Рассчитать снеговую нагрузку для навеса. Калькулятор подбора профильных труб для навеса

После того как ваш дом будет построен, необходимо переходить к новому этапу — внешней и внутренней отделке помещения. Это необходимо не только для того, чтобы украсить фасад или интерьер с помощью разнообразных декоративных материалов, но и чтобы защитить строение от всевозможных неблагоприятных воздействий. Это касается защиты от ветров, от чрезмерных осадков, от излишней влажности и солнечного воздействия. Помимо того, что отделка и декоративные детали способны защитить внутреннее помещение и некоторые внешние его элементы, они позволяют еще и защищать человека от тех же воздействий. Одним из таких элементов является навес, который возводится над входом в дом для того, чтобы предупредить выпадение осадков на дорожку, ведущую к дому.

Данные конструкции достаточно легко монтировать своими руками, особенно из деревянных материалов. Прежде всего, чтобы полное сооружение (и козырьки, и стропила, и обрешетка) оказалось прочным и долговечным, а также красивым и аккуратным, необходимо заранее произвести расчет конструкции навеса. Как известно, деревянный навес остается достаточно популярным элементом как среди владельцев небольших дачных домиков, так и среди тех, в чьем распоряжении находится особняк или коттедж.

Как провести расчет навеса?

Итак, навес является потрясающим способом защитить дом и его обитателей от солнца, дождя, града, снега, сосулек и многого другого. Помимо этого, навес оказывается замечательным средством для того, чтобы соорудить самое оригинальное здание. Он помогает подчеркнуть особый стиль вашего жилища, а также придать ему индивидуальность.

Вернуться к оглавлению

Какие конструкции навесов можно соорудить самостоятельно?

Существует большое количество разновидностей навесов. Они отличаются размерами, формой и материалом, из которого сооружаются. Согласно второму принципу, навесы бывают:

  • деревянные;
  • металлические.

Наиболее надежным и потому популярным материалом для обшивки навеса является металл. Обычно для навеса выбирают тот же материал, что применяется для покрытия крыши. Для этого подойдет либо нержавеющая сталь, либо металлический профиль. Это недорого и практично. К монтажу деревянного навеса прибегают тогда, когда необходимо данным способом подчеркнуть стиль домика. Ведь если на фоне деревянного дома будет сооружен навес из поликарбоната или из металла, то смотреться это будет по меньшей мере смешно.

Кроме данной классификации, навесы разделяются еще и по тому, где они используются. Здесь можно выделить дачные навесы, садовые, летние, автомобильные, навесы для входа. На первый взгляд кажется, что разницы между ними нет никакой. Однако навес для авто никак нельзя использовать для декоративного покрытия. Но в то же время летний навес может использоваться и в качестве автомобильного, и садового навеса.

Согласно распределению навесов по способу и материалу для обшивки выделяются следующие их виды:

  • сотовые или монолитные поликарбонатные перекрытия;
  • стеклянные;
  • металлические;
  • навес из профнастила;
  • навес из мягких кровельных материалов.

В зависимости от сферы использования навесов, выбирается и их кровельный материал.

Так, стеклянный навес станет отличным вариантом для того, чтобы украсить придомовую территорию и оформить данным способом клумбу.

Кровля из металла используется в большинстве случаев для автомобильных навесов, для защиты входа в дом. Что же касается пластикового навеса, то здесь обычно используется поликарбонат. Ему вы сможете по вашему желанию придать абсолютно любую форму. По сравнению с металлическим, пластиковый навес несколько тяжелее, поэтому для него нужно будет соорудить более крепкий каркас.

Вернуться к оглавлению

Расчет навеса из дерева

Независимо от того, какой навес планируется возвести и какие материалы вы выбрали для кровли, навес должен держаться на опорах. В этом качестве используются столбы: либо металлические, либо деревянные. А их количество зависит уже от вида навеса. Так, вам может потребоваться и 2, и 3 и даже 10 столбов. Их необходимо вкапывать в землю на глубину не менее 1/3 от той высоты, что останется на поверхности земли, затем бетонировать. Далее на данные несущие конструкции необходимо установить каркас для крыши, который и будет обшит тем или иным материалом.

Для того чтобы соорудить данную конструкцию длиной 320, а шириной 250 см, вам потребуется:

  • брус (25*20 см);
  • 8 стоек сечением 5*10 см;
  • 2 деревянные доски длиной не менее 120 см;
  • гвозди;
  • шурупы;
  • молоток.

Вернуться к оглавлению

Сбор конструкции навеса своими руками

Для того чтобы установить опорные столбы, необходимо выкопать под них углубления. Как уже было сказано, они закапываются на 1/3 от той длины, что будет на поверхности. Поэтому, если ваш навес должен быть равен в высоту примерно 200-250 см, то ямки будут выкопаны не менее чем на 70 см. После этого, обработанные бруски можно погружать в эти углубления. Их необходимо временно чем-то закрепить перпендикулярно к поверхности земли. Иначе ваш навес получится кривым. Измерить вертикальность можно с помощью отвеса. Далее необходимо забетонировать эти столбы. Для этого вам понадобится:

  • песок;
  • щебень;
  • цемент;
  • вода.

Из 1 части воды и такого же количества песка, добавленных к ним 3 частей щебня и песка необходимо заместить раствор, который сразу же заливается в лунку. Такой раствор сохнет примерно 1 сутки, поэтому до завтрашнего дня вам ничего на этом месте делать не придется. После этого можно закреплять стропила и переходить к обшивке сделанного каркаса досками. Для этого нужны 4 доски, которые пойдут на обе стороны навеса в верхней его части, и еще 3 доски, прикрепленные к коньку стропил. Если вы выполните все действия в соответствии с данными расчетами, каркас окажется максимально твердым.

В точности заготовки всех составляющих деталей и заключается успех данного мероприятия, в результате которого должен получиться надежный и прочный навес. Что касается козырька, то доски к нему могут быть прибиты вплотную или же через некоторое расстояние между собой. В дальнейшем вы сможете нанести на данную обрешетку какие-то другие материалы (железо, мягкую кровлю и тому подобное). Обязательно нужно помнить о том, что недопустимо проводить крепление навеса (обшивки) до того, как сама конструкция каркаса будет прочно закреплена. Иначе это может привести как минимум к тому, что какая-то деталь конструкция будет сдвинута, и как максимум к тому, что строитель (возможно, это будете вы) получит повреждения из-за шаткости конструкции.

Именно поэтому расчет всей конструкции навеса производится заранее до заготовки всех материалов. Если же производится монтаж не деревянного, а металлического навеса, то в потребуются более прочные материалы, и, соответственно, иные инструменты. Для того чтобы соединить эти детали, часто прибегают к услугам профессионального сварщика. Именно данным способом осуществляется и монтаж каркаса, и самого металлического навеса. Так можно осуществить все необходимые мероприятия по сборке конструкции навеса прямо на верстаке. Главное — не ошибиться в расчетах и все сделать так, чтобы врытый в землю навес идеально подошел и к дому, и к окружающим его элементам.

Расчёт металлоконструкций стал камнем преткновения для многих строителей. На примере простейших ферм для уличного навеса мы расскажем, как правильно рассчитать нагрузки, а также поделимся простыми способами самостоятельной сборки без использования дорогостоящего оборудования.

Общая методология расчёта

Фермы применяют там, где использовать цельную несущую балку нецелесообразно. Эти конструкции отличаются меньшей пространственной плотностью, при этом сохраняют устойчивость воспринимать воздействия без деформаций благодаря правильному расположению деталей.

Конструкционно ферма состоит из внешнего пояса и заполняющих элементов. Суть работы такой решётки довольно проста: поскольку каждый горизонтальный (условно) элемент не может выдержать полную нагрузку ввиду недостаточно большого сечения, два элемента располагаются на оси главного воздействия (силы тяжести) таким образом, чтобы расстояние между ними обеспечивало достаточно большое сечение поперечного среза всей конструкции. Ещё проще можно объяснить так: с точки зрения восприятия нагрузок ферму рассматривают так, будто она выполнена из цельного материала, при этом заполнение обеспечивает достаточную прочность, исходя лишь из расчётного приложенного веса.

Конструкция фермы из профильной трубы: 1 — нижний пояс; 2 — раскосы; 3 — стойки; 4 — боковой пояс; 5 — верхний пояс

Такой подход крайне прост и зачастую его с лихвой хватает для сооружения простых металлоконструкций, однако материалоёмкость при грубом расчёте получается крайне высокой. Более подробное рассмотрение действующих воздействий помогает снизить расход металла в 2 и более раз, такой подход и будет наиболее полезным для нашей задачи — сконструировать лёгкую и достаточно жёсткую ферму, а потом собрать её.

Основные профили ферм для навеса: 1 — трапециевидный; 2 — с параллельными поясами; 3 — треугольный; 4 — арочный

Начать следует с определения общей конфигурации фермы. Обычно она имеет треугольный или трапециевидный профиль. Нижний элемент пояса располагают преимущественно горизонтально, верхний — под наклоном, обеспечивающим правильный уклон кровельной системы . Сечение и прочность элементов пояса при этом следует выбирать близкими к таким, чтобы конструкция могла поддерживать свой собственный вес при имеющейся системе опоры. Далее производится добавление вертикальных перемычек и косых связей в произвольном количестве. Конструкцию нужно отобразить на эскизе для визуализации механики взаимодействия, указав реальные размеры всех элементов. Далее в дело вступает её величество Физика.

Определение сочетанных воздействий и реакции опоры

Из раздела статики школьного курса механики мы возьмём два ключевых уравнения: равновесия сил и моментов. Их мы будем применять, чтобы вычислить реакцию опор, на которые положена балка. Для простоты вычислений опоры будем считать шарнирными, то есть не имеющими жёстких связей (заделки) в точке касания с балкой.

Пример металлической фермы: 1 — ферма; 2 — балки обрешётки; 3 — кровельное покрытие

На эскизе нужно предварительно отметить шаг обрешётки системы кровли, ведь именно в этих местах должны находиться точки сосредоточения приложенной нагрузки. Обычно именно в точках приложения нагрузки и размещаются узлы схождения раскосов, так проще выполнить расчёт нагрузки. Зная общий вес кровли и число ферм в навесе, нетрудно вычислить нагрузку на одну ферму, а фактор равномерности покрытия определит, равны ли будут приложенные силы в точках сосредоточения, или же они будут отличаться. Последнее, к слову, возможно, если в определённой части навеса один материал покрытия сменяется другим, имеется проходной трап или, например, зона с неравномерно распределённой снеговой нагрузкой. Также воздействие на разные точки фермы будет неравномерным, если её верхняя балка имеет скругление, в этом случае точки приложения силы нужно соединить отрезками и рассматривать дугу как ломанную линию.

Когда все действующие усилия проставлены на эскизе фермы, приступаем к вычислению реакции опоры. Относительно каждой из них ферму можно представить не иначе как рычаг с соответствующей суммой воздействий на него. Чтобы вычислить момент силы в точке опоры, нужно умножить нагрузку на каждую точку в килограммах на длину плеча приложения этой нагрузки в метрах. Первое уравнение гласит, что сумма воздействий в каждой точке и равняется реакции опоры:

  • 200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6 = R 2 · 6 — уравнение равновесия моментов относительно узла а , где 6 м — длина плеча)
  • R 2 = (200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6) / 6 = 400 кг

Второе уравнение определяет равновесность: сумма реакций двух опор будет в точности равна приложенному весу, то есть зная реакцию одной опоры, можно легко найти значение для другой:

  • R 1 + R 2 = 100 + 200 + 200 + 200 + 100
  • R1 = 800 - 400 = 400 кг

Но не ошибитесь: здесь также действует правило рычага, поэтому если ферма имеет существенный вынос за одну из опор, то и нагрузка в этом месте будет выше пропорционально разнице расстояний от центра масс до опор.

Дифференциальный расчёт усилий

Переходим от общего к частному: теперь необходимо установить количественное значение усилий, действующих на каждый элемент фермы. Для этого перечисляем каждый отрезок пояса и заполняющие вставки списком, затем каждый из них рассматриваем как сбалансированную плоскую систему.

Для удобства вычислений каждый соединительный узел фермы можно представить в виде векторной диаграммы, где векторы воздействий пролегают по продольным осям элементов. Всё, что нужно для вычислений — знать длину сходящихся в узле отрезков и углы между ними.

Начинать нужно с того узла, для которого в ходе вычисления реакции опоры было установлено максимально возможное число известных величин. Начнём с крайнего вертикального элемента: уравнение равновесия для него гласит, что сумма векторов сходящихся нагрузок равна нулю, соответственно, противодействие силе тяжести, действующей по вертикальной оси, эквивалентно реакции опоры, равной по величине, но противоположной по знаку. Отметим, что полученное значение — лишь часть общей реакции опоры, действующая для данного узла, остальная нагрузка придётся на горизонтальные части пояса.

Узел b

  • -100 + S 1 = 0
  • S 1 = 100 кг

Далее перейдём к крайнему нижнему угловому узлу, в котором сходятся вертикальный и горизонтальный сегменты пояса, а также наклонный раскос. Сила, действующая на вертикальный отрезок, вычислена в предыдущем пункте — это давящий вес и реакция опоры. Сила, действующая на наклонный элемент, вычисляется по проекции оси этого элемента на вертикальную ось: из реакции опоры вычитаем действие силы тяжести, затем «чистый» результат делим на sin угла, под которым раскос наклонён к горизонтали. Нагрузка на горизонтальный элемент находится также путём проекции, но уже на горизонтальную ось. Только что полученную нагрузку на наклонный элемент мы умножаем на cos угла наклона раскоса и получаем значение воздействия на крайний горизонтальный сегмент пояса.

Узел a

  • -100 + 400 - sin(33,69) · S 3 = 0 — уравнение равновесия на ось у
  • S 3 = 300 / sin(33,69) = 540,83 кг — стержень 3 сжат
  • -S 3 · cos(33,69) + S 4 = 0 — уравнение равновесия на ось х
  • S 4 = 540,83 · cos(33,69) = 450 кг — стержень 4 растянут

Таким образом, последовательно переходя от узла к узлу, необходимо вычислить действующие в каждом из них силы. Обратите внимание, что встречно направленные векторы воздействий сжимают стержень и наоборот — растягивают его, если направлены противоположно друг от друга.

Определение сечения элементов

Когда для фермы известны все действующие нагрузки, пора определяться с сечением элементов. Оно не обязательно должно быть равным для всех деталей: пояс традиционно выполняют из проката более крупного сечения, чем детали заполнения. Так обеспечивается запас надёжности конструкции.

где: F тр — площадь поперечного сечения растянутой детали; N — усилие от расчётных нагрузок; R y γ с

Если с разрывающими нагрузками для стальных деталей всё относительно просто, то расчёт сжатых стержней производится не на прочность, а на устойчивость, так как итоговый результат количественно меньше и, соответственно, считается критическим значением. Рассчитать можно на онлайн-калькуляторе, а можно и вручную, предварительно определив коэффициент приведения длины, определяющий, на какой части общей протяжённости стержень способен изгибаться. Этот коэффициент зависит от метода крепления краёв стержня: для торцевой сварки это единица, а при наличии «идеально» жёстких косынок может приближаться к 0,5.

где: F тр — площадь поперечного сечения сжатой детали; N — усилие от расчётных нагрузок; φ — коэффициент продольного изгиба сжатых элементов (определяется по таблице); R y — расчётное сопротивление материала; γ с — коэффициент условий работы.

Также нужно знать минимальный радиус инерции, определяемый как квадратный корень из частного от деления осевого момента инерции на площадь сечения. Осевой момент определяется формой и симметрией сечения, лучше взять это значение из таблицы.

где: i x — радиус инерции сечения; J x — осевой момент инерции; F тр — площадь сечения.

Таким образом, если разделить длину (с учётом коэффициента приведения) на минимальный радиус инерции, можно получить количественное значение гибкости. Для устойчивого стержня соблюдается условие, что частное от деления нагрузки на площадь поперечного сечения не должно быть меньше произведения допустимой сжимающей нагрузки на коэффициент продольного изгиба, который определяется значением гибкости конкретного стержня и материалом его изготовления.

где: l x — расчётная длина в плоскости фермы; i x — минимальный радиус инерции сечения по оси x; l y — расчётная длина из плоскости фермы; i y — минимальный радиус инерции сечения по оси y.

Обратите внимание, что именно в расчёте сжатого стержня на устойчивость отображена вся суть работы фермы. При недостаточном сечении элемента, не позволяющем обеспечить его устойчивость, мы вправе добавить более тонкие связи, изменив систему крепления. Это усложняет конфигурацию фермы, но позволяет добиться большей устойчивости при меньшем весе.

Изготовление деталей для фермы

Точность сборки фермы крайне важна, ведь все расчёты мы проводили методом векторных диаграмм, а вектор, как известно, может быть только абсолютно прямым. Поэтому малейшие напряжения, возникающие вследствие искривлений из-за неправильной подгонки элементов, сделают ферму крайне неустойчивой.

Сначала нужно определиться с размерами деталей внешнего пояса. Если с нижней балкой всё достаточно просто, то для нахождения длины верхней можно воспользоваться либо теоремой Пифагора, либо тригонометрическим соотношением сторон и углов. Последнее предпочтительно при работе с такими материалами, как угловая сталь и профильная труба. Если угол ската фермы известен, его можно вносить как поправку при подрезке краёв деталей. Прямые углы пояса соединяются подрезкой под 45°, наклонные — путём добавления к 45° угла наклона с одной стороны стыка и вычитанием его же с другой.

Детали заполнения вырезают по аналогии с элементами пояса. Основная загвоздка в том, что ферма — изделие строго унифицированное, а потому для её изготовления потребуется точная деталировка. Как и при расчёте воздействий, каждый элемент нужно рассматривать индивидуально, определяя углы схождения и, соответственно, углы подреза краёв.

Довольно часто фермы изготавливают радиусными. Такие конструкции имеют более сложную методику расчёта, но большую конструкционную прочность, обусловленную более равномерным восприятием нагрузок. Изготавливать скругленными элементы заполнения смысла нет, а вот для деталей пояса это вполне применимо. Обычно арочные фермы состоят из нескольких сегментов, которые соединяются в местах схождения заполняющих раскосов, что нужно учитывать при проектировании.

Сборка на метизах или сваривание?

В заключение было бы неплохо обозначить практическую разницу между способами сборки фермы свариванием и с помощью разъёмных соединений. Начать следует с того, что сверление в теле элемента отверстий под болты или заклёпки практически не влияет на его гибкость, а потому на практике не учитывается.

Когда речь зашла о способе скрепления элементов фермы, мы установили, что при наличии косынок длина участка стержня, способного изгибаться, существенно сокращается, за счёт чего можно уменьшить его сечение. В этом преимущество сборки фермы на косынках, которые крепятся сбоку к элементам фермы. В таком случае особой разницы в методе сборки нет: длины сварочных швов будет с гарантией достаточно, чтобы выдержать сосредоточенные напряжения в узлах.

Если же сборка фермы производится стыкованием элементов без косынок, здесь нужны особые навыки. Прочность всей фермы определяется наименее прочным её узлом, а потому брак в сваривании хотя бы одного из элементов может привести к разрушению всей конструкции. При недостаточном навыке ведения сварочных работ рекомендуется провести сборку на болтах или заклёпках с использованием хомутов, угловых кронштейнов или накладных пластин. При этом крепление каждого элемента к узлу должно осуществляться не менее чем в двух точках.

Прежде чем приступать к созданию навеса своими руками, необходимо сделать чертеж и рассчитать все элементы и узлы крепления, это позволит возвести надежное сооружение при минимальных финансовых и трудовых затратах. Чертеж и проект навеса из металлических конструкций поможет в решении целого ряда вопросов, начиная от номенклатуры и количества закупаемых стройматериалов и заканчивая экстерьером здания и общим дизайном участка.

В статье будет предоставлен список требований к сооружению, примеры расчетов наиболее распространенных конструкций и общие рекомендации по проектированию навеса для автомобиля своими руками, чертежи и схемы.

Что должен содержать проект навеса

  • Расчет прочности несущих конструкций – опор и ферм;
  • Расчет парусности крыши (сопротивление ветровой нагрузке);
  • Расчет снеговой нагрузки на кровлю;
  • Эскизы и общие чертежи навеса;
  • Чертежи основных конструкционных элементов с указаниями габаритных размеров;
  • Проектно-сметная документация, включающая расчет количества строительных материалов каждого вида и их стоимости. В зависимости от опытности разработчика могут учитываться нормы на расход (обрезки при монтаже) или просто добавляется 10-15% к метражу металлопроката.

Навес к дому – проекты, фото конструкций выполняющих различные функции

Общие требования к навесу для автомобиля

Сооружения, которые возводятся для защиты автомобиля, должны следующим отвечать эксплуатационным и техническим требованиям:

  • Размеры навеса по чертежу должны быть достаточными для свободного размещения авто;
  • Форма навеса, обеспечивающая защиту от попадания влаги, по возможности в расчетах учитывается преобладающий ветер;
  • Конструкция предохраняет от воздействия прямых солнечных лучей на протяжении всего светового дня;
  • Беспрепятственный, достаточной ширины подъезд к навесу, по возможности без поворотов на всем пути следования;
  • К машине должен быть обеспечен свободный доступ со всех сторон;
  • Достаточная простота чертежа, несущих конструкций и каркаса для навеса из профильной трубы или другого материала;
  • Гармоничное сочетание с домом и сооружениями на приусадебном участке;
  • Минимизация затрат на приобретение стройматериалов и проведение монтажных работ.

Наиболее простой для устройства односкатный навес из металлопрофиля своими руками, чертеж с основными размерами

Разновидности форм навесов и их эксплуатационные особенности и чертежи

Основной пространственной конструкцией навеса, в соответствии с чертежом, является стропильная ферма. Расчет ее формы, толщины и сечения металла, а так же чертеж размещения откосов вызывает наибольшие сложности.

Главными конструкционными элементами фермы для навеса являются верхний и нижний пояс, которые образуют пространственный контур. Материалами для сборки могут служить прокатные или сварные двутавры, уголки, швеллера или профтрубы квадратного и круглого сечения. Сборка фермы для навеса своими руками может производиться по следующим формам:

  1. Параллельные пояса. Уклон готового навеса в соответствии с чертежом не превышает 1,5%, подходят для плоских кровель с рулонным покрытием. Соотношение высоты и длинны от 1/6 до 1/8. Каркас такого типа имеет несколько преимуществ:
  • Все стержни поясов для пространственной решетки имеют одинаковую длину;
  • Минимальное количество соединительных узлов;
  • Простой расчет сопряжения конструкций.

Создание беседки – навеса из поликарбоната своими руками, чертеж, фото готового сооружения

  1. Трапециевидные (односкатные). Угол уклона по чертежу составляет от 6-15 0 . соотношение высоты и длины в центре изделия 1/6. Обладает повышенной жесткостью рамы
  2. Полигональные – используются исключительно для удлиненных пролетов на 10 м и более, их применение для небольших навесов нерационально в связи с неоправданным усложнением чертежа и самого изделия. Исключения могут составлять навесы с изогнутыми (дуговыми) фермами заводского изготовления.

Устройство консольного, полигонального навеса из металлопрофиля своими руками, чертеж

  1. Треугольные. Применяются при увеличенных снеговых нагрузках, уклон двускатного навеса составляет 22-30 0 . Основным конструктивным недостатком является сложность чертежа и выполнения острого узла в основании изделия, а так же слишком длинные стержни в центре. Соотношение высоты с шириной в небольших фермах для навеса из поликарбоната, по чертежу не превышает 1/4, 1/5.

Монтаж треугольного навеса из профнастила своими руками, чертеж конструкции с указанием основных размеров

  1. Арочные балки. Наиболее эргономичный вид фермы. Ее особенностью является возможность минимизировать изгибающие моменты в поперечных сечениях конструкции. При этом материал арки подвергается воздействиям на сжатие. То есть чертеж и расчеты фермы для навеса, расчет конструкции навеса допускается производить по упрощенной схеме, при которой нагрузка от кровельного покрытия, крепежной обрешетки и снега будет приниматься, как равномерно распределенная по всей площади.

Пример расчета навеса для автомобиля

При проектировании навеса и создании его чертежа необходимо рассчитать:

  1. Горизонтальные и вертикальные опорные реакции фермы, определить действующие напряжения в поперечных направлениях и на основании полученных данных осуществить подбор величины сечения несущего профиля;
  2. Снеговые и ветровые нагрузки на кровельное покрытие;
  3. Величину сечения внецентренно сжатой колонны.

Расчет арочной фермы

Чертеж расчета фермы из профильной трубы для навеса оптимальной – арочной формы

Для примера принимаем расстояние между опорами 6м, а высота арки 1,3 м. На перекрытие навеса действуют поперечные и продольные силы, которые формируют касательные и нормальные напряжения. Расчет сечения профильной трубы использующейся в конструкции производим по формуле:

σ пр = (σ 2 +4τ 2) 0.5 ≥ R/2, где

R – прочность стали марки С235 — 2350 кгс/см 2 ;

σ – нормальное напряжение, рассчитывающееся по формуле:

σ = N/F, где

F – искомая площадь поперечного сечения трубы.

N – сосредоточенная нагрузка на замок арки (принимаем 914,82 кгс из таблицы нагрузок строительных конструкций «Справочником проектировщика» под ред. А.А. Уманского).

τ – касательное напряжение, которое рассчитывается по формуле:

τ = QS отс /b×I, где

I – момент инерции;

b – ширина сечения (принимается равной по всей рассчитываемой высоте);

QS отс – статический момент, который определяется по формуле:

S отс = ∑у i F i .

Используя метод аппроксимации (последовательного подбора показателей из имеющегося массива данных), выбираем сечения из сортамента стройматериалов имеющихся у реализаторов металлопроката. Используем наиболее ходовой профиль – металлическую трубу квадратного сечения 30х30х3,5 мм. Следовательно, поперечное сечение равняется F = 3.5 см 2 . А момент инерции I = 3.98 см 4 . ∑у i – показатель рассчитываемой отсекаемой части (чем больше данных показателей в различных точках конструкции рассчитывается, тем точные получаемые показатели прочности всего изделия) для упрощения принимаем коэффициент 0,5 (вычисления производятся для средины арки – места наибольшего сопряжения нагрузок).

Подставляем данные в формулу:

S отс = 0,5х3,5=1,75см 3 ;

Первичная формула после подстановки будет иметь следующий вид:

σ пр = ((914.82/3.5) 2 + 4(919.1·1.854/((0.35 + 0.35)3.98) 2)0.5 = 1250.96 кг/см 2

Следовательно, выбранного сечения трубы квадратного профиля 30х30х3,5 мм из стали марки С235, вполне достаточно для устройства 6 м арочной фермы покрытой поликарбонатом, профнастилом, металочерепицей или металооприфилем.

Расчет колонн

Расчет производится согласно СНиП II-23-81 (1990). Согласно методики расчета металлических колонн, при устройстве навеса для машины своими руками, чертежи должны учитывать, что приложить сосредоточенную нагрузку точно к центру поперечного сечения фактически невозможно. Поэтому формула определения площади опоры будет иметь следующий вид:

F = N/ φR y , где

F – искомая площадь сечения;

φ – коэффициент продольного изгиба;

N – сосредоточенная нагрузка прилагаемая к центру тяжести опоры;

R у – расчетное сопротивление материала, определяется по справочникам.

φ — зависит от материала (марки стали) и гибкости конструкции – λ, определяющееся по формуле:

λ = l ef /i, где

l ef – расчетная длина колоны, зависящая от способа закрепления концов, определяется по формуле:

l ef = μl , где

l – реальная длина колонны (3м);

μ – коэффициент из СНиП II-23-81 (1990), учитывающий способ закрепления.

Коэффициент закрепления колонны согласно, чертежа навеса из профильной трубы

Подставляем данные в формулу:

F = 3000/(0,599·2050) = 2,44 см², округляем до 2,5 см².

В таблице сортамента профильных изделий ищем значение радиуса инерции больше полученного. Необходимым показателям соответствует стальная труба с поперечным сечением 70×70 мм и толщиной стенки 2 мм, которая имеет радиус инерции 2,76.

Снеговые и ветровые нагрузки на кровельное покрытие

Усредненные данные ветровой и снеговой нагрузки по регионам берутся из СНиПа «Нагрузки и воздействия». Возьмем для примера максимальное значение для Москвы и Московской области, оно составляет 23кг/м 2 . Однако это ветровая нагрузка на сооружение, которое имеет стены. В нашем случае несущими конструкциями выступают колонны, следовательно, коэффициент положительного ветрового давления на внутреннюю поверхность крыши будет составлять 0,34. При этом, показатель, учитывающий изменения ветровой нагрузки по высоте здания для навесов 3 м составляет 0,75. Подставляя данные в формулу, получим:

W m = 23·0.75·0.34 = 5.9 кг/м 2 .

Максимальная снеговая нагрузка для того же региона составляет Sg = 180 кг/м 2 , но для арки необходимо рассчитывать распределенную нагрузку по формуле:

S = S g ·μ, где

μ – значение коэффициента перехода, которое принимается отдельно для центра арки и крайних опор.

Расчет снеговой нагрузки при создании навеса из поликарбоната своими руками, чертежи направления воздействия давления в двух позициях

Значение коэффициента µ для центра арки, согласно чертежу, равно µ 1 = cos1.8·0 = 1, а для крайних опор µ 2 = 2.4sin1.4·50 = 2,255. Подставляя рассчитанные данные в формулу получаем совокупную нагрузку на кровельное покрытие:

q = 180·2.255·cos 2 50 о + 5.9 = 189.64 кг/м 2 = 1,8964 кг/см 2 .

Согласно полученных данных толщина кровельного материала вычисляется по формуле:

I тр = ql 4 /(185Ef), где

l – длина пролета;

Е – модуль упругости при изгибе (для поликарбоната он составляет 22500 кгс/см 2);

f – коэффициент прогиба при максимальной нагрузке (согласно данным производителей поликарбоната составляет 2 см);

Подставив данные в формулу, получим допустимое значение инерции:

I тр = ql 4 /(185Ef) = 1.8964·63 4 /(185·22500·2) = 3,59 см 4

При этом, из данных производителей поликарбоната показатель момента инерции для сотового поликарбоната шириной 1м и толщиной 0,8 мм составляет 1,36 см 4 , а для толщины 16 мм 9,6 см 4 . Методом корреляции определяем необходимое значение 3,41см 4 для сотового поликарбоната толщиной 12 мм.

Методика расчета справедлива для любого листового кровельного материала: профлиста, металлочерепицы, шифера и т.п. Но при этом следует учитывать крайне ограниченный сортамент указанных изделий.

Подводя итоги

Производить указанные расчеты и создавать чертеж вручную имеет смысл, если возводимый навес должен соответствовать уникальным условиям эксплуатации и оригинальной планировке. Для проверки элементов типовых металлоконструкций на соответствие и создания чертежей конструкций существует множество программ: Astra WMs(p), SCAD Offise 11, ArkaW, GeomW и многие другие или онлайн калькуляторы. Правила работы с таким ПО достаточно подробно описывают различные видео инструкции, к примеру, расчет и чертежи арки в SCAD:


Здравствуйте, уважаемые читатели! В данной статье я решил использовать уже опубликованную ранее информацию и онлайн расчеты для расчета навеса из металлоконструкций .
Навес можно использовать для различных целей, но пусть это будет навес для автомобиля.
Исходные данные:

- город строительства – г. Гродно ( - Республика Беларусь, Гродненская область)
- размер в плане 3х6 метра
- несущие конструкции (стойка – профильная труба, балка – двутавр, прогоны – швеллер)
- высота до низа балки – 2,7 метра
- уклон кровли – 10%
- материал кровли – профлист НС35х1000х0.5 (масса 1 м2 – 5.4 кг)
- сталь класса С255
Итак, основная наша задача – это определиться в размере сечения наших несущих конструкций. На каждую конструкцию мы будем собирать нагрузки, и рассчитывать отдельно. Расчет будем вести сверху вниз , т.е. сразу прогоны, потом балки и стойки. Это делается для того, чтобы при расчете стоек мы уже знали вес вышележащих конструкций (балки и прогоны).


Расчет прогонов


Прогон будем рассчитывать на прочность и прогиб
Для расчета прогонов нам надо будет знать линейную равномерно распределенную нагрузку на него и расчетную схему.
Прогон будет привариваться в месте укладки к балке, значит, это будет шарнирное соединение и расчетная схема соответственно «шарнир-шарнир».
На прогон будут действовать нагрузки от веса профлиста, собственного веса прогона и снеговой нагрузки.
На рисунке показана грузовая площадь рассчитываемого прогона.


Для того, чтобы нагрузку на квадратный метр перевести в линейную, нам надо будет умножить ее на ширину грузовой площади. = 5,4 кг/м2 * 1,003 м = 5,42 кг/м
Для получения расчетной нагрузки – умножим нормативную на коэффициент безопасности по нагрузке (для металлических конструкций он равен 1,05). = 5,42 кг/м * 1,05 = 5,69 кг/м
Дальше таким же способом находим расчетную линейную нагрузку от снега (коэффициент надежности по снеговой нагрузке 1,4):

50 кг/м2 * 1,003 м * 1,4 = 70,21 кг/м


Итоговое значение линейной нагрузки будет следующее:

5,69 кг/м + 70,21 кг/м = 75,9 кг/м


Затем , подбирая то или иное сечение с небольшим запасом (в онлайн расчет уже входит нагрузка от собственного веса конструкции).
В итоге расчета на прочность у нас получился швеллер № 5П по ГОСТ 8240-89 .


Теперь рассчитаем данный прогон на прогиб. Заглянув в СП 20.13330.2016 "Нагрузки и воздействия", видим, что максимальный прогиб для нашего 3-ех метрового прогона рассчитывается как l/150=3000/150=20 мм.


Подставив все найденные величины в калькулятор по прогибу, видим, что прогиб получился 18,9 мм и он не больше нашего предельно допустимого прогиба 20 мм.


Значит делаем вывод - прогон из 5 швеллера устраивает нас как по прочности, так и по прогибу.

Расчет двутавровой балки

Балку будем рассчитывать ту, которая лежит на оси 2, потому что грузовая площадь, а, следовательно, и нагрузка у нее будет самая большая.


Опираться балка будет на накладку на конце стойки. Накладка приварена к стойке, а балка будет приварена к накладке. Значит опирание опять шарнирное и расчетная схема «шарнир-шарнир».

Нагрузки, которые будут действовать на балку :
- снеговая нагрузка = 50 кг/м2 * 3 м * 1.4 = 210 кг/м
- нагрузка от профлиста = 5,4 кг/м2 * 3 м * 1,05 = 17,01 кг/м
- нагрузка от веса прогонов (12 метров прогонов попадают в грузовую площадь, масса одного метра 8,59 кг) = 12 м * 8,59 кг/м * 1,05 = 108,23кг.Запишем эту нагрузку как линейно распределенную на 3 метра: 108,23 кг / 3 м = 36,08 кг/м.
- нагрузка от собственного веса балки (учитывается в онлайн расчете)
Итоговая нагрузка на балку будет:

210 кг/м + 17,01 кг/м + 36,08 кг/м = 263,09 кг/м


Далее опять по нашему подбираем сечение:


По расчету видим, что данная балка по прочности проходит с хорошим запасом. Теперь рассчитаем ее на прогиб (максимально допустимый прогиб для балки равной 3м опять же выходит 3000/150=20 мм).


Исходя из двух расчетов видно, что балка 10Б1 проходит с хорошим запасом. В целом сечение можно уменьшить, но в качестве примера оставим эту балку
Получился двутавр №10Б1 по СТО АСЧМ 20-93 .

Расчет стойки из профильной трубы

Со всех стоек рассчитывать мы будем самую неблагоприятную (самая высокая и самая нагруженная). Это будет стойка 2-Б. Ее высота составит 2700 мм, а грузовая площадь будет 3 м * 1,5 м = 4,5 м2.


На данную грузовую площадь будут действовать сосредоточенные расчетные нагрузки от:
- профлиста = 5,4 кг/м2 * 4,5 м2 * 1,05 = 25,52 кг
- массы прогонов = 6 м * 8,59 кг/м * 1,05 = 54,12 кг (6 метров прогонов попадают в грузовую площадь)
- массы балки (ее можно рассчитать в , учитывая тот факт, что в грузовую площадь попадает 1,5 метра балки) = 11,92 кг * 1,05 = 12,52 кг


- снеговой нагрузки = 50 кг/м2 * 4,5 м2 * 1,4 = 315 кг
- нагрузка от собственного веса стойки (примем 3% от общей нагрузки на стойку)
Итоговая нагрузка на стойку будет следующей:

(25,52 кг + 54,12 кг + 12,52 кг + 315 кг) * 1,03 = 419,4 кг


Переведем в килоньютоны: 419,4 кг * 10 Н/кг /1000 = 4,194 кН.
Снизу стойка приварена к пластине, которая на 4 анкерах крепится к бетону, поэтому соединение будет шарнирное, и сверху, как мы уже выяснили, тоже шарнирное соединение с балкой. Значит, расчетная схема будет «шарнир-шарнир».
Далее на нашем рассчитаем сечение стойки из профильной трубы, к примеру, 40х1.5:


Исходя из расчет видно, что стойка 40х1.5 не проходит по гибкости (формула гибкости=расчетная_длина / радиус_инерции), а значит надо либо уменьшить расчетные длины стойки путем добавления связей в двух плоскостях, либо увеличить радиус инерции путем увеличения поперечного сечения. Мы же увеличим поперечное сечение до 50х2.


Как видно на рисунке, принята профильная труба сечение 50х50 и толщиной стенки 2 мм .

Пространственная жесткость


Даже если наш каркас не будет обшиваться со всех сторон, а, следовательно, и не будет существенных ветровых нагрузок, то мы все равно должны позаботиться о пространственной жесткости навеса .
Для этого в обоих направлениях расставим связи из профильной трубы (такой же, как применялась для стоек). По осям А и Б будет крестовая связь, а по осям 1, 2 и 3 поставим горизонтальную связь, для нормального проезда автомобиля.


Для упрощения понимания многих расчетов мы пренебрегали следующими вещами:
1. Нагрузка от ветра: при отсутствии зашивки навеса по бокам, нагрузка от ветра будет действовать только на кровлю навеса, но при небольшом уклоне она будет незначительна.
2. При расчете прогонов и балки на прогиб задавать надо было нормативную нагрузку, но и от расчетной хуже не будет.

Если вам понравилась эта статья – пишите комментарии, делитесь ей с друзьями и мы обязательно напишем еще!

В статье «Как определить нагрузку на крышу в вашем районе» мы определились с вариантом классической двухскатной крыши. Но очень часто бывают ситуации, когда к дому пристраиваются навесы, и не каждый знает, что эти навесы будут нагружены снегом значительно больше, чем сама крыша. При сборе нагрузок от снега есть такое понятие как снеговой мешок. Если на крыше есть перепады высоты, либо просто навес примыкает к высокой стене, то создаются благоприятные условия для наметания сугроба в этом месте. И чем выше стена, к которой примыкает крыша, тем больше будет высота этого сугроба, и тем больше нагрузка будет воздействовать на несущие конструкции. Иногда снеговой мешок способен увеличить стандартную снеговую нагрузку в несколько раз.

Разберем ситуацию на примере.

Дом с двускатной крышей. К нему с двух сторон пристраивается навес. Необходимо определить снеговую нагрузку на 1 м 2 крыши дома и двух навесов. Район строительства – Киевская область (160 кг/м 2).

1) Определим снеговую нагрузку на крышу дома.

Угол наклона крыши 35 градусов. Откроем схему 1 приложения Ж ДБН В.1.2-2:2006 «Нагрузки и воздействия».

Т.к. угол наклона крыши не вписывается в диапазон 20-30 градусов, и мостики с фонарями отсутствуют, то нам нужно взять схему нагрузки по варианту 1 – одинаковую для всей крыши.

По интерполяции определяем:

S e = γ fe S 0 C = 0,49*160*0,71 = 55,7 кг/м 2 ;

γ fe

S 0

С = μC e C alt = 0.71*1*1 = 0.71 – согласно п. 8.6 ДБН.

S m = γ fm S 0 C = 1.14*160*0,71 = 129.5 кг/м 2 ;

γ fm = 1.14 – согласно таблице 8.1 ДБН «Нагрузки и воздействия» при условии срока службы дома 100 лет (задается заказчиком),

S 0 = 160 кг/м 2 – согласно исходным данным,

С = μC e C alt = 0.29*1*1 = 0.71 – согласно п. 8.6 ДБН.

2) Определим снеговую нагрузку на навес, расположенный вдоль длинной (12-метровой) стороны здания.

Откроем схему 8 приложения Ж ДБН В.1.2-2:2006 «Нагрузки и воздействия».

Т.к. у нас навес, а не веранда со стенами, нам нужно остановиться на варианте «б».

h = 1 м > S 0 /2 h μ определять нужно. (В противном бы случае для всего навеса действовал бы один коэффициент μ 1).

Определим коэффициент μ для нашего случая:

μ = 1 + (m 1 L 1 " + m 2 L 2 " )/h = 1 + (0.3*9 + 0.19*2)/1 = 4,08,

при этом μ = 4,08 < 6 (для навесов) и μ = 4,08 > 2h / S 0 μ = 1.25.

m 1 = 0,3 – для плоского покрытия дома с уклоном более 20 градусов;

m 2 = 0,5k 1 k 2 k 3 = 0,5*0,46*0,83*1 = 0,19 (при длине навеса вдоль дома a < 21 м);

k 1 = √а /21 = √4,5/21 = 0,46 (здесь а

k 2 = 1 – β /35 = 1 – 6/35 = 0,83 (здесь β – угол уклона навеса);

k 3 = 1 – φ /30 = 1 – 0/30 = 1 > 0,3 (здесь φ

L 1 " = L 1 = 9 м – при отсутствии фонарей;

L 2 " = L 2

h

μ = 4,08 > 2 h / S 0 = 2*1/1.6 = 1.25 (здесь μ b по формуле:

b = 2h (μ – 1 + 2m 2 )/(2h / S 0 – 1 + 2m 2 ) = 2*1(4,08 – 1 + 2*0.19)/(2*1/1,6 – 1 + 2*0,19) = 11 м < 16 м.

Т.к. b = 11 м > 5h b = 5 м.

Сравним величины:

b = 5 м > L 2

Определим коэффициент μ 1 :

μ 1 = 1 – 2 m 2 = 1 – 2*0,19 = 0,62.

Эксплуатационная снеговая нагрузка на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.2:

S e = γ fe S 0 C = 0,49*160*1,25 = 98 кг/м 2 ;

S e 1 = γ fe S 0 C 1 = 0,49*160*0,62 = 48,6 кг/м 2 ;

γ fe = 0,49 – согласно таблице 8.3 ДБН «Нагрузки и воздействия»,

S 0 = 160 кг/м 2 – согласно исходным данным,

С = μC e C alt =

С 1 = μ 1 C e C alt = 0,62*1*1 = 0,62 – согласно п. 8.6 ДБН.

Предельное расчетное значение нагрузки на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.1:

S m = γ fm S 0 C = 1.14*160*1,25 = 228 кг/м 2 ;

S m 1 = γ fm S 0 C 1 = 1.14*160*0,62 = 113 кг/м 2 ;

γ fm

3) Определим снеговую нагрузку на навес, расположенный вдоль короткой (9-метровой) стороны здания.

Для этого навеса из-за формы фронтона величина перепада h будет разной, поэтому снеговая нагрузка будет переменной не только поперек, но и вдоль навеса.

a. Найдем значения снеговой нагрузки для максимального значения высоты перепада h = 4,5 м.

Проверим, нужно ли учитывать местную нагрузку у перепада (здесь и ниже величина S 0 берется в кПа):

h = 4,5 м > S 0 /2 h = 1.6/(2*4,5) = 0.17 м – учитывать местную нагрузку необходимо, коэффициент μ определять нужно.

Определим коэффициент μ :

μ = 1 + (m 1 L 1 " + m 2 L 2 " )/h = 1 + (0.4*12 + 0.25*2)/4,5 = 2,18,

при этом μ = 2,18 < 6 (для навесов) и μ = 2,18 < 2h / S 0 = 2*4,5/1.6 = 5,6 – окончательно принимаем μ = 2,18.

m 1 = 0,4 – для плоского покрытия дома с уклоном менее 20 градусов (в этом направлении уклона у крыши нет);

m 2 = 0,5k 1 k 2 k 3 a < 21 м);

k 1 = √а /21 = √7,5/21 = 0,6 (здесь а – длина навеса вдоль здания);

k 2 = 1 – β /35 = 1 – 6/35 = 0,83 (здесь β – угол уклона навеса);

k 3 = 1 – φ /30 = 1 – 0/30 = 1 > 0,3 (здесь φ – угол уклона навеса вдоль дома, его можно увидеть в варианте «в» схемы 8).

L 1 " = L 1

L 2 " = L 2 = 2 м – при отсутствии фонарей;

h = 4,5 м – величина перепада между крышей и навесом.

Найдем длину зоны повышенных снегоотложений. Проверим условие:

μ = 2,18 < 2 h / S 0 = 2*4,5/1.6 = 5,6, тогда находим b по формуле:

b = 2h = 2*4.5= 9 м < 16 м.

Сравним величины:

b = 9 м > L 2 = 2 м – расчет ведем по варианту 2 схемы 8.

Определим коэффициент μ 1 :

μ 1 = 1 – 2 m 2 = 1 – 2*0,25 = 0,5.

Эксплуатационная снеговая нагрузка на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.2:

S e = γ fe S 0 C = 0,49*160*2,18 = 171 кг/м 2 ;

S e 1 = γ fe S 0 C 1 = 0,49*160*0,5 = 39,2 кг/м 2 ;

γ fe = 0,49 – согласно таблице 8.3 ДБН «Нагрузки и воздействия»,

S 0 = 160 кг/м 2 – согласно исходным данным,

С = μC e C alt = 2,18*1*1 = 2,18 – согласно п. 8.6 ДБН,

С 1 = μ 1 C e C alt =

Предельное расчетное значение нагрузки на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.1:

S m = γ fm S 0 C = 1.14*160*2,18 = 398 кг/м 2 ;

S m 1 = γ fm S 0 C 1 = 1.14*160*0,5 = 91,2 кг/м 2 ;

γ fm = 1.14 – согласно таблице 8.1 ДБН «Нагрузки и воздействия» при условии срока службы дома 100 лет (задается заказчиком).

b. Найдем значения снеговой нагрузки для минимального значения высоты перепада h = 1,0 м.

Проверим, нужно ли учитывать местную нагрузку у перепада (здесь и ниже величина S 0 берется в кПа):

h = 1 м > S 0 /2 h = 1.6/(2*1) = 0.8 м – учитывать местную нагрузку необходимо, коэффициент μ определять нужно.

Определим коэффициент μ для нашего случая:

μ = 1 + (m 1 L 1 " + m 2 L 2 " )/h = 1 + (0.4*12 + 0.25*2)/1 = 6,3,

при этом μ = 6,3 > 6 (для навесов) и μ = 6.3 > 2h / S 0 = 2*1/1.6 = 1.25 – окончательно принимаем μ = 1.25.

m 1 = 0,4 – для плоского покрытия дома с уклоном менее 20 градусов (в этом направлении уклон крыши равен нулю);

m 2 = 0,5k 1 k 2 k 3 = 0,5*0,6*0,83*1 = 0,25 (при длине навеса вдоль дома a < 21 м);

k 1 = √а /21 = √7,5/21 = 0,6 (здесь а – длина навеса вдоль здания);

k 2 = 1 – β /35 = 1 – 6/35 = 0,83 (здесь β – угол уклона навеса);

k 3 = 1 – φ /30 = 1 – 0/30 = 1 > 0,3 (здесь φ – угол уклона навеса вдоль дома, его можно увидеть в варианте «в» схемы 8).

L 1 " = L 1 = 12 м – при отсутствии фонарей;

L 2 " = L 2 = 2 м – при отсутствии фонарей;

h = 1 м – величина перепада между крышей и навесом.

Найдем длину зоны повышенных снегоотложений. Проверим условие:

μ = 6.3 > 2 h / S 0 = 2*1/1.6 = 1.25 (здесь μ берем найденное в расчете, а не принятое окончательно), тогда находим b по формуле:

b = 2h (μ – 1 + 2m 2 )/(2h / S 0 – 1 + 2m 2 ) = 2*1(6.3 – 1 + 2*0.25)/(2*1/1,6 – 1 + 2*0,25) = 15.5 м < 16 м.

Т.к. b = 15,5 м > 5h = 5*1 = 5 м, окончательно принимаем b = 5 м.

Сравним величины:

b = 5 м > L 2 = 2 м – расчет ведем по варианту 2 схемы 8.

Определим коэффициент μ 1 :

μ 1 = 1 – 2 m 2 = 1 – 2*0,25 = 0,5.

Эксплуатационная снеговая нагрузка на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.2:

S e = γ fe S 0 C = 0,49*160*1,25 = 98 кг/м 2 ;

S e 1 = γ fe S 0 C 1 = 0,49*160*0,5 = 39,2 кг/м 2 ;

γ fe = 0,49 – согласно таблице 8.3 ДБН «Нагрузки и воздействия»,

S 0 = 160 кг/м 2 – согласно исходным данным,

С = μC e C alt = 1,25*1*1 = 1,25 – согласно п. 8.6 ДБН,

С 1 = μ 1 C e C alt = 0,5*1*1 = 0,5 – согласно п. 8.6 ДБН.

Предельное расчетное значение нагрузки на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.1:

S m = γ fm S 0 C = 1.14*160*1,25 = 228 кг/м 2 ;

S m 1 = γ fm S 0 C 1 = 1.14*160*0,5 = 91,2 кг/м 2 ;

γ fm = 1.14 – согласно таблице 8.1 ДБН «Нагрузки и воздействия» при условии срока службы дома 100 лет (задается заказчиком).

Итак, если сравнить результаты для трех частей примера, мы получаем следующее:

На рисунке графически показано соотношение проекций эксплуатационных снеговых нагрузок для дома и двух навесов. Для дома наименьшая снеговая нагрузка 55,7 кг/м 2 (показана синим). Для первого навеса (вдоль 12-метровой стены дома) уже получается огромный «сугроб», нагрузка от которого составляет 98 кг/м 2 у стены дома и 48,6 кг/м 2 на краю навеса (показано розовым). Для второго навеса, расположенного у высокого фронтона дома (вдоль 9-метровой стены дома), ситуация ухудшилась в разы: сугроб достигает максимальных размеров у стены в районе самой высокой точки конька и дает нагрузку 170 кг/м 2 , затем его «высота» падает к краям дома до 98 кг/м 2 с одной стороны и до 122 кг/м 2 с другой (находим интерполяцией), а к краю навеса нагрузка снижается до 39,2 кг/м 2 (показано зеленым).

Обратите внимание, на рисунке даны не размеры «сугробов», а величина нагрузки, которую будут давать наметаемые сугробы. Это важно.

В итоге, наш анализ на примере показал, что пристраиваемые навесы несут в себе опасность значительного перегруза конструкций, особенно те, которые примыкают к высокой вертикальной стене дома.

Напоследок дам один совет: чтобы максимально облегчить нагрузку на навес, пристраиваемый к стене, параллельной коньку дома, нужно воспользоваться условием из схемы 8 приложения Ж к ДБН «Нагрузки и воздействия» (мы это условие проверяли в самом начале расчета):

Если бы в нашем примере высота перепада была не 1 м, а 0,7 м, то выполнялось бы следующее условие:

h = 0,7 м < S 0 /2 h = 1.6/(2*0,7) = 1,14 м – и как написано в п. 3, местную нагрузку у перепада учитывать уже не нужно. Что это означает? Когда местную нагрузку учитывать надо, возле перепада снеговая нагрузка определяется с коэффициентом μ , а у края навеса – со значительно меньшим коэффициентом μ 1 . Если же местную нагрузку учитывать не надо, то нагрузка на всем навесе определяется с коэффициентом μ 1 . В нашем примере соотношение μ/ μ 1 = 1,25/0,62 = 2, т.е. подняв навес на 30 см, мы можем понизить снеговую нагрузку для него в два раза.

В данной статье примеры считались по украинским нормам (ДБН «Нагрузки и воздействия»). Если вы считаете по другим нормам, сверяйте коэффициенты, в остальном схемы снеговых нагрузок ДБН и СНиП одинаковы.