Клеточное дыхание. Понятие о тканевом дыхании

Клеточное дыхание - это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы - гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона - восстановление. Окисляемое вещество - это донор, а восстанавливаемое - акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул - универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

    в матриксе митохондрий – , или цикл трикарбоновых кислот,

    на внутренней мембране митохондрий – , или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 12H 2 + 4АТФ

Дыхательная цепь: 12H 2 + 6O 2 → 12H 2 O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH 3 COCOOH (пируват) → CH 3 CHO (ацетальдегид) + CO 2

CH 3 CHO + НАД · H 2 → CH 3 CH 2 OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH 3 COCOOH + НАД · H 2 → CH 3 CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

Кислород, транспортируемый кровью, используется для окисления различных веществ с образованием в качестве конечных продуктов СО2, воды и других, выводимых с мочой веществ. Процесс поглощения тканью кислорода, связанный с образованием воды и выделением углекислого газа – это тканевое дыхание.

Исследование тканевого дыхания проводят микроманометрическим методом. Тонкие срезы тканей помещаются в замкнутые сосудики, соединенные с узкой манометрической трубкой, заполненной жидкостью. При определении поглощения тканью кислорода в одно отделение сосудика помещается раствор щелочи, поглощающей выделяющийся СО2. Для достижения постоянства температуры сосудики погружаются в термостат, снабженный нагревателем и терморегулятором. В этих условиях уменьшение количества газа, определяемое по уменьшению давления в сосудике, будет равно количеству поглощенного кислорода.

С помощью подобного рода исследований можно получить лишь приближенные данные для характеристики тканевого дыхания, происходящего в организме. Тканевые срезы, будучи удалены из организма, лишены нервной регуляции их обмена. Они помещаются в среду, резко отличающуюся от нормальной тканевой жидкости в отношении содержания питательных веществ, газового состава. Поэтому для того, чтобы полученные в таких опытах результаты перенести на ткани в их естественных условиях существования, необходимо проводить исследования на целостном организме. Один из путей для исследования тканевого дыхания такого рода заключается в изучении газового состава и количества крови, притекающей и оттекающей от исследуемого органа.

При тканевом дыхании подвергаются быстрому окислению вещества, обычно стойкие относительно молекулярного кислорода. Объяснение этому пытались дать путем допущения, что кислород в тканях подвергается активированию. Разработана теория, согласно которой в тканях находятся вещества (оксигеназы), способные соединяться с молекулярным кислородом и давать при этом перекиси. Последние, по этой теории, при участии особых ферментов - пероксидаз - окисляют тот или иной субстрат. По другим представлениям, активируют кислород и тканевое дыхание ионы железа и железосодержащие органические соединения.

Принципиально новый путь для рассмотрения тканевых окислительных процессов был намечен исследованиями с растительными тканями. Показана возможность окислительных процессов при тканевом дыхании и в отсутствии молекулярного кислорода. Окисляющими веществами при этом являлись дыхательные пигменты, производные ортохинона, способные присоединить к себе два атома водорода, переходя при этом в дыхательные хромогены (производные дифенола). Дальнейшее развитие этой концепции тканевого дыхания привело к установлению того, что окисление субстрата начинается с отнятия от него двух атомов водорода. Окисляемое вещество, отдающее атомы водорода, называется водородным донатором, а вещество окисляющее, присоединяющее водород, - водородным акцептором.

Изучение физико-химической природы процессов окисления при тканевом дыхании показало, что основой их является перенос электронов. Обычно в биологических системах электроны переносятся вместе с протонами, следовательно, в составе атомов водорода. Конечным акцептором электронов является кислород. Кислород, восприняв два электрона и присоединив два протона, образует с ними частицу воды. В ходе окислительных процессов некоторые органические кислоты подвергаются декарбоксилированию, т. е. за счет их карбоксильной группы отщепляется СО2.

Перенос водорода с субстрата на кислород при тканевом дыхании, как правило, совершается не непосредственно, а при участии ряда промежуточных ферментативных систем.

Первой из этих систем тканевого дыхания при окислении таких веществ, как фосфоглицериновый альдегид, молочная кислота, лимонная кислота, является дегидраза. В систему дегидразы входит кодегидраза, играющая роль водородного акцептора.

Образовавшаяся восстановленная кодегидраза не может непосредственно окисляться кислородом. Она подвергается дегидрированию, взаимодействуя с флавиновым ферментом. Последний при тканевом дыхании в свою очередь окисляется одним из цитохромов.

Цитохромы представляют собой железосодержащие клеточные пигменты, причем восстановленный цитохром содержит двухвалентное железо в геминовой группе, а окисленный - трехвалентное. Система окислительных ферментов тканевого дыхания завершается также железосодержащим ферментом - цитохромоксидазой, окисляющей цитохромы и способной реагировать непосредственно с кислородом, который окисляет двухвалентное железо этого фермента в трехвалентное.

При образовании грамм-молекулы воды за счет окисления двух грамм-атомов водорода субстрата освобождается приблизительно 56 больших калорий (ккал) энергии. При переходе атомов водорода через ряд промежуточных ферментативных систем данная энергия дробится на меньшие порции. Биологическое значение этого ступенчатого протекания окислительного процесса тканевого дыхания заключается в том, что энергия окислительных процессов аккумулируется в форме энергии фосфатной связи в составе аденозин-трифосфорной (АТФ) кислоты. Тканевые же окислительные процессы связаны с процессами фосфорилирования, т. е. с введением неорганической фосфорной кислоты в состав АТФ. Последнее соединение является универсальным энергетическим веществом. Энергия, аккумулированная в ней, составляет около 10 ккал на грамм-молекулу фосфорной кислоты. Эта энергия используется при мышечном сокращении, при синтезе различных веществ (дисахариды, полисахариды, гиппуровая кислота, мочевина), при явлениях биолюминесценции.

При образовании одной молекулы воды вовлекаются в органическую связь 3 или даже 4 молекулы неорганической фосфорной кислоты. Таким образом, три или даже четыре этапа в ходе переноса двух атомов водорода с одних систем на другие связаны с явлениями фосфорилирования.

Помимо описанных основных этапов тканевого дыхания, в ходе окислительных процессов принимает существенное участие ряд других переносчиков водорода. Из низкомолекулярных соединений к ним принадлежат глутатион, полифенолы, аскорбиновая кислота, система дикарбоновых кислот.

Статью подготовил и отредактировал: врач-хирург

Дыхание тканевое (синоним клеточное )

совокупность окислительно-восстановительных процессов в клетках, органах и тканях, протекающих с участием молекулярного кислорода и сопровождающихся запасанием энергии в фосфорильной связи молекул . Тканевое дыхание является важнейшей частью обмена веществ и энергии (Обмен веществ и энергии) в организме. В результате Д. т. при участии специфических ферментов (Ферменты) происходит окислительный распад крупных органических молекул - субстратов дыхания - до более простых и в конечном счете до СО 2 и Н 2 О с высвобождением энергии. Принципиальным отличием Д. т. иных процессов, протекающих с поглощением кислорода (например, от перекисного окисления липидов), является запасание энергии в форме АТФ, не характерное для других аэробных процессов.

Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е. без участия молекулярного кислорода, в отличие от Д. т.

Большая часть энергии в аэробных клетках образуется благодаря Д. т., и количество образующейся энергии зависит от его интенсивности. Интенсивность Д. т. определяется скоростью поглощения кислорода на единицу массы ткани; в норме она обусловлена потребностью ткани в энергии. Интенсивность Д. т. наиболее высока в сетчатке глаза, почках, печени; она значительна в слизистой оболочке кишечника, щитовидной железе, яичках, коре головного мозга, гипофизе, селезенке, костном мозге, легких, плаценте, вилочковой железе, поджелудочной железе, диафрагме, скелетной мышце, находящейся в состоянии покоя. В коже, роговице и хрусталике глаза интенсивность Д. т. невелика. щитовидной железы (Щитовидная железа), Жирные кислоты и другие биологически активные вещества способны активизировать тканевое дыхание.

Интенсивность Д. т. определяют полярографически (см. Полярография) или манометрическим методом в аппарате Варбурга. В последнем случае для характеристики Д. т. используют так называемый - отношение объема выделившегося углекислого газа к объему кислорода, поглощенного определенным количеством исследуемой ткани за определенный промежуток времени.

Субстратами Д. т. являются продукты превращения жиров, белков и углеводов (см. Азотистый обмен , Жировой обмен, Углеводный обмен), поступающих с пищей, из которых в результате соответствующих метаболических процессов образуется небольшое число соединений, вступающих в - важнейший метаболический у аэробных организмов, в котором вовлекаемые в него вещества претерпевают полное окисление. представляет собой последовательность реакций, объединяющих конечные стадии метаболизма белков, жиров и углеводов и обеспечивающих восстановительными эквивалентами (атомами водорода или электронами, передающимися от веществ-доноров веществам-акцепторам; у аэробов конечным акцептором восстановительных эквивалентов является ) дыхательную цепь в митохондриях (митохондриальное дыхание). В митохондриях происходит химическая восстановления кислорода и сопряженное с этим процессом запасание энергии в виде АТФ, образующегося из и неорганического фосфата. Процесс синтеза молекулы АТФ или АДФ за счет энергии окисления различных субстратов называется окислительным, или дыхательным фосфорилированием. В норме митохондриальное дыхание всегда сопряжено с фосфорилированием, что связано с регуляцией скорости окисления пищевых веществ потребностью клетки в полезной энергии. При некоторых воздействиях на или ткани (например, при переохлаждении) происходит так называемое разобщение окисления и фосфорилирования, приводящее к рассеиванию энергии, которая не фиксируется в виде фосфорильной связи молекулы АТФ, а принимает тепловой энергии. Разобщающим действием обладают также щитовидной железы, 2,4-динитрофенол, дикумарин и некоторые другие вещества.

Тканевое дыхание в энергетическом отношении значительно более выгодно для организма, чем анаэробные окислительные превращения питательных веществ, например Гликолиз . У человека и высших животных около 2 / 3 всей энергии, получаемой из пищевых веществ, освобождается в цикле трикарбоновых кислот. Так, при полном окислении 1 молекулы глюкозы до СО 2 и Н 2 О запасается 36 молекул АТФ, из которых лишь 2 молекулы образуются в процессе гликолиза.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Дыхание тканевое" в других словарях:

    - (син. Д. клеточное) совокупность процессов Д. в тканях живого организма, представляющих собой аэробные окислительно восстановительные реакции, приводящие к высвобождению энергии, используемой организмом … Большой медицинский словарь

    ДЫХАНИЕ - ДЫХАНИЕ. Содержание: Сравнительная физиология Д.......... 534 Дыхательный аппарат............. 535 Механизм вентиляции легких......... 537 Регистрация дыхательных движении..... 5 S8 Частота Д., сила дыхат. мышц и глубина Д. 539 Классификация и… … Большая медицинская энциклопедия

    I Дыхание (respiratio) совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование его в биологическом окислении органических веществ и удаление из организма углекислого газа. В результате… … Медицинская энциклопедия

    См. Дыхание тканевое … Большой медицинский словарь

    Совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для… … Большой Энциклопедический словарь

    тканевое дыхание - – аэробный распад органических веществ в живых тканях … Краткий словарь биохимических терминов

    Одна из основных жизненных функций, совокупность пропессов, обеспечивающих поступление в организм О2, использование его в окислительно восстановительных процессах, а также удаление из организма СО2 и нек рых др. соединений, являющихся конечными… … Биологический энциклопедический словарь

    Современная энциклопедия

    Дыхание - ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм кислорода и удаление диоксида углерода (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии,… … Иллюстрированный энциклопедический словарь

    Диафрагмальный (брюшной) тип дыхания у человека У этого термина существуют и другие значения, см. Клеточное дыхание … Википедия

    ДЫХАНИЕ, ДЫХАНЬЕ, я; ср. 1. Вбирание и выпускание воздуха лёгкими или (у некоторых животных) иными соответствующими органами как процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Шумное, тяжёлое,… … Энциклопедический словарь

Книги

  • Проблемы биологической физики , Л. А. Блюменфельд , В книге рассматриваются те проблемы теоретической биологии, которые можно пытаться изучать на основе методов и принципов физики. Детально анализируется ряд важнейших проблем современной… Категория:

Итак, клеточное дыхание происходит в клетке.

Но где именно? Какая органелла осуществляет этот процесс?

Основной этап клеточного дыхания осуществляется в . Как известно, основной продукт работы митохондрии — молекулы АТФ — синоним понятия «энергия» в биологии. Действительно, основным продуктом этого процесса является энергия, молекулы АТФ.

АТФ — это молекула — синоним энергии в биологии. Расшифровывется как Аденозинтрифосфат или Аденозинтрифосфорная кислота. Как видно из рисунка формулы, в составе молекулы есть:

  1. три связи с остатками фосфорной кислоты, при разрыве которых выделяется большое количество энергии,
  2. углевод рибоза (пятиатомый сахар) и
  3. азотистое основание

1 Этап клеточного дыхания — подготовительный

Каким образом вещества попадают в клетки? В процессе пищеварения организма. Суть процесса пищеварения — расщепление полимеров, поступающих в организм с пищей, до мономеров:

  • расщепляются до аминокислот;
  • — до глюкозы;
  • расщепляются до глицерина и жирных кислот.

Т.е. в клетку поступают уже мономеры.

2 Этап клеточного пищеварения

Гликолиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.

Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (ПВК) (пирувата),

гликолиз в анаэробных условиях (бескислородных или при недостатке кислорода) ведёт к образованию молочной кислоты (лактата).

CH 3 -CH(OH)-COOH

Процесс идет с участием молекул фосфорной кислоты, поэтому называется окислительное фосфорилирование

Гликолиз является основным путём глюкозы в организме животных.

Превращения происходят в , т.е. процесс будет однозначно анаэробным: молекула глюкозы расщепится до ПВК — пировиноградной кислоты с выделением 2 молекул АТФ:

3 Этап клеточного пищеварения (кислородный)

Поступая в митохондрию, происходит окисление: ПВК под действием кислорода расщепляется до углекислого газа (суммарное уравнение):

Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула - ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки - цикл Кребса .

Цикл Кребса

(цикл лимонной кислоты)

Цикл Кребса — это реакции, которые начинаются, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь.

Для переработки энергии, запасенной в одной молекуле глюкозы , цикл Кребса нужно пройти дважды

Процесс многостадийный, и в нем, помимо различных кислот с интересными названиями участвуют коферменты (КоА).

Что такое коферменты?

(коэнзимы)

  • это органические вещества небольшого размера
  • они способны соединяться с белками (или прямо с ферментами, у которых, кстати, белковая природа), образуя активное вещество, косплекс, которое будет являться чем-то вроде катализатора.

Приставка «ко-» — это как «со-» — сопродюсер, соотечественник и т.п. Т.е. «вместе, с «

Гликолиз - катаболический путь исключительной важности.

Он обеспечивает энергией клеточные реакции, в том числе и синтез белка.

Промежуточные продукты гликолиза используются при синтезе жиров.

Пируват также может быть использован для синтеза других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Дыхание (лат. respiratio) -- основная форма диссимиляции у человека, животных, растений и многих микроорганизмов. Дыхание -- это физиологический процесс, обеспечивающий нормальное течение метаболизма (обмена веществ и энергии) живых организмов и способствующий поддержанию гомеостаза (постоянства внутренней среды), получая из окружающей среды кислород (О2) и отводя в окружающую среду в газообразном состоянии некоторую часть продуктов метаболизма организма (СО2, H2O и другие). В зависимости от интенсивности обмена веществ человек выделяет через лёгкие в среднем около 5 -- 18 литров углекислого газа (СО2), и 50 грамм воды в час. А с ними -- около 400 других примесей летучих соединений, в том числе и ацетон). В процессе дыхания богатые химической энергией вещества, принадлежащие организму, окисляются до бедных энергией конечных продуктов (диоксида углерода и воды), используя для этого молекулярный кислород.

Дыхание у человека включает внешнее дыхание и тканевое дыхание.

Функция внешнего дыхания обеспечивается как дыхательной системой, так и системой кровообращения. Атмосферный воздух попадает в лёгкие из носоглотки (где предварительно очищается от механических примесей, увлажняется и согревается) через гортань и трахеобронхиальное дерево (трахею, главные бронхи, долевые бронхи, сегментарные бронхи, дольковые бронхи, бронхиолы и альвеолярные ходы) попадает в лёгочные альвеолы. Дыхательные бронхиолы, альвеолярные ходы и альвеолярные мешочки с альвеолами составляют единое альвеолярное дерево, а вышеуказанные структуры отходящие от одной конечной бронхиолы образуют функционально-анатомическую единицу дыхательной паренхимы лёгкого -- амцинус (лат. бcinus -- гроздь). Смена воздуха обеспечивается дыхательной мускулатурой, осуществляющей вдох (набор воздуха в лёгкие) и выдох (удаление воздуха из лёгких). Через мембрану альвеол осуществляется газообмен между атмосферным воздухом и циркулирующей кровью. Далее кровь, обогащённая кислородом возвращается в сердце, откуда по артериям разносится ко всем органам и тканям организма. По мере удаления от сердца и деления, калибр артерий постепенно уменьшается до артериол и капилляров, через мембрану которых происходит газообмен с тканями и органами. Таким образом, граница между внешним и клеточным дыханием пролегает по клеточной мембране периферических клеток.

Внешнее дыхание человека включает две стадии:

  • 1. вентиляция альвеол,
  • 2. диффузия газов из альвеол в кровь и обратно.

Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступает атмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом. Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц.

Выделяют два типа дыхания по способу расширения грудной клетки:

  • 1. грудной тип дыхания (расширение грудной клетки производится путём поднятия рёбер),
  • 2. брюшной тип дыхания (расширение грудной клетки производится путём уплощения диафрагмы). Тип дыхания зависит от двух факторов:
  • 1. возраст человека (подвижность грудной клетки уменьшается с возрастом),
  • 2. профессия человека (при физическом труде преобладает брюшной тип дыхания).

Тканевое дыхание.

Тканевое или клеточное дыхание -- совокупность биохимических реакций, протекающих в клетках живых организмов, в процессе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (молекула аденозинтрифосфорной кислоты и других макро эргов) и может быть использована организмом по мере необходимости. Входит в группу процессов катаболизма. На клеточном уровне рассматривают два основных вида дыхания: аэробное (с участием окислителя-кислорода) и анаэробное. При этом, физиологические процессы транспортировки к клеткам многоклеточных организмов кислорода и удалению из них углекислого газа рассматриваются как функция внешнего дыхания.