Что значит "физическая величина". Физическая величина как объект метрологии

Физика, как мы уже установили, изучает общие закономерности в окружающем нас мире. Для этого ученые проводят наблюдения физических явлений. Однако при описании явлений принято использовать не повседневный язык, а специальные слова, имеющие строго определенный смысл, - термины. Некоторые физические термины уже встречались вам в предыдущем параграфе. Многие термины вам только предстоит узнать и запомнить их значения.

Кроме того, физикам необходимо описывать различные свойства (характеристики) физических явлений и процессов, причем характеризовать их не только качественно, но и количественно. Приведем пример.

Исследуем зависимость времени падения камня с высоты, с которой он падает. Опыт показывает: чем больше высота, тем больше время падения. Это качественное описание, оно не позволяет подробно описать результат эксперимента. Чтобы понять закономерность такого явления, как падение, нужно знать, например, что при увеличении высоты в четыре раза время падения камня обычно увеличивается в два раза. Это и есть пример количественных характеристик свойств явления и взаимосвязи между ними.

Для того чтобы количественно описывать свойства (характеристики) физических объектов, процессов или явлений, используют физические величины. Примеры известных вам физических величин - длина, время, масса, скорость.

Физические величины количественно описывают свойства физических тел, процессов, явлений.

С некоторыми величинами вам доводилось сталкиваться раньше. На уроках математики, решая задачи, вы измеряли длины отрезков, определяли пройденный путь. При этом вы пользовались одной и той же физической величиной - длиной. В других случаях вы находили продолжительность движения различных объектов: пешехода, автомобиля, муравья - и также использовали для этого только одну физическую величину - время. Как вы уже заметили, для разных объектов одна и та же физическая величина принимает различные значения. Например, длины разных отрезков могут быть неодинаковы. Поэтому одна и та же величина может принимать разные значения и быть использована для характеристики самых разных объектов и явлений.

Необходимость введения физических величин заключается еще и в том, что с их помощью записывают законы физики.

В формулах и при расчетах физические величины обозначают буквами латинского и греческого алфавитов. Есть общепринятые обозначения, например длина - l или L, время - t, масса - m или M, площадь - S, объем - V и т. п.

Если вы запишете значение физической величины (ту же самую длину отрезка, получив ее в результате измерения), то заметите: это значение - не просто число. Сказав, что длина отрезка равна 100, обязательно нужно уточнить, в каких единицах она выражена: в метрах, сантиметрах, километрах или в чем-то еще. Поэтому говорят, что значение физической величины - именованное число. Его можно представить как число, за которым указано наименование единицы этой величины.

Значение физической величины = Число * Единица величины.

Единицы многих физических величин (например, длины, времени, массы) первоначально возникли из потребностей обыденной жизни. Для них в разные времена разными народами были придуманы различные единицы. Интересно, что названия многих единиц величин у разных народов совпадают, потому что при выборе этих единиц использовались размеры тела человека. Например, единица длины, называемая «локоть», использовалась в Древнем Египте, Вавилоне, арабском мире, Англии, России.

Но длину измеряли не только локтями, но и в вершках, футах, лье и т. п. Следует сказать, что даже при одинаковых названиях единицы одной и той же величины у разных народов были разными. В 1960 г. ученые разработали Международную систему единиц (СИ, или SI). Эта система принята многими странами, в том числе и Россией. Поэтому использование единиц этой системы является обязательным.
Принято различать основные и производные единицы физических величин. В СИ основные механические единицы - длина, время и масса. Длину измеряют в метрах (м), время - в секундах (с), массу - в килограммах (кг). Производные единицы образуют из основных, используя соотношения между физическими величинами. Например, единица площади - квадратный метр (м 2) - равна площади квадрата с длиной стороны один метр.

При измерениях и вычислениях часто приходится иметь дело с физическими величинами, численные значения которых во много раз отличаются от единицы величины. В таких случаях к названию единицы добавляют приставку, означающую умножение или деление единицы на некоторое число. Очень часто используют умножение принятой единицы на 10, 100, 1000 и т. д. (кратные величины), а также деление единицы на 10, 100, 1000 и т. д. (дольные величины, т. е. доли). Например, тысяча метров - это один километр (1000 м = 1 км), приставка - кило-.

Приставки, означающие умножение и деление единиц физических величин на десять, сто и тысячу, приведены в таблице 1.
Итоги

Физическая величина является количественной характеристикой свойств физических объектов, процессов или явлений.

Физическая величина характеризует одно и то же свойство самых разных физических объектов и процессов.

Значение физической величины - именованное число.
Значение физической величины = Число * Единица величины.

Вопросы

  1. Для чего служат физические величины? Приведите примеры физических величин.
  2. Какие из перечисленных ниже терминов являются физическими величинами, а какие - нет? Линейка, автомобиль, холод, длина, скорость, температура, вода, звук, масса.
  3. Как записывают значения физических величин?
  4. Что такое СИ? Для чего она нужна?
  5. Какие единицы называют основными, а какие производными? Приведите примеры.
  6. Масса тела равна 250 г. Выразите массу этого тела в килограммах (кг) и миллиграммах (мг).
  7. Выразите расстояние 0,135 км в метрах и в миллиметрах.
  8. На практике часто используют внесистемную единицу объема - литр: 1 л = 1 дм 3 . В СИ единица объема носит название кубический метр. Сколько литров в одном кубическом метре? Найдите, какой объем воды содержит кубик с ребром 1 см, и выразите этот объем в литрах и кубических метрах, используя необходимые приставки.
  9. Назовите физические величины, которые необходимы для описания свойств такого физического явления, как ветер. Используйте сведения, полученные на уроках естествознания, а также результаты ваших наблюдений. Запланируйте физический эксперимент с целью измерения этих величин.
  10. Какие старинные и современные единицы длины и времени вы знаете?

Понятие физической величины - общее в физике и метрологии и применяется для описания материальных систем объектов.

Физическая величина, как указывалось выше, - это характеристика, общая в качественном отношении для множества объектов, процессов, явлений, а в количественном - индивидуальная для каждого из них. Например, все тела обладают собственной массой и температурой, но числовые значения этих параметров для разных тел различны. Количественное содержание этого свойства в объекте является размером физической величины, числовую оценку ее размеров называют значением физической величины .

Физическая величина, выражающая одно и то же в качественном отношении свойство, называется однородной (одноименной ).

Основная задача измерений - получение информации о значениях физической величины в виде некоторого количества принятых для нее единиц.

Значения физических величин подразделяются на истинные и действительные.

Истинное значение - это значение, идеальным образом отражающее качественно и количественно соответствующие свойства объекта.

Действительное значение - это значение, найденное экспериментально и настолько приближенное к истинному, что может быть принято вместо него.

Физические величины классифицируют по ряду признаков. Различают следующие классификации :

1) по отношению к сигналам измерительной информации физические величины бывают: активные - величины, которые без использования вспомогательных источников энергии могут быть преобразованы в сигнал измерительной информации; пассив ные - величины, которые нуждаются в использовании вспомога­тельных источников энергии, посредством которых создается сигнал измерительной информации;

2) по признаку аддитивности физические величины разделяются на: аддитивные , или экстенсивные, которые можно измерять по частям, а также точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер; не аддитивные, или интенсивные, которые непосредственно не измеряются, а преобразуются в измерение величины или измерение путем косвенных измерений. (Аддитивность (лат. additivus - прибавляемый) - свойство величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям).

Эволюция развития систем физических единиц.

    Метрическая система мер - первая система единиц физических величин

была принята в 1791 г. Национальным собранием Франции. Она включала в себя единицы длины, площади, объема, вместимости и веса , в основу которых были положены две единицы - метр и килограмм . Она отличалась от системы единиц, ис­пользуемой сейчас, и еще не была системой единиц в современном понимании.

    Абсолютная система единиц физических величин .

Методику построения системы единиц как совокупности основных и производных единиц разработал и предложил в 1832 г. немецкий математик К. Гаусс, назвав ее абсолютной системой. За основу он взял три независимые друг от друга величины - массу, длину, время .

За основные единицы измерения этих величин он принял миллиграмм, миллиметр, секунду , предполагая, что остальные единицы можно определить с их помощью.

Позднее появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, и базирующихся на метрической системе мер, но различающихся основными единицами.

В соответствии с предложенным принципом Гаусса основными системами единиц физических величин являются:

    Система СГС , в которой основными единицами являются сантиметр как единица длины, грамм как единица массы и секунда как единица времени; была установлена в 1881 г.;

    Система МКГСС . Применение килограмма как единицы веса, а позднее как единицы силы вообще привело в конце XIX в. к формированию системы единиц физических величин с тремя основными единицами: метр - единица длины, килограмм - сила - единица силы, секунда - единица времени;

5. Система МКСА - основными единицами являются метр, килограмм, секунда и ампер. Основы этой системы предложил в 1901 г. итальянский ученый Дж. Джорджи.

Международные отношения в области науки и экономики требовали унификации единиц измерения, создания единой системы единиц физических величин, охватывающей различные отрасли области измерений и сохраняющей принцип когерентности, т.е. равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами.

    Система СИ . В 1954 г. комиссия по разработке единой Международной

системы единиц предложила проект системы единиц, который был утвержден в 1960 г . XI Генеральной конференцией по мерам и весам. Международная система единиц (сокращенно СИ) свое название взяла от начальных букв французского наименования Система Интернешнл.

Международная система единиц (СИ) включает в себя семь основных (табл. 1), две дополнительные и ряд внесистемных единиц измерения.

Таблица 1 - Международная система единиц

Физические величины, имеющие официально утвержденный эталон

Единица измерения

Сокращенное обозначение единицы

физической величины

международное

килограмм

Сила электрического тока

Температура

Единица освещенности

Количество вещества

Источник: Тюрин Н.И. Введение в метрологию. М.: Издательство стандартов, 1985.

Основные единицы измерения физических величин в соответствии с решениями Генеральной конференции по мерам и весам определяются следующим образом:

    метр - длина пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;

    килограмм равен массе международного прототипа килограмма;

    секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома Сs 133 ;

    ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия;

    кандела равна силе света в заданном направлении источника, испускающего ионохранические излучения, энергетическая сила света которого в этом направлении составляет 1 / 683 Вт/ср;

    кельвин равен 1 /273,16 части термодинамической температуры тройной точки воды;

    моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в С 12 массой 0,012 кг 2 .

Дополнительные единицы Международной системы единиц для измерения плоского и телесного углов:

    радиан (рад) - плоский угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17"48" 3 ;

    стерадиан (ср) - телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.

Дополнительные единицы СИ применяются для образования единиц угловой скорости, углового ускорения и некоторых других величин. Радиан и стерадиан используются для теоретических построений и расчетов, так как большинство важных для практики значений углов в радианах выражаются трансцендентными числами.

Внесистемные единицы:

За логарифмическую единицу принята десятая доля бела - децибел (дБ);

Диоптрия - сила света для оптических приборов;

Реактивная мощность-вар (ВА);

Астрономическая единица (а.е.) - 149,6 млн км;

Световой год - расстояние, которое проходит луч света за 1 год;

Вместимость - литр (л);

Площадь - гектар (га).

Логарифмические единицы подразделяются на абсолютные, которые представляют собой десятичный логарифм отношения физической величины к нормированному значению, и относительные, образующиеся как десятичный логарифм отношения любых двух однородных (одноименных) величин.

К единицам, не входящим в СИ, относятся градус и минута. Остальные единицы являются производными.

Производные единицы СИ образуются с помощью простейших уравнений, которые связывают величины и в которых числовые коэффициенты равны единице. При этом производная единица называется когерентной.

Размерность является качественным отображением измеряемых величин. Значение величины получают в результате ее измерения или вычисления в соответствии с основным уравнением из мерения: Q = q * [ Q ]

где Q - значение величины; q - числовое значение измеряемой величины в условных единицах; [Q] - выбранная для измерения единица.

Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть Уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице.

(Например, за единицу измерения массы жидкости принят 1мл.,поэтому на упаковке обозначается: 250мл., 750 и т.д., но если за ед. измерения принять 1л., тогда то же кол-во жидкости будет обозначено 0,25л., 075л. соответственно).

Как один из способов образования кратных и дольных единиц используется десятичная кратность между большими и меньшими единицами, принятая в метрической системе мер. В табл. 1.2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.

Таблица 2 - Множители и приставки для образования десятичных кратных и дольных единиц и их наименования

Множитель

Приставка

Обозначение приставки

международное

(Эксаба́йт - единица измерения количества информации, равная 1018 или 260 байтам. 1 ЭэВ (эксаэлектронвольт) = 1018 электронвольт = 0.1602 джоуля)

Следует учитывать, что при образовании кратных и дольных единиц площади и объема с помощью приставок может возникнуть двойственность прочтения в зависимости оттого, куда добавляется приставка. Например, 1 м 2 можно использовать как 1 квадратный метр и как 100 квадратных сантиметров, что далеко не одно и то же, потому что 1 квадратный метр это 10 000 квадратных сантиметров.

Согласно международным правилам, кратные и дольные единицы площади и объема следует образовывать, присоединяя приставки к исходным единицам. Степени относятся к тем единицам, которые получены в результате присоединения приставок. Например, 1 км 2 = 1 (км) 2 = (10 3 м) 2 == 10 6 м 2 .

Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все средства измерений одной и той же физической величины. Единство измерений достигается хранением, точным воспроизведением установленных единиц физических величин и передачей их размеров всем рабочим средствам измерений с помощью эталонов и образцовых средств измерений.

Эталон - средство измерения, обеспечивающее хранение и воспроизведение узаконенной единицы физической величины, а также передачу ее размера другим средствам измерения.

Создание, хранение и применение эталонов, контроль их состояния подчиняются единым правилам, установленным ГОСТ «ГСИ. Эталоны единиц физических величин. Порядок разработки, утверждения, регистрации, хранения и применения».

По подчиненности эталоны подразделяются на первичные и вторичные и имеют следующую классификацию.

Первичный эталон обеспечивает хранение, воспроизведение единицы и передачу размеров с наивысшей в стране точностью, достижимой в данной области измерений:

- специальные первичные эталоны - предназначены для воспроизведения единицы в условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью технически неосуществима, например для малых и больших напряжений, СВЧ и ВЧ. Их утверждают в качестве государственных эталонов. Ввиду особой важности государственных эталонов и для придания им силы закона на каждый государственный эталон утверждается ГОСТ. Создает, утверждает, хранит и применяет государственные эталоны Государственный комитет по стандартам.

Вторичный эталон воспроизводит единицу в особых условиях и заменяет при этих условиях первичный эталон. Он создается и утверждается для обеспечения наименьшего износа государствен­ного эталона. Вторичные эталоны в свою очередь делятся по назначению :

Эталоны-копии - предназначены для передачи размеров единиц рабочим эталонам;

Эталоны сравнения - предназначены для проверки сохранности государственного эталона и для замены его в случае порчи или утраты;

Эталоны-свидетели - применяются для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом;

Рабочие эталоны - воспроизводят единицу от вторичных эталонов и служат для передачи размера эталону более низкого разряда. Вторичные эталоны создают, утверждают, хранят и применяют министерства и ведомства.

Эталон единицы - одно средство или комплекс средств измерений, обеспечивающих хранение и воспроизведение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений, выполненных по особой спецификации и официально утвержденных в установленном порядке в качестве эталона.

Воспроизведение единиц в зависимости от технико-экономических требований производится двумя способами :

- централизованным - с помощью единого для всей страны или группы стран государственного эталона. Централизованно воспроизводятся все основные единицы и большая часть производных;

- децентрализованным - применим к производным единицам, размер которых не может передаваться прямым сравнением с эталоном и обеспечивать необходимую точность.

Стандартом установлен многоступенчатый порядок передачи размеров единицы физической величины от государственного эталона всем рабочим средствам измерения данной физической величины с помощью вторичных эталонов и образцовых средств измерения различных разрядов от наивысшего первого к низшим и от образцовых средств к рабочим.

Передача размера осуществляется различными методами по­верки, преимущественно известными методами измерений. Передача размера ступенчатым способом сопровождается потерей точности, однако многоступенчатость позволяет сохранять этало­ны и передавать размер единицы всем рабочим средствам измерения.

Физическая величина

Физи́ческая величина́ - физическое свойство материального объекта, физического явления , процесса, которое может быть охарактеризовано количественно.

Значение физической величины - одно или несколько (в случае тензорной физической величины) чисел, характеризующих эту физическую величину, с указанием единицы измерения , на основе которой они были получены.

Размер физической величины - значения чисел, фигурирующих в значении физической величины .

Например, автомобиль может быть охарактеризован с помощью такой физической величины , как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером - число 1, или же значением будет 1000 килограмм, а размером - число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины - скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером - число 100.

Размерность физической величины - единица измерения , фигурирующая в значении физической величины . Как правило, у физической величины много различных размерностей: например, у длины - нанометр, миллиметр, сантиметр, метр, километр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц - СИ , СГС и др.

Часто физическая величина может быть выражена через другие, более основополагающие физические величины. (Например, сила может быть выражена через массу тела и его ускорение). А значит, соответственно, и размерность такой физической величины может быть выражена через размерности этих более общих величин. (Размерность силы может быть выражена через размерности массы и ускорения). (Часто такое представление размерности некоторой физической величины через размерности других физических величин является самостоятельной задачей, которая в некоторых случаях имеет свой смысл и назначение.) Размерности таких более общих величин часто уже являются основными единицами той или другой системы физических единиц, то есть такими, которые сами уже не выражаются через другие, ещё более общие величины.

Пример.
Если физическая величина мощность записывается как

P = 42,3 × 10³ Вт = 42,3 кВт, Р - это общепринятое литерное обозначение этой физической величины, 42,3 × 10³ Вт - значение этой физической величины, 42,3 × 10³ - размер этой физической величины.

Вт - это сокращённое обозначение одной из единиц измерения этой физической величины (ватт). Литера к является обозначением десятичного множителя «кило » Международной системы единиц (СИ) .

Размерные и безразмерные физические величины

  • Размерная физическая величина - физическая величина, для определения значения которой нужно применить какую-то единицу измерения этой физической величины. Подавляющее большинство физических величин являются размерными.
  • Безразмерная физическая величина - физическая величина, для определения значения которой достаточно только указания её размера. Например, относительная диэлектрическая проницаемость - это безразмерная физическая величина.

Аддитивные и неаддитивные физические величины

  • Аддитивная физическая величина - физическая величина, разные значения которой могут быть суммированы, умножены на числовой коэффициент, разделены друг на друга. Например, физическая величина масса - аддитивная физическая величина.
  • Неаддитивная физическая величина - физическая величина, для которой суммирование, умножение на числовой коэффициент или деление друг на друга её значений не имеет физического смысла. Например, физическая величина температура - неаддитивная физическая величина.

Экстенсивные и интенсивные физические величины

Физическая величина называется

  • экстенсивной, если величина её значения складывается из величин значений этой физической величины для подсистем, из которых состоит система (например, объём , вес);
  • интенсивной , если величина её значения не зависит от размера системы (например, температура , давление).

Некоторые физические величины, такие как момент импульса , площадь , сила , длина , время , не относятся ни к экстенсивным, ни к интенсивным.

От некоторых экстенсивных величин образуются производные величины:

  • удельная величина - это величина, делённая на массу (например, удельный объём);
  • молярная величина - это величина, делённая на количество вещества (например, молярный объём).

Скалярные, векторные, тензорные величины

В самом общем случае можно сказать, что физическая величина может быть представлена посредством тензора определённого ранга (валентности) .

Система единиц физических величин

Система единиц физических величин - совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. Примеры систем физических единиц - Международная система единиц (СИ) , СГС .

Символы физических величин

Литература

  • РМГ 29-99 Метрология. Основные термины и определения.
  • Бурдун Г. Д., Базакуца В. А. Единицы физических величин . - Харьков : Вища школа, .

Физической величиной называется физическое свойство материального объекта, процесса, физического явления, охарактеризованное количественно.

Значение физической величины выражается одним или несколькими числами, характеризующими эту физическую величину, с указанием единицы измерения.

Размером физической величины являются значения чисел, фигурирующих в значении физической величины.

Единицы измерения физических величин.

Единицей измерения физической величины является величина фиксированного размера, которой присвоено числовое значение, равное единице. Применяется для количественного выражения однородных с ней физических величин. Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин.

Широкое распространение получило всего лишь некоторое количество систем единиц. В большинстве случаев во многих странах пользуются метрической системой.

Основные единицы.

Измерить физическую величину - значит сравнить ее с другой такой же физической величиной, принятой за единицу.

Длину предмета сравнивают с единицей длины, массу тела - с единицей веса и т.д. Но если один исследователь измерит длину в саженях, а другой в футах, им будет трудно сравнить эти две величины. Поэтому все физические величины во всем мире принято измерять в одних и тех же единицах. В 1963 году была принята Международная система единиц СИ (System international - SI).

Для каждой физической величины в системе единиц должна быть предусмотрена соответствующая единица измерения. Эталоном единицы измерения является ее физическая реализация.

Эталоном длины является метр - расстояние между двумя штрихами, нанесенными на стержне особой формы, изготовленном из сплава платины и иридия.

Эталоном времени служит продолжительность какого-либо правильно повторяющегося процесса, в качестве которого выбрано движение Земли вокруг Солнца: один оборот Земля совершает за год. Но за единицу времени принимают не год, а секунду .

За единицу скорости принимают скорость такого равномерного прямолинейного движения, при котором тело за 1 с совершает перемещение в 1 м.

Отдельная единица измерения используется для площади, объема, длины и т. д. Каждая единица определяется при выборе того или иного эталона. Но система единиц значительно удобнее, если в ней в качестве основных выбрано всего несколько единиц, а остальные определяются через основные. Например, если единицей длины является метр, то единицей площади будет квадратный метр, объема - кубический метр, скорости - метр в секунду и т. д.

Основными единицами физических величин в Международной системе единиц (СИ) являются: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), кандела (кд) и моль (моль).

Основные единицы СИ

Величина

Единица

Обозначение

Наименование

русское

международное

Сила электрического тока

Термодинамическая температура

Сила света

Количество вещества

Существуют также производные единицы СИ, у которых есть собственные наименования:

Производные единицы СИ, имеющие собственные наименования

Единица

Выражение производной единицы

Величина

Наименование

Обозначение

Через другие единицы СИ

Через основные и дополнительные единицы СИ

Давление

м -1 ЧкгЧс -2

Энергия, работа, количество теплоты

м 2 ЧкгЧс -2

Мощность, поток энергии

м 2 ЧкгЧс -3

Количество электричества, электрическийзаряд

Электрическое напряжение, электрическийпотенциал

м 2 ЧкгЧс -3 ЧА -1

Электрическая емкость

м -2 Чкг -1 Чс 4 ЧА 2

Электрическое сопротивление

м 2 ЧкгЧс -3 ЧА -2

Электрическая проводимость

м -2 Чкг -1 Чс 3 ЧА 2

Поток магнитной индукции

м 2 ЧкгЧс -2 ЧА -1

Магнитная индукция

кгЧс -2 ЧА -1

Индуктивность

м 2 ЧкгЧс -2 ЧА -2

Световой поток

Освещенность

м 2 ЧкдЧср

Активность радиоактивного источника

беккерель

Поглощенная доза излучения

И змерения . Для получения точного, объективного и легко воспроизводимого описания физической величины используют измерения. Без измерений физическую величину нельзя охарактеризовать количественно. Такие определения, как «низкое» или «высокое» давление, «низкая» или «высокая» температура отражают лищь субъективные мнения и не содержат сравнения с эталонными величинами. При измерении физической величины ей приписывают некоторое численное значение.

Измерения осуществляются с помощью измерительных приборов. Существует довольно большое количество измерительных приборов и приспособлений, от самых простых до сложных. Например, длину измеряют линейкой или рулеткой, температуру - термометром, ширину - кронциркулем.

Измерительные приборы классифицируются: по способу представления информации (показывающие или регистрирующие), по методу измерений (прямого действия и сравнения), по форме представлений показаний (аналоговый и цифровой), и др.

Для измерительных приборов характерны следующие параметры:

Диапазон измерений - область значений измеряемой величины, на которой рассчитан прибор при его нормальном функционировании (с заданной точностью измерения).

Порог чувствительности - минимальное (пороговое) значение измеряемой величины, различаемое прибором.

Чувствительность - связывает значение измеряемого параметра и соответствующее ему изменение показаний прибора.

Точность - способность прибора указывать истинное значение измеряемого показателя.

Стабильность - способность прибора поддерживать заданную точность измерений в течение определенного времени после калибровки.

Размер физической величины – количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу .

Иногда возражают против широкого применения слова «размер», утверждая, что оно относится только к длине. Однако заметим, что каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас физической величи­ны (массы). Рассматривая предметы А иВ, можно, например, утверждать, что по длине или размеру длины они отличаются друг от друга (например,А > В). Более точная оценка может быть получена лишь после измерений длины этих предметов.

Часто в словосочетании «размер величины» слово «размер» опускают или за­меняют его на словосочетание «значение величины».

В машиностроении широко применяют термин «размер», подразумевая под ним значение физической величины - длины, свойственной какой-либо детали. Это значит, что для выражения одного понятия «значение физической величины» приме­няются два термина («размер» и «значение»), что не может способствовать упорядоче­нию терминологии. Строго говоря, необходимо уточнить понятие «размер» в маши­ностроении так, чтобы оно не противоречило понятию «размер физической величи­ны», принятому в метрологии. В ГОСТ 16263-70 дано четкое разъяснение по этому вопросу.

Количественная оценка конкретной физической величины, вы­раженная в виде некоторого числа единиц данной величины, на­зывается «значением физической величины».

Отвлеченное число, входящее в «значение» величины, называется числовым значением.

Между размером и значением величины есть принципиальная разница. Размер величины существует реально, независимо от то­го, знаем мы его или нет. Выразить размер величины можно при помощи любой из единиц данной величины, другими словами, при помощи числового значения.

Для числового значения характерно, что при применении дру­гой единицы оно изменяется, тогда как физический размер вели­чины остается неизменным.

Если обозначить измеряемую величину через x, единицу вели­чины - черезx 1 , а отношение их-через q 1 , то x = q 1 x 1  .

Размер величины xне зависит от выбора единицы, чего нель­зя сказать о числовом значении q , которое целиком определяется выбором единицы. Если для выражения размера величиныxвме­сто единицыx 1  применить единицуx 2  , то неизменившийся размерxбудет выражен другим значением:

x = q 2 x 2  , гдеn 2 n 1 .

Если в приведенных выражениях применять q= 1, то размеры единиц

x 1 = 1x 1 иx 2 = 1x 2 .

Размеры разных единиц одной и той же величины различны. Так, размер килограмма отличается от размера фунта; размер метра-от размера фута и т. п.

1.6. Размерность физических величин

Размерность физических величин- это соотношение между единицами величин, входящих в уравнение, свя­зывающее данную величину с другими величинами, через которые она выражается.

Размерность физической величины обозначается dimA (от лат. dimension –размерность ). Допустим, что физическая величинаА связана сX, Yуравнением A= F(Х, Y). Тогда величиныX, Y, А можно представить в виде

Х = х [Х]; Y = y [Y]; A = а [A],

где А, X, Y - символы, обозначающие физическую вели­чину;а, х, y - числовые значения величин (безразмер­ные);[A]; [X]; [Y] - соответствующие единицы данных физических величин.

Размерности значений физических величин и их еди­ниц совпадают. Например:

A = X/Y; dim (a) = dim (X/Y) = [ Х ]/[Y].

Размерность - качественная характеристика физиче­ской величины, дающая представление о виде, природе величины, о соотношении ее с другими величинами, еди­ницы которых принимаются за основные.