идеи о том, что:

  • - переменное электрическое поле возбуждает вихревое магнитное поле;
  • - переменное магнитное поле возбуждает вихревое электрическое поле.

Ток смещения

Анализируя различные электромагнитные процессы, Максвелл пришел к заключению, что всякое изменение электрического поля должно вызывать появление магнитного поля. Это утверждение является одним из основных положений теории Максвелла и выражает важнейшее свойство электромагнитного поля.

Рассмотрим такой опыт: между пластинами плоского конденсатора, заряженного с поверхностной плотностью заряда, поместим диэлектрик.

Соединим обкладки конденсатора внешним проводником. Так как между обкладками конденсатора существует разность потенциалов, то по проводнику пойдет ток: . У границ пластин линии тока перпендикулярны их поверхности и плотность тока равна:

(2) если, то.

С учетом формулы (1) получим формулу для плотности тока проводимости

По мере разряда конденсатора электрическое поле в нем ослабевает. Следовательно, производная от индукции будет иметь отрицательный знак, и вектор будет направлен противоположно. Т.е. направление вектора будет совпадать с направлением вектора плотности тока. Поэтому формулу (3) можно записать в векторной форме:

Левая часть равенства (4) характеризует электрический ток проводимости, а правая часть характеризует скорость изменения электрического поля в диэлектрике. Равенство этих двух векторов на границе металл - диэлектрик показывает, что линии вектора как бы продолжают линии тока через диэлектрик и замыкают ток. Поэтому производная от электрической индукции по времени названа Максвеллом плотностью тока смещения

Итак, в рассмотренном опыте ток проводимости переходит в диэлектрике в ток смещения (т.е. в изменяющееся электрическое поле).

Если использовать формулу связи между индукцией, напряженностью и поляризованностью Р вещества, то для плотности тока смещения можно получить следующую формулу:

Первое слагаемое правой части формулы (6) определяет переменное поле свободных зарядов (переменное электрическое поле в вакууме). Второе слагаемое представляет собой быстроту изменения поляризованности диэлектрика со временем, связанное со смещением его зарядов при изменении напряженности поля. Движение зарядов в электрическом поле в пределах молекулярных размеров является упорядоченным и называется поляризационной составляющей тока смещения. Этим объясняется происхождение термина ток смещения - ток, обусловленный смещением зарядов в диэлектрике, помещенном в переменное электрическое поле.

При переполяризации молекулы «поворачиваются» за изменяющимся полем и сталкиваются с соседними молекулами. Вследствие таких столкновений диэлектрик нагревается. Т.о. ток смещения можно регистрировать по его тепловому действию. Кроме того, как любой ток, ток смещения создает магнитное поле. Непосредственное наблюдение магнитного поля, порождаемого током смещения, было осуществлено Российским ученым Эйхенвальдом.

В его опыте диск из диэлектрика помещался между обкладками двух плоских конденсаторов, и вращался вокруг оси. Обкладки конденсаторов соединялись с источником напряжения так, что половины диэлектрика поляризовались в противоположных направлениях. При каждом обороте диска направление поляризации каждой из частей изменяется на противоположное. В результате такой переполяризации диэлектрика при его вращении в нем возникает поляризационный ток, направленный параллельно оси вращения. Магнитное поле этого тока обнаруживалось по отклонению магнитной стрелки, помещенной вблизи оси диска.