Принцип действия радиотелескопа. Радиотелескопы и их характеристики, принцип действия интерферометров, космический "радиоастрон"

На фото изображена Мерчисонская радиоастрономическая обсерватория, которая находится в Западной Австралии. Она включает в себя 36 комплексов с такими вот зеркальными антеннами, работающими в диапазоне 1.4 ГГц. Диаметр главного зеркала каждой антенны составляет 12 метров. Совместно эти антенны являются частью одного большого радиотелескопа Pathfinder. Это самый большой из всех существующих на сегодняшний день радиотелескопов.

Десятки зеркальных антенн используются для исследований и наблюдения за галактикой. Они способны заглянуть в такую даль, на которую не способен самый крупный в мире оптический телескоп Hubble. Совместно эти антенны работают как один большой интерферометр и образуют массив, способный собирать электромагнитные волны с самого края вселенной.

Сотни тысяч антенн по всему миру объединяются в один радиотелескоп Square Kilometre Array

Подобные радиотелескопы развернуты по всему земному шару, и многие из них к 2030 году планируется объединить в единую систему Square Kilometre Array (SKA) , имеющую общую площадь приема более одного квадратного километра, как вы наверняка догадались из названия. В него будет входить более двух тысяч антенных систем, расположенных в Африке и полмиллиона комплексов из Западной Австралии. В проекте SKA принимает участие 10 стран: Австралия, Канада, Китай, Индия, Италия, Нидерланды, Новая Зеландия, Южная Африка, Швеция и Соединенное Королевство:

Никто и никогда не строил ничего подобного. Система радиотелескопов SKA позволит решить самые насущные загадки вселенной. Он сможет измерить огромное количество пульсаров, звездных осколков и других космических тел, излучающих электромагнитные волны вдоль своих магнитных полюсов. Наблюдая за подобными объектами вблизи черных дыр, смогут быть открыты новые физические законы и, возможно, будет разработана единая теория квантовой механики и гравитации.

Строительство единой системы SKA начинается поэтапно с более мелких составных частей и Pathfinder в Австралии будет одной из таких частей. Кроме этого в настоящее время уже строится система SKA1, которая будет являться лишь малой частью будущей Square Kilometre Array, но при завершении строительства станет крупнейшим радиотелескопом в мире.

SKA1 будет включать в себя две части на разных континентах в Африке и Австралии

SKA1 будет состоять из двух частей: SKA1-mid в южной части Африки, и SKA1-low в Австралии. SKA1-mid изображена на рисунке ниже и будет включать в себя 197 зеркальных антенн диаметром от 13.5 до 15 метров каждая:

А система SKA1-low будет рассчитана на сбор низкочастотных радиоволн, которые появились в космосе миллиарды лет назад, когда объекты, подобные звездам, только начинали свое существование. Для приема этих радиоволн радиотелескоп SKA1-low не будет использовать зеркальные антенны. Вместо этого будет установлено множество более мелких турникетных антенн, предназначенных для сбора сигналов в широком диапазоне частоте, в том числе телевизионном и FM-диапазонах, которые совпадают с частотой излучения старейших источников во вселенной. Антенны SKA1-low работают в диапазоне от 50 до 350 МГц, их внешний вид изображен ниже:

К 2024 году руководители проекта SKA планируют установить более 131 000 подобных антенн, сгруппированных в кластеры и разбросанных по пустыне на десятки километров. В один кластер будет включено по 256 таких антенн, сигналы которых будут объединяться и передаваться через одну волоконно-оптическую линию связи. Низкочастотные антенны будут работать вместе, принимая излучение, возникшее во вселенной миллиарды лет назад. И тем самым, помогут понять физические процессы, происходящие в далеком прошлом.

Принцип работы радиотелескопов

Антенны, объединенные в один общий массив, работают по тому же принципу, что и оптический телескоп, вот только радиотелескоп фокусирует не оптическое излучение, а принимаемые радиоволны. Законы физики диктуют такие требования, что чем выше принимаемая длина волны, тем больше должен быть диаметр зеркальной антенны. Вот так, например, выглядит радиотелескоп без пространственного разнесения приемных антенных систем, - действующий пятисотметровый сферический радиотелескоп FAST в юго-западной провинции Гуйчжоу в Китае. Этот радиотелескоп в будущем также станет частью проекта Square Kilometre Array (SKA):

Но увеличивать диаметр зеркала до бесконечности не получится, а реализация интерферометра как на фото выше, не всегда и не везде возможна, поэтому приходится использовать большое количество территориально разнесенных антенн меньшего размера. Например, таким видом антенн для радиоастрономии являются Murchison Widefield Array (MWA). Антенны MWA работают в диапазоне от 80 до 300 МГц:

Антенны MWA также входят в состав системы SKA1-low в Австралии. Они также способны заглянуть в темный период ранней вселенной, называемой эпохой реионизации. Эта эпоха существовала 13 миллиардов лет назад (примерно через миллиард лет после Большого взрыва), когда только зарождающиеся звезды и другие объекты начали нагревать вселенную, заполненную атомами водорода. Примечательно то, что до сих пор можно обнаружить радиоволны, излучаемые этими нейтральными атомами водорода. Волны испускались с длиной волны 21 см, но к тому времени, как они достигли Земли, прошли миллиарды лет космической экспансии, растянувшие их еще на несколько метров.

Антенны MWA будут использоваться для того, чтобы обнаружить эхо дальнего прошлого. Астрономы надеются, что изучение этого электромагнитного излучения поможет глубже понять, как формировалась ранняя вселенная, и как структуры, подобные галактикам, формировались и изменялись в эту эпоху. Астрономы отмечают, что это одна из основных фаз во время эволюции Вселенной, которая совершенно нам неизвестна.

На изображении ниже секции с MWA-антеннами. Каждая секция содержим по 16 антенн, которые объединяются между собой в единую сеть с помощью оптоволокна:

Антенны MWA принимают радиоволны частями с разных направлений одновременно. Входящие сигналы усиливаются в центре каждой антенны с помощью пары малошумящих усилителей, а затем направляются в ближайший формирователь луча. Там волноводы различной длины придают сигналам антенны определенную задержку. При правильном выборе этой задержки формирователи луча "наклоняют" диаграмму направленности массива так, что радиоволны, поступающие с определенного участка неба, достигают антенну в одно и то же время, как если бы они принимались одной большой антенной.

Антенны MWA делятся на группы. Сигналы от каждой группы отправляются на один приемник, который распределяет сигналы между различными частотными каналами, а затем отправляет их в центральное здание обсерватории по оптоволокну. Там с помощью специализированных программных пакетов и блоков обработки графики данные коррелируются, перемножая сигналы от каждого приемника и интегрируя их по времени. Этот подход позволяет создать единый сильный сигнал, как будто он был принят одним большим радиотелескопом.

Подобно оптическому телескопу, дальность видимости такого виртуального радиотелескопа пропорциональна его физическому размеру. В частности, для виртуального телескопа, состоящего из набора зеркальных или фиксированных антенн, максимальное разрешение телескопа определяется его расстоянием между несколькими приемными частями. Чем больше это расстояние, тем точнее разрешение.

Сегодня астрономы используют это свойство для создания виртуальных телескопов, которые охватывают целые континенты, что позволяет увеличить разрешение телескопа настолько хорошо, чтобы разглядеть черные дыры в центре Млечного пути. Но размер радиотелескопа не является единственным требованием для получения детальной информации о далеком объекте. Качество разрешения зависит также от общего количества приемных антенн, частотного диапазона и расположения антенн относительно друг друга.

Данные, полученные с помощью MWA, отправляются через сотни километров в ближайший центр обработки данных с суперкомпьютером. MWA может отправлять более 25 терабайт данных в день и в ближайшие годы c выходом SKA1-low эта скорость станет еще выше. И 131 000 антенн в составе радиотелескопа SKA1-low, работая в одном общем массиве, будет собирать каждый день более терабайта данных.

А вот так решается проблема с электропитанием радиотелескопов. В Мерчисонской радиоастрономической обсерватории электропитание антенных комплексов обеспечивается за счет солнечных панелей емкостью в 1,6 мегаватт:

До недавнего времени антенны обсерватории работали на дизель-генераторах, а сейчас помимо солнечных панелей она имеет еще и огромное количество блоков литиево-ионных батарей, которые могут хранить 2,6 мегаватт-часов. Некоторые части антенного массива вскоре получат собственные солнечные панели.

В таких амбициозных проектах всегда довольно остро стоит вопрос финансирования. На данный момент бюджет строительства SKA1 в Южной Африке и Австралии составляет около 675 миллионов евро. Это сумма, установленная 10 странами-членами проекта: Австралией, Канадой, Китаем, Индией, Италией, Нидерландами, Новой Зеландией, Южной Африкой, Швецией и Соединенным Королевством. Но это финансирование не покрывает всю стоимость SKA1, на которые надеются астрономы. Поэтому обсерватория пытается привлечь больше стран к партнерству, которое могло бы увеличить финансирование.

Заключение

Радиотелескопы позволяют наблюдать за далекими космическими объектами: пульсарами, квазарами и др. Вот так, например, с помощью радиотелескопа FAST удалось обнаружить в 2016 году радиопульсар:

После обнаружения пульсара удалось установить, что пульсар в тысячу раз тяжелее Солнца и на земле один кубический сантиметр такого вещества весил бы несколько миллионов тонн. Сложно переоценить значимость информации, которую можно получить с помощью вот таких необычных радиотелескопов.

) и исследования их характеристик, таких как: координаты, пространственная структура, интенсивность излучения, спектр и поляризация.

Радиотелескоп занимает начальное, по диапазону частот, положение среди астрономических инструментов для исследования электромагнитного излучения - более высокочастотными являются теплового, видимого, ультрафиолетового, рентгеновского и гамма излучения.

Радиотелескопы предпочтительно располагать далеко от главных населённых пунктов, чтобы максимально уменьшить электромагнитные помехи от вещательных радиостанций, телевидения, радаров и др. излучающих устройств. Размещение радиообсерватории в долине или низине ещё лучше защищает её от влияния техногенных электромагнитных шумов.

Устройство

Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель - устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора. На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для калибровки полученных измерений (приведения их к абсолютным значениям плотности потока излучения) ко входу радиометра вместо антенны подключается генератор шума известной мощности.

В зависимости от конструкции антенны и методики наблюдений, радиотелескоп может либо заранее наводиться на заданную точку небесной сферы (через которую вследствие суточного вращения пройдёт наблюдаемый объект), либо работать в режиме слежения за объектом.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

Принцип работы

Принцип работы радиотелескопа больше схож принципом работы фотометра, нежели оптического телескопа. Радиотелескоп не может строить изображение непосредственно, он лишь измеряет энергию излучения, приходящего с направления, в котором «смотрит» телескоп. Таким образом, чтобы получить изображение протяженного источника, радиотелескоп должен промерить его яркость в каждой точке.

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где - длина волны, - диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала. Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику - чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

где - мощность собственных шумов радиотелескопа, - эффективная площадь антенны, - полоса частот и - время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.

Радиоинтерферометры

Помимо увеличения диаметра апертуры, существует ещё один способ увеличить разрешающую способность (или сузить диаграмму направленности). Если взять две антенны, расположенных на расстоянии d (база) друг от друга, то сигнал от источника до одной из них будет приходить чуть раньше, чем до другой. Если затем сигналы с двух антенн проинтерферировать, то из результирующего сигнала с помощью специальной математической процедуры редукции можно будет восстановить информацию об источнике с эффективным разрешением . Такая процедура редукции называется апертурным синтезом. Интерференция может проводиться как аппаратно, путём подачи сигнала по кабелям и волноводам в общий смеситель, так и на ЭВМ с предварительно оцифрованными по меткам точного времени и сохраненными на носитель сигналами. Современные технические средства позволили создать систему РСДБ, которая включает в себя телескопы расположенные на разных материках и разнесенные на несколько тысяч километров.

Первые радиотелескопы

Начало - Карл Янский

Копия радиотелескопа Янского

История радиотелескопов берёт своё начало в 1931 году, с экспериментов Карла Янского на полигоне фирмы Bell Telephone Labs. Для исследования направления прихода грозовых помех он построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м (20.5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени.

Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. - период полного оборота антенны.

В декабре 1932 г. Янский уже сообщал о первых результатах, полученных на своей установке. В статье сообщалось об обнаружении «… постоянного шипения неизвестного происхождения» , которое «… трудно отличить от шипения, вызываемого шумами самой аппаратуры. Направление прихода шипящих помех меняется постепенно в течение дня, делая полный оборот за 24 часа» . В двух своих следующих работах, в октябре 1933 года и октябре 1935 года, Карл Янский постепенно приходит к заключению, что источником его новых помех является центральная область нашей галактики. Причём наибольший отклик получается, когда антенна направлена на центр Млечного Пути.

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. Он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США.

Второе рождение - Гроут Ребер

В 1937 году Гроут Ребер, радиоинженер из Уэтона (США, штат Иллинойс) заинтересовался работой Янского и сконструировал в заднем дворе дома своих родителей антенну с параболическим рефлектором диаметром 9,5 м. Эта антенна имела меридианную монтировку, то есть была управляема лишь по углу места, а изменение положения лепестка диаграммы по прямому восхождению достигалось за счёт вращения Земли. Антенна Ребера была меньше, чем у Янского, но работала на более коротких волнах, и её диаграмма направленности была значительно острее. У антенны Ребера луч имел коническую форму с шириной 12° по уровню половинной мощности, в то время как у луча антенны Янского была веерообразная форма шириной 30° по уровню половинной мощности в наиболее узком сечении.

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты.

Радиокарта небосвода, полученная Гроутом Ребером в 1944 г.

Совершенствуя свою аппаратуру, Ребер предпринял систематический обзор неба и в 1944 году опубликовал первые радиокарты небосвода на волне 1,87 м. На картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедь A, Кассиопея A, и Кормы. Карты Ребера достаточно хороши даже по сравнению с современными картами, метровых длин волн.

После Второй мировой войны были сделаны существенные технологические улучшения в области радиоастрономии учёными в Европе, Австралии и США. Таким образом начался расцвет радиоастрономии, который привёл к освоению миллиметровых и субмиллиметровых длин волн, позволяющих достичь значительно больших разрешений.

Классификация радиотелескопов

Широкий диапазон длин волн, разнообразие объектов исследований в радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля (рефлекторы, рефракторы, независимая запись полей) :

Антенны с заполненной апертурой

Антенны этого типа похожи на зеркала оптических телескопов и являются наиболее простыми и привычными в использовании. Антенны с заполненной апертурой просто собирают сигнал от наблюдаемого объекта и фокусируют его на приёмнике. Записанный сигнал уже несет в себе научную информацию и не нуждается в синтезе. Недостатком таких антенн является низкая разрешающая способность. Антенны с заполненной апертурой можно разделить на несколько классов по форме их поверхности и методу монтирования.

Параболоиды вращения

Практически все антенны такого типа устанавливаются на Альт-азимутальных монтировках и являются полноповоротным. Главным их преимуществом является то, что такие радиотелескопы могут, как и оптические, наводиться на объект и вести его. Таким образом, наблюдения могут проводиться в любое время, пока исследуемый объект находится над горизонтом. Типичные представители: Радиотелескоп Грин-Бэнк, РТ-70, Калязинский радиотелескоп.

Параболические цилиндры

Строительство полноповоротных антенн сопряжено с определёнными трудностями, связанными с огромной массой таких конструкций. Поэтому строят неподвижные и полуподвижные системы. Стоимость и сложность таких телескопов растет гораздо медленнее с их ростом размеров. Параболический цилиндр собирает лучи не в точке, а на прямой, параллельной его образующей (фокальная линия). Из-за этого телескопы данного типа имеют несимметричную диаграмму направленности и различное разрешение по разным осям. Ещё одним недостатком таких телескопов является то, что ввиду ограниченной подвижности для наблюдения им доступна только часть неба. Представители: радиотелескоп Иллинойского университета, индийский телескоп в Ути.

Ход лучей в телескопе Нансэ

Антенны с плоскими отражателями

Для работы на параболическом цилиндре требуется, чтобы на фокальной линии было размещено несколько детекторов, сигнал с которых складывается с учетом фаз. На коротких волнах это сделать непросто из-за больших потерь в линиях связи. Антенны с плоским отражателем позволяют обойтись лишь одним приёмником. Такие антенны состоят из двух частей: подвижного плоского зеркала и неподвижного параболоида. Подвижное зеркало «наводится» на объект и отражает лучи на параболоид. Параболоид концентрирует лучи в точке фокуса, где располагается приёмник. Такому телескопу доступна только часть неба для наблюдений. Представители: радиотелескоп Крауса, Большой радиотелескоп в Нансэ.

Земляные чаши

Стремление удешевить конструкцию привело астрономов к мысли об использовании природного рельефа в качестве зеркала телескопа. Представителем этого типа стал 300-метровый . Он расположен в карстовой воронке, дно которой вымощено алюминиевыми листами в форме сфероида. приёмник на специальных опорах подвешивается над зеркалом. Недостатком данного инструмента является то, что ему доступна область неба в пределах 20° от зенита.

Антенные решётки (синфазные антенны)

Такой телескоп состоит из множества элементарных облучателей (диполей или спиралей) расположенных на расстоянии меньшем, чем длина волны. Благодаря точному управлению фазой каждого элемента, удается добиться высокой разрешающей способности и эффективной площади. Недостатком таких антенн является то, что они изготавливаются под строго определённую длину волны. Представители: радиотелескоп БСА в Пущино.

Антенны с незаполненной апертурой

Наиболее важными для целей астрономии являются две характеристики радиотелескопов: разрешающая способность и чувствительность. При этом чувствительность пропорциональна площади антенны, а разрешение - максимальному размеру. Таким образом, самые распространенные круглые антенны дают наихудшее разрешение при той же эффективной площади. Поэтому в радиоастрономии появились телескопы с малой площадью, но большой разрешающей способностью. Такие антенны получили название антенн с незаполненной апертурой , так как они имеют «дыры» в апертуре, превосходящие длину волны. Чтобы получить изображение с таких антенн, наблюдения нужно проводить в режиме синтеза апертур. Для апертурного синтеза достаточно двух синхронно работающих антенн, расположенных на некотором расстоянии, которое называют базой . Чтобы восстановить изображение источника, нужно промерить сигнал на всех возможных базах с некоторым шагом вплоть до максимальной.

Если антенны всего две, то придется проводить наблюдение, затем менять базу, проводить наблюдение в следующей точке, опять менять базу и т. д. Такой синтез называется последовательным . По такому принципу работает классический радиоинтерферометр. Недостаток последовательного синтеза состоит в том, что он требует много времени и не может выявить переменность радиоисточников на коротких временах. Поэтому чаще применяется параллельный синтез . В нём участвует сразу много антенн (приёмников), которые одновременно проводят измерения для всех нужных баз. Представители: «Северный крест» в Италии, радиотелескоп ДКР-1000 в Пущино.

Таблица 2

Характеристики телескопа

Перигей-350000 км.

Апогей-600км. /2/

Зеркальная параболическая антенна радиотелескопа имеет диаметр в 10метров, состоит из 27 лепестков и 3-х метрового цельного зеркала.

Полная масса полезного научного груза - приблизительно 2600 кг. Она включает массу антенны(1500кг), электронного комплекса, содержащего приёмники, малошумящие усилители, синтезаторы частот, блоки управления, преобразователи сигналов, стандарты частоты, высокоинформативную систему передачи научных данных - около 900 кг.

В настоящий момент для сеансов двусторонней связи используются крупнейшие в России антенные комплексы П-2500 (диаметр 70 м) в приморском городе Уссурийск и ТНА-1500 (диаметр 64 м) в подмосковном посёлке Медвежьи Озера.

Связь с аппаратом «Спектр-Р» возможна в двух режимах. Первый режим - двусторонняя связь, включающая передачу команд на борт и прием с него телеметрической информации.

Второй режим связи - сброс радиоинтерферометрических данных через узконаправленную антенну высокоинформативного радиокомлекса (ВИРК).


Заключение

Я считаю, что данная работа в достаточной мере описываетимеющиеся методы получения космического радиоизлучения. При помощь данной работы можно проследить за тенденциями в развитии радиотелескопов. Можно заметить, что ученые акцентировали свои усилия в улучшении телескопов больше на увеличении характеристики углового расширения, чем на увеличении чувствительности радиотелескопов. Это, скорее всего, связано с тем, что увеличение чувствительности требует увеличения площади,следовательно и диаметра, антенн(2.5), что делать после определенного порога(150м) очень сложно. Так как наблюдения, проводимые при помощи ‘Радиоастрона’ оказались очень результативными, я думаю, что радиоастрономия будут продолжать развитие в этом направлении(увеличение разрешения за счет увеличения апертуры) путем размещения новых орбитальных обсерватории, которые будут подобны ‘Радиоастрону’. Мою мысль подтверждает наличие такого проекта как SNAP(SuperNova Acceleration Probe), который планируют запустить в 2020 году. /5/


Список используемых источников

1.Краус Д. Д. 1.2. Краткая история первых лет радиоастрономии // Радиоастрономия / Под ред. В. В. Железнякова. - М.: Советское радио, 1973. - С. 14-21. - 456 с.

2. Сопутствующие определения[Электронный ресурс] // Электронная Энциклопедия: сайт.- URL: http://ru.wikipedia.org/wiki/(дата обращения: 12.05.2014)

3. Вокруг света.-М.:Науч.-попул. 2006-2007

4. Проект Радиоастрон и космическая радиоастрономия [Электронный ресурc] //Федеральное космическое агенство: cайт. - URL: http://www.federalspace.ru/185/ (дата обращения: 12.05.2014)

5. Информация о проекте SNAP [Электронный ресурс ] // Supernova Acceleration Probe:

cайт. - URL: http://snap.lbl.gov/index.php (дата обращения: 12.05.2014)

Приложение

Фотографии радиоинтерфероматра VLA и фотография получаемых с них изображений

Рис. 1VeryLargeArray(видсземли)

Рис. 2VeryLargeArray(вид со спутника)

Рис. 3Изображение черной дыры 3C75 в радиодиапазоне

Принцип действия радиотелескопа

2.1.1 Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель - устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора. На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

2.1.2 Принцип работы радиотелескопа больше схож принципом работы фотометра, нежели оптического телескопа. Радиотелескоп не может строить изображение непосредственно, он лишь измеряет энергию излучения, приходящего с направления, в котором «смотрит» телескоп. Таким образом, чтобы получить изображение протяженного источника, радиотелескоп должен промерить его яркость в каждой точке.

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где - длина волны, - диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала. Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику - чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

,

где - мощность собственных шумов радиотелескопа, - эффективная площадь (собирающая поверхность) антенны, - полоса частот и - время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.



План:

    Введение
  • 1 Устройство
  • 2 Принцип работы
    • 2.1 Радиоинтерферометры
  • 3 Первые радиотелескопы
    • 3.1 Начало - Карл Янский
    • 3.2 Второе рождение - Гроут Ребер
  • 4 Классификация радиотелескопов
    • 4.1 Антенны с заполненной апертурой
      • 4.1.1 Параболоиды вращения
      • 4.1.2 Параболические цилиндры
      • 4.1.3 Антенны с плоскими отражателями
      • 4.1.4 Земляные чаши
      • 4.1.5 Антенные решётки (синфазные антенны)
    • 4.2 Антенны с незаполненной апертурой
  • 5 Список радиотелескопов
  • Примечания

Введение

Радиотелескоп РТФ-32 обсерватории «Зеленчукская», ИПА РАН. Расположен на Северном Кавказе.

Радиотелеско́п - астрономический инструмент для приёма собственного радиоизлучения небесных объектов (в Солнечной системе, Галактике и Метагалактике) и исследования их характеристик: координат, пространственной структуры, интенсивности излучения, спектра и поляризации .

Радиотелескоп занимает начальное, по диапазону частот, положение среди астрономических инструментов исследующих электромагнитное излучение, - более высокочастотными являются телескопы теплового, видимого, ультрафиолетового, рентгеновского и гамма излучения .

Радиотелескопы предпочтительно располагать далеко от главных населённых пунктов, чтобы максимально уменьшить электромагнитные помехи от вещательных радиостанций, телевидения, радаров и др. излучающих устройств. Размещение радиообсерватории в долине или низине ещё лучше защищает её от влияния техногенных электромагнитных шумов.


1. Устройство

Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и дальнейшей обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель - устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора . На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.


2. Принцип работы

Принцип работы радиотелескопа больше схож принципом работы фотометра, нежели оптического телескопа. Радиотелескоп не может строить изображение непосредственно, он лишь измеряет энергию излучения, приходящего с направления, в котором "смотрит" телескоп. Таким образом, чтобы получить изображение протяженного источника, радиотелескоп должен промерить его яркость в каждой точке.

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где λ - длина волны, D - диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала (см. критерий Релея). Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику - чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока ΔP :

где P - мощность собственных шумов радиотелескопа, S - эффективная площадь (собирающая поверхность) антенны, Δf - полоса частоти и t - время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.


2.1. Радиоинтерферометры

Помимо увеличения диаметра апертуры, существует ещё один способ увеличить разрешающую способность (или сузить диаграмму направленности). Если взять две антенны, расположенных на расстоянии d (база) друг от друга, то сигнал от источника до одной из них будет приходить чуть раньше, чем до другой. Если затем сигналы с двух антенн проинтерферировать, то из результирующего сигнала с помощью специальной математической процедуры редукции можно будет восстановить информацию об источнике с эффективным разрешением λ / d . Такая процедура редукции называется апертурным синтезом. Интерференция может проводиться как аппаратно, путём подачи сигнала по кабелям и волноводам в общий смеситель, так и на ЭВМ с предварительно оцифрованными по меткам точного времени и сохраненными на носитель сигналами. Современные технические средства позволили создать систему РСДБ, которая включает в себя телескопы расположенные на разных материках и разнесенные на несколько тысяч километров.


3. Первые радиотелескопы

3.1. Начало - Карл Янский

Точная копия радиотелескопа Карла Янского в натуральную величину. Национальная радиоастрономическая обсерватория (NRAO), Грин Бэнк, Западная Вирджиния, США

История радиотелескопов берёт своё начало с экспериментов Карла Янского, проведённых в 1931 г. В то время Янский работал радиоинженером на полигоне фирмы Bell Telephone Labs. Ему было поручено исследование направления прихода грозовых помех. Для этого Карл Янский построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м (20.5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени .

Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. - период полного оборота антенны.

В декабре 1932 г. Янский уже сообщал о первых результатах, полученных на своей установке . В статье сообщалось об обнаружении «… постоянного шипения неизвестного происхождения», которое «… трудно отличить от шипения, вызываемого шумами самой аппаратуры. Направление прихода шипящих помех меняется постепенно в течение дня, делая полный оборот за 24 часа». В двух своих следующих работах, в октябре 1933 года и октябре 1935 года, Карл Янский постепенно приходит к заключению, что источником его новых помех является центральная область нашей галактики . Причём наибольший отклик получается, когда антенна направлена на центр Млечного Пути .

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. Он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США, и радиоастрономия зачахла .


3.2. Второе рождение - Гроут Ребер

Меридианный радиотелескоп Гроута Ребера

В 1937 году Гроут Ребер, радиоинженер из Уэтона (США, штат Иллинойс) заинтересовался работой Янского и сконструировал в заднем дворе дома своих родителей антенну с параболическим рефлектором диаметром 9,5 м. Эта антенна имела меридианную монтировку, то есть была управляема лишь по углу места, а изменение положения лепестка диаграммы по прямому восхождению достигалось за счёт вращения Земли. Антенна Ребера была меньше, чем у Янского, но работала на более коротких волнах, и её диаграмма направленности была значительно острее. У антенны Ребера луч имел коническую форму с шириной 12° по уровню половинной мощности, в то время как у луча антенны Янского была веерообразная форма шириной 30° по уровню половинной мощности в наиболее узком сечении .

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты .

Радиокарта небосвода, полученная Гроутом Ребером в 1944 г.

Совершенствуя свою аппаратуру , Ребер предпринял систематический обзор неба и в 1944 году опубликовал первые радиокарты небосвода . На картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедь A, Кассиопея A, Большого Пса и Кормы . Карты Ребера достаточно хороши даже по сравнению с современными картами.

После Второй Мировой войны были сделаны существенные технологические улучшения в области радиоастрономии учёными в Европе, Австралии и США. Таким образом начался расцвет радиоастрономии.


4. Классификация радиотелескопов

Широкий диапазон длин волн, разнообразие объектов исследований в радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля (рефлекторы, рефракторы, независимая запись полей) :


4.1. Антенны с заполненной апертурой

Антенны этого типа похожи на зеркала оптических телескопов и является наиболее простыми и привычными в использовании. Антенны с заполненой апертурой просто собирают сигнал от наблюдаемого объекта и фокусируют его на приёмнике. Записанный сигнал уже несет в себе научную информацию и не нуждается в синтезе. Недостатком таких антенн является низкая разрешающая способность. Антенны с незаполненной апертурой можно разделить на несколько классов по форме их поверхности и методу монтирования.


4.1.1. Параболоиды вращения

Практически все антенны такого типа устанавливаются на Альт-азимутальных монтировках и являются полноповоротным. Главным их преимуществом является то, что такие радиотелескопы могут, как и оптические, наводиться на объект и вести его. Таким образом, наблюдения могут проводиться в любое время, пока исследуемый объект находится над горизонтом. Типичные представители: Радиотелескоп Грин-Бэнк, РТ-70, калязинский радиотелескоп.


4.1.2. Параболические цилиндры

Строительство полноповоротных антенн сопряжено с определёнными трудностями, связанными с огромной массой таких конструкций. Поэтому строят неподвижные и полуподвижные системы. Стоимость и сложность таких телескопов растет гораздо медленнее с их ростом размеров. Параболический цилиндр собирает лучи не в точке, а на прямой, параллельной его образующей (фокальная линия). Из-за этого телескопы данного типа имеют несимметричную диаграмму направленности и различное разрешение по разным осям. Ещё одним недостатком таких телескопов является то, что ввиду ограниченной подвижности для наблюдения им доступна только часть неба. Представители: радиотелескоп Иллинойского университета , индийский телескоп в Ути .

Ход лучей в телескопе Нансэ


4.1.3. Антенны с плоскими отражателями

Для работы на параболическом цилиндре требуется, чтобы на фокальной линии было размещено несколько детекторов, сигнал с которых складывается с учетом фаз. На коротких волнах это сделать непросто из-за больших потерь в линиях связи. Антенны с плоским отражателем позволяют обойтись лишь одним приёмником. Такие антенны состоят из двух частей: подвижного плоского зеркала и неподвижного параболоида. Подвижное зеркало "наводится" на объект и отражает лучи на параболоид. Параболоид концентрирует лучи в точке фокуса, где располагается приёмник. Такому телескопу доступна только часть неба для наблюдений. Представители: радиотелескоп Крауса , Большой радиотелескоп в Нансэ .


4.1.4. Земляные чаши

Стремление удешевить конструкцию привело астрономов к мысли об использовании природного рельефа в качестве зеркала телескопа. Представителем этого типа стал 300-метровый радиотелескоп Аресибо. Он расположен в карстовой воронке, дно которой вымощено алюминиевыми листами в форме сфероида. приёмник на специальных опорах подвешивается над зеркалом. Недостатком данного инструмента является то, что ему доступна область неба в пределах 20° от зенита.


4.1.5. Антенные решётки (синфазные антенны)

Такой телескоп состоит из множества элементарных облучателей (диполей или спиралей) расположенных на расстоянии меньшем, чем длина волны. Благодаря точному управлению фазой каждого элемента, удается добиться высокой разрешающей способности и эффективной площади. Недостатком таких антенн является то, что они изготавливаются под строго определённую длину волны. Представители: радиотелескоп БСА в Пущино.


4.2. Антенны с незаполненной апертурой

Наиболее важными для целей астрономии являются две характеристика радиотелескопов: разрешающая способность и чувствительность. При этом чувствительность пропорциональна площади антенны, а разрешение - максимальному размеру. Таким образом, самые распространенные круглые антенны дают наихудшее разрешение при той же эффективной площади. Поэтому в радиоастрономии появились телескопы с малой

Телескоп ДКР-1000, с незаполненной апертурой

площадью, но большой разрешающей способностью. Такие антенны получили название антенн с незаполненной апертурой , так как они имеют "дыры" в апертуре, превосходящие длину волны. Чтобы получить изображение с таких антенн, наблюдения нужно проводить в режиме синтеза апертур. Для апертурного синтеза достаточно двух синхронно работающих антенн, расположенных на некотором расстоянии, которое называют базой . Чтобы восстановить изображение источника, нужно промерить сигнал на всех возможных базах с некоторым шагом вплоть до максимальной .

Если антенны всего две, то придется проводить наблюдение, затем менять базу, проводить наблюдение в следующей точке, опять менять базу и т. д. Такой синтез называется последовательным . По такому принципу работает классический радиоинтерферометр. Недостаток последовательного синтеза состоит в том, что он требует много времени и не может выявить переменность радиоисточников на коротких временах. Поэтому чаще применяется параллельный синтез . В нём участвует сразу много антенн (приёмников), которые одновременно проводят измерения для всех нужных баз. Представители: «Северный крест» в Италии, радиотелескоп ДКР-1000 в Пущино.

Крупные массивы типа VLA часто относят к последовательному синтезу. Однако, ввиду большого количества антенн, практически все базы уже представлены, и дополнительных перестановок обычно не требуется.

РАДИОТЕЛЕСКОПЫ
антенны с заполненной апертурой антенны с незаполненной апертурой
параллельный синтез параллельный синтез последовательный синтез системы с независимой
записью сигналов
рефлекторы рефракторы рефлекторы рефракторы рефлекторы рефракторы
- параболоиды вращ.
- сферические чаши
- антенна Огайо
- антенна Нансе
- синфазные полотна
- цилиндры
- ант. "Клевер.лист"
- антенна Хорнера
- АПП набл. в зен.
- решётки
- кресты
- кольц.ант. в Кулгуре
- АПП
- перископический интерферометр
- двухэлем. интерферометр
- суперсинтез Райла
- система VLA

5. Список радиотелескопов

Расположение Тип антенны Размер Минимальная рабочая длина волны
США , Грин Бэнк Параболический сегмент с активной поверхностью 110x100 м 6 мм
, Эффельсберг Параболический рефлектор 100 м 7 мм
, Джодрелл Бэнк Параболический рефлектор 76 м 1.3 см
, Евпатория, РТ-70 Параболический рефлектор 70 м 1 см
, Калязинская радиоастрономическая обсерватория Параболический рефлектор 64 м 1 см
, Медвежьи Озера Параболический рефлектор 64 м 1 см
, Паркс Параболический рефлектор 64 м 7 мм
, Нобеяма Параболический рефлектор 45 м 1 мм
, Медичина Параболический рефлектор 32 м 1.3 см
, Светлое, РТФ-32 Параболический рефлектор 32 м 5 мм
, Зеленчукская, РТФ-32 Параболический рефлектор 32 м 5 мм
, Бадары, РТФ-32 Параболический рефлектор 32 м 5 мм
, Гранада Параболический рефлектор 30 м 1 мм
, Пуэрто-Рико, Аресибо Сферический рефлектор 300 м 10 см
, Зеленчукская, РАТАН-600 Антенна переменного профиля 588 м 3 мм
, Бадары, Сибирский солнечный радиотелескоп Массив антенн 128х128 элементов (крестообразный радиоинтерферометр) 622х622 м 5.2 см
, Нанси Двухзеркальный 2х40х300 м 11 см
, Пущино, ДКР-1000 Крест из двух параболических цилиндров 2х1000х40 м 2.5 м
, Харьков, УТР-2 Система дипольных антенн, «Т» 1860х50 м, 900х50 м 12 м
, Ути Параболический цилиндр 500х30 м 91 см
, Медичина, «Северный крест» «Т» из двух параболических цилиндров 2х500х30 м 70 см
, Санкт-Петербург, Главная Астрономическая Обсерватория РАН, Большой Пулковский Радиотелескоп Параболический рефлектор 130х3 м 2.3 см

Примечания

  1. Большая советская энциклопедия - slovari.yandex.ru/dict/bse/article/00064/63300.htm?text=радиотелескоп&encid=bse&stpar3=1.1. - СССР: Советская энциклопедия, 1978.
  2. Электромагнитное излучение
  3. Радиотелескоп // Физика космоса: Маленькая энциклопедия - www.astronet.ru/db/FK86/ / Под ред. Р. А. Сюняева. - 2-е изд. - М .: Сов. энциклопедия, 1986. - С. 560. - 783 с. - ISBN 524(03)
  4. П.И.Бакулин, Э.В.Кононович, В.И.Мороз Курс общей астрономии. - М .: Наука, 1970.
  5. 1 2 3 Джон Д. Краус. Радиоастрономия. - М .: Советское радио, 1973.
  6. Jansky K.G. Directional Studies of Atmospherics at Hight Frequencies. - Proc. IRE, 1932. - Т. 20. - С. 1920-1932.
  7. Jansky K.G. Electrical disturbances apparently of extraterrestrial origin.. - Proc. IRE, 1933. - Т. 21. - С. 1387-1398.
  8. Jansky K.G. A note on the source of interstellar interference.. - Proc. IRE, 1935. - Т. 23. - С. 1158-1163.
  9. Reber G. Cosmic Static. - Astrophys. J., June, 1940. - Т. 91. - С. 621-624.
  10. Reber G. Cosmic Static. - Proc. IRE, February, 1940. - Т. 28. - С. 68-70.
  11. 1 2 Reber G. Cosmic Static. - Astrophys. J., November, 1944. - Т. 100. - С. 279-287.
  12. Reber G. Cosmic Static. - Proc. IRE, August, 1942. - Т. 30. - С. 367-378.
  13. Кип Торн. Чёрные дыры и складки времени. - М .: Издательство физико-математической литературы, 2007. - С. 323-325. - 616 с. - ISBN 9785-94052-144-4
  14. 1 2 3 Н.А.Есепкина, Д.В.Корольков, Ю.Н.Парийский. Радиотелескопы и радиометры. - М .: Наука, 1973.
  15. Радиотелескоп Иллинойского университета. - www.ece.illinois.edu/about/history/reminiscence/400ft.html
  16. Телескоп в Ути - rac.ncra.tifr.res.in/ort.html
  17. , Радиотелескоп Грин-Бэнк , Very Large Array (радиотелескоп) , Сибирский солнечный радиотелескоп .