Пожарные шлейфы. Технические системы безопасности

Обеспечение противопожарной безопасности осуществляется путем установления различных систем, контролирующих текущее состояние объекта, помещения, территории. При возникновении признаков возгорания, задымления пространственной среды, система реагирует подачей информационного сигнала контролирующему центру, который анализирует его, затем принимает решение о дальнейших действиях. Устройство пожарной сигнализации постоянно совершенствуется, дополняется с целью обеспечить наиболее эффективное реагирование в экстренной ситуации.

Что такое пожарная сигнализация

Противопожарный комплекс – технические устройства, задача которых – обнаружить пожар, собрать, проанализировать, зафиксировать и передать сведения о нем центральному контрольному пульту, дежурной охране. Кроме того, противопожарный комплекс после обработки полученных данных может передавать сигнал о включении оповещательным (звуковым, световым) приборам, чтобы рабочий персонал смог вовремя эвакуироваться. Система может автоматически включать средства пожаротушения, предусмотренные при проектировании, монтаже сигнализации внутри помещения.

Состав охранно пожарной схемы определяется индивидуально для каждого объекта на стадии проектирования, согласовывается с заказчиком в зависимости от функционального назначения помещения, конструктивных характеристик объекта.

Системы пожарной сигнализации реагируют на несколько параметров окружающей среды, изменения которых свидетельствуют о начинающемся пожаре:

  • Дым. Система определяет при помощи извещателей оптическую плотность воздушной среды, необходимость оперативного реагирования и передачи тревожного сигнала пульту дежурного, владельцу.
  • Огонь. Оценка оптического излучения пламени предметами помещения, реагирует на спектральное излучение огня. Разные материалы при горении дают определенный спектральный диапазон, в зависимости от чего тепловые датчики классифицируются.
  • Тепло. Включение тревожного сигнала датчика при достижении внутри охраняемого помещения предельно допустимого уровня повышения температуры.
  • Газ. Отслеживают количественное содержание угарного газа (монооксид углерода) внутри объекта, который выделяется в процессе горения.

Функциональное назначение

Кратко перечислим основные функции, которые призвана выполнять противопожарная сигнализация:

  • контролировать определенную зону, объект на предмет возникновения признаков воспламенения, тления;
  • фиксировать признаки изменений внешней обстановки, предметов, которые могут свидетельствовать о начинающемся пожаре;
  • передавать сигнал сначала на контрольную панель, затем при необходимости на пульт дежурного поста для своевременной ликвидации воспламенения;
  • оповещать владельца объекта об экстренной ситуации, если это предусмотрено возможностями системы;
  • включать звуковые, световые оповещательные средства для своевременной эвакуации персонала;
  • включать средства пожаротушения, если охранно пожарной ими располагает.

Принцип действия

По своему принципу функционирования системы пожарной безопасности делятся на:

1. Неадресная. Традиционная схема, которая находится в двух состояниях – «Пожар», «Норма». Не может определить локальное местоположение очага возгорания, сигнал идет от всего ответвления шлейфа. Характеризуется частотой ложных срабатываний из-за невозможности системы и устройства пожарной сигнализации определить, проанализировать поступающий сигнал. При этом важно разграничить тревожные сигналы от штатных, к каким относятся ситуации выхода из строя элемента сигнализации. С этой целью контрольное оборудование подключается специальным образом к шлейфовой линии, учитывая индивидуальное внутреннее сопротивление в состоянии «Пожар», «Норма».
Системы и устройства пожарной сигнализации не способны сформировать сигнал о своем неисправном состоянии. Дымовые датчики не отличают задымленность от запыленности или водяного пара.

2. Адресно-пороговая. Производится автоматическое периодическое опрашивание установленных датчиков контрольным прибором. Контрольные датчики снабжены отдельным адресом, который позволяет с точностью определить месторасположение очага воспламенения.
Контроллеры могут находиться в нескольких состояниях («Пожар», «Норма», «Неисправность», «Внимание», «Запылен» и др.). Адресное устройство самостоятельно изменяет свое состояние в зависимости от изменения внешних показателей, состояния исправности.

3. Адресно-аналоговая. Данная схема устройства является наиболее надежной, эффективной. Отличается низким процентом ложных срабатываний, так как решение о изменении состояния датчика принимает контрольный прибор, основываясь на анализе предоставляемых ему данных.
Гибкие настройки позволяют запрограммировать датчики индивидуальным образом, который будет соответствовать специфике окружающего пространства.

Особенности применения

Эксплуатация традиционных устройств пожарной сигнализации характеризуется низкой стоимостью, но при этом вызывает проблемы при монтаже, дальнейшем использовании. Установка датчиков требует прокладывания большого количества электрических кабелей, собираемых в шлейф. Ненадежность датчиков предусматривает необходимость одновременного монтажа нескольких приборов. Увеличение емкости системы сопровождается материальными затратами на расширение шлейфа.

На небольших объектах рекомендуется устанавливать адресно-пороговые комплексы, обладающие преимуществами: надежность, свободная топология шлейфа. Оперативность реагирования системы возрастает, так как определяется адрес сработавшего контроллера. Недостатком применения является невозможность определения места обрыва линии связи кольцевого шлейфа, а также отсутствие изоляторов короткого замыкания.

Работа пожарной автоматической адресно-аналоговой сигнализации позволяет свободно располагать шлейфовую линию, использовать изоляторы короткого замыкания. Они способствуют функционированию системы при отключении электроэнергии. Техническое обслуживание не проводится планово, только при необходимости, когда поступает соответствующий сигнал о неисправности датчика.

Оборудование

Противопожарная сигнализация – сложная многоуровневая, многокомпонентная структура, состав и функционирование которой определяет набор сенсоров, входящих в ее комплектацию. Основные среди них:

  • Датчики (извещатели), контролирующие состояние окружающей среды по определенным параметрам.
  • Линии передачи информационного сигнала от датчика к контрольной панели.
  • Приемно-контрольные приборы, принимающие, анализирующие сигнал.
  • Оповещательные (звуковые, световые) приборы, предназначенные для оповещения об эвакуации.
  • Программное обеспечение комплекса.

К исполнительным сенсорам противопожарной сети относят контроллеры: дымовой, пламени, тепловой, газовый, комбинированный, ручной. Остановимся на них подробнее, рассмотрим структуру и принцип действия, отвечающие специфическим работам системы.

Дымовой

Определяет оптическую плотность окружающей среды. Монтируется на потолке помещения, где скапливается дым. Состоит из разъемного корпуса, оптической системы, электронной платы. Оптическая часть состоит из двух элементов. Светодиод отправляет строго направленный световой луч. Фотоэлемент, который при попадании на него луча, формирует электрический сигнал.

В обычных условиях испускаемый луч не попадает на фотоэлементную часть. При повышении задымленности световой поток отражается от плотных частиц в разные стороны, попадая таким образом на фотоэлементную пластину, образуется электрический сигнал, который передается контрольной панели. Чем сильнее задымленность, тем быстрее срабатывает датчик. Таким же образом реагирует на водяной пар другие газы.

Устанавливается внутри помещений, где высока вероятность появления дыма при возгорании предметов, материалов (изоляция электропроводов, ткань). Установка внутри ванной, душевой, кухни нецелесообразна, может создать ложные срабатывания.

Тепловой

Устройства реагируют на повышение температурного показателя воздуха. Делятся на интегральные, пороговые, что зависит от показателя, который считывают датчики: предел максимального нагрева или скорость повышения температуры.

Пороговые срабатывают, когда состояние достигает предела повышения температуры. Предохранитель внутри прибора состоит из двух проводников, спаянных вместе специальным сплавом, который легко плавится при повышении уровня тепла (60-70⁰ С). Когда сплав вытекает, контакты размыкаются, подается сигнал контрольному пульту.

Интегральные извещатели базируются на фиксировании скорости изменения электрического сопротивления металлов во время нагревания. Внутри чувствительного элемента через клеммы проходит ток, сопротивление которого при комнатной температуре неизменно. Повышение температурного показателя вызывает возрастание сопротивления, параметры тока также изменяются.

Скорость происходящих процессов считывается электросхемой. После прохождения критического порога нагрева поступает сигнал приемному прибору.

Применение данных устройств пожарной сигнализации (улсв м 10 01) – внутри объектов, возгорание которых сопровождается повышением температуры без задымленности: хранилище горючих материалов, легковоспламеняющихся жидкостей, складские помещения строительных материалов.

Датчик пламени

Реагирует на появление открытого пламени, тление очага возгорания без появления дыма. Пламя горящего объекта соответствует определенному цветовому спектру оптических волн, который фиксируется фотоэлементом чувствительной части прибора. Могут улавливать узкий сегмент спектрального диапазона или регистрируют весь спектральный ряд.

Простые сенсоры имеют процент ложного срабатывания, например, от яркого солнечного света, сварочной дуги, люминесцентного освещения и т.д. Устранить данную проблему помогают специальные фильтры.

Делятся на ультрафиолетовые, инфракрасные, многоспектральные.

Конструктивно довольно сложное, дорогостоящее оборудование, монтируемое на предприятиях нефтепереработки, газовой промышленности. Не используется для жилых пространств.

Газовый

Ориентированы на изменение газового состава внешней среды, в частности концентрацию угарного газа (моноксид углерода), выделяющегося при сгорании. Применяются в условиях, когда есть возможность ложного срабатывания дымового прибора (превышенный уровень пыли, водяного пара, дыма, связанного с технологическими процессами). При этом тепловые извещатели не обеспечивают фиксацию очага воспламенения на ранних этапах.

Комбинированные

Исполнительными устройствами пожарной, охранной системы могут быть приборы для комплексного обнаружения очага возгорания. Диапазон достоверности возрастает при использовании одновременно нескольких способов определения, при этом процент ложных срабатываний значительно сокращается. Сюда относится вариант, сочетающий возможности дымового, теплового приборов с дополнительной опцией обнаружения пламени.

Оснащаются тепловым, оптическим, инфракрасным сенсорами. Устройство и работа приборов могут быть основаны как на отдельном срабатывании каждого из сенсоров, так и на одновременном. Кроме того, производят четырехкомпанентные приборы (дополнительно сенсор угарного газа), применяемые для важных промышленных предприятий.

Ручные

Конструктивно простые приборы, работающие от ручного запуска для оповещения персонала об экстренной ситуации. Включаются нажатием кнопки с пружинным самозатвором, что позволяет извещателю работать далее самостоятельно даже при отпущенной кнопке. Отключается поворотом ключа, который находится у ответственного лица.

Устанавливаются внутри зданий, помещений, отличающихся массовым скоплением людей (школы, больницы, магазины, промышленные предприятия). Расстояние между датчиками – до 50 м.

Прибор управления

Приемно-контрольная панель занимает центральное место в схеме управления исполнительными контроллерами. Осуществляет контроль за состоянием шлейфа пожарной сигнализации, принимает, анализирует данные автоматической деятельности извещателей, передает информацию пульту дежурного поста пожарной части, управляет процессом эвакуации.

Классификация:

1. Безадресные. Простая структура, опирающаяся на заранее запрограммированный алгоритм, подчиненный контроллерам, которые автономно принимают решение об изменении своего состояния. Делятся на:

  • Однопороговые (при достижении шлейфом определенного значения переходят к состоянию тревоги). Определяют короткое замыкание, обрыв линии связи.
  • Двухпороговые (определяют характер неисправности, комплектуются самодиагностирующимися извещателями).

2. Адресные. Информация от извещателей преобразуется так, что определяется местонахождение сработавшего устройства. Панель управления исполнительными контроллерами может дистанционно настраивать уровень их чувствительности, диагностировать текущее состояние и т.д.

3. Адресно-аналоговые. Технически более совершенны, так как контрольная панель определяет принцип действия, исходя из анализа получаемых данных от сети контроллеров.

Оконечное устройство

Оконечное устройство – устройство контроля шлейфов пожарной и других систем сигнализации. Предназначено для:

  • контроля шлейфа сигнализации;
  • фиксирование его состояния;
  • оповещение через абонентскую городскую линию о пожаре. Прибытии пожарной бригады.

Оконечное устройство обеспечивает:

  • предварительное контролирование текущего состояния шлейфа;
  • переключение телефонной линии связи в режим охраны и наоборот;
  • подключение шлейфа сигнализации к абонентской линии в режиме охраны;
  • удаленное питание по абонентской телефонной линии от ретранслятора;
  • возможность подключить к шлейфу выносные индикаторы исправности.

Конструктивно состоит из элементов: основание, печатной и соединительной плат, крышки. Монтируется на стене внутри помещения охраняемого объекта так, чтобы был обеспечен удобный доступ, недалеко от телефонной линии, розетки.

Преимущества и недостатки установки пенного пожаротушения
Как организовать обслуживание систем дымоудаления


А.В. Родионов
Заместитель начальника отдела системотехники НВП "Болид"

Немало статей написано о том, что радиальные системы все больше и больше вытесняются современными адресно-аналоговыми системами, имеющими потенциально большую надежность, функциональность и информативность. Конечно, это так, но и радиальные системы не стоят на месте!

Что такое радиальные системы сигнализации? Определимся сразу, что в рамках этой статьи под "радиальными" будем понимать традиционные проводные системы ОПС, основой которых является шлейф сигнализации.

Радиальные системы сигнализации имеют и другое название - лучевые. Это связано с тем, что каждый шлейф образует своего рода луч или радиус, исходящий из центра, в роли которого выступает приемно-контрольный прибор.

Преимущества радиальных систем сигнализации

Использование современных алгоритмов цифровой обработки сигналов в приемно-кон-трольных приборах позволяет существенно повысить надежность детектирования сигнала от извещателей и, как следствие, снизить вероятность ложных тревог. Если говорить о надежности самих извещателей, то показатели практически одинаковы и у современных пороговых, и у адресных извещателей, элементная база которых и методы обнаружения факторов тревоги/пожара во многом совпадают. Радиальные системы сигнализации имеют право на дальнейшее успешное существование по следующему (далеко не полному) ряду показателей:

  • универсальность: любые извещатели работа-ют с любыми ППКП;
  • возможность реализации охранных и пожарных зон на одном ППКП;
  • невысокая критичность к параметрам проводной линии шлейфа;
  • приемлемые показатели надежности;
  • широкая распространенность;
  • применимость для большинства типов объектов;
  • широкий спектр отечественных производителей;
  • низкая стоимость.


Стоит отметить, что радиальные системы не всегда наилучшим образом подходят для определенных типов объектов. Для крупных объектов, где требуется установить и обслуживать несколько тысяч пожарных извещателей, больше подойдут адресно-аналоговые системы, так как суммарные затраты на один извещатель будут меньше, чем в радиальных системах, да и количество извещателей будет меньше. Однако для малых и средних объектов стоимость технических средств охраны, а также затраты на их монтаж и обслуживание будут ниже. Кроме того, для целей охранной сигнализации традиционно используются контактные извещатели, которые как нельзя лучше подходят для радиальных ППКП.

Но главным показателем, безусловно, остается рыночная востребованность проводных радиальных систем ОПС: по экспертным оценкам, на долю таких систем приходится до 70% отечественного рынка.

Немного истории

Одна из первых систем сигнализации, появившихся в нашей стране, была создана на базе поста телефонной связи в Государственном Эрмитаже. Это была охранная сигнализация, использовавшая проложенные ранее линии телефонной связи. До 1990-х гг. большинство приемно-контрольных приборов использовалось в качестве оборудования, совмещающего функции охранной и пожарной сигнализации, при этом тактика работы и с охранными, и с пожарными извещателями была одинаковой. Ввод в действие новых норм потребовал от производителей ППКП разделить эти функции. Накопленный опыт разработки и эксплуатации отечественных приборов доказал возможность совмещения охранных и пожарных функций на одном приборе, а достаточно развитые на тот момент вычислительные средства позволили реализовать эту уникальную возможность без противоречий с точки зрения требований норм к охранной и пожарной сигнализации. В том, что это уникальное для мировой практики явление стало реальностью, огромная роль принадлежит НИЦ "Охрана", входившему на тот момент в состав ВНИИПО. В то же время на рынке стали появляться зарубежные адресные, адресно-аналоговые и радиоканальные системы ОПС, однако экономический кризис 1998 г. остро обозначил необходимость разработки их отечественных функциональных аналогов. Прошедшие годы разработчики интенсивно трудились над решением данной проблемы, и сейчас целый ряд отечественных производителей выпускает собственные системы, ни по качеству, ни по функциям не уступающие зарубежным.

Развивались также и радиальные системы: пожарные ППКП научились определять количество сработавших извещателей в шлейфе (од-нопороговые и двухпороговые пожарные шлейфы), введена процедура верификации сработавшего из вещателя; для охранных ППКП стали доступны такие функции, как защита от саботажа (подмены извещателя), контроль вскрытия корпуса извещателя, контроль снятого с охраны ШС, автоматическое взятие ШС под охрану и пр.


Особенности использования

Рассмотрим некоторые особенности использования проводных радиальных систем ОПС.

Охранные шлейфы

Тактика работы охранных шлейфов достаточно проста: шлейф может находиться либо в норме (на охране), либо в тревоге, либо снят с охраны. Любое нарушение (переход за пределы диапазона нормы) взятого на охрану шлейфа автоматически переводит его в режим тревоги. Большинство охранных извещателей работают на обрыв шлейфа при тревоге, но как быть, если злоумышленник решил блокировать передачу тревожного извещения, перемкнув внешние провода шлейфа, подключенные к извещателю? Для защиты от такого вида саботажа современные приемно-контрольные приборы отслеживают резкое изменение сопротивления шлейфа даже на небольшое значение. Если установить скрытый резистор небольшого номинала внутри корпуса извещателя, прибор зафиксирует скачкообразное изменение сопротивления в шлейфе в момент подключения перемычки и перейдет в режим тревоги. В то же время, если сопротивление шлейфа будет плавно меняться, например, в случае изменения утечек между проводами ШС или проводом и "землей", прибор не должен трактовать эти изменения как попытку саботажа. На рис. 1 условно показаны схемы и диаграммы сопротивления шлейфа в обоих случаях.

Однако как быть, если злоумышленник оказался хитрее и установил перемычку внутри корпуса извещателя, на клеммах тревожных контактов? И в этом случае можно найти выход! Если извещатель имеет датчик вскрытия корпуса (тампер), прибор зафиксирует факт вскрытия корпуса извещателя, что, безусловно, должно привлечь внимание службы охраны. А поиск и устранение перемычки - это уже тривиальная задачка для инженерной службы. Схемы и диаграммы сопротивления шлейфа для этого случая показаны на рис. 2.

Конечно, задача защиты от возможного саботажа не решается только указанными способами, но при разумном подходе рассмотренные особенности реализации охранной сигнализации позволят предотвратить материальные потери и существенно сэкономить время и силы при поиске потенциально возможных точек атаки злоумышленника.



Пожарные шлейфы

Тактика работы пожарных шлейфов существенно отличается от охранных. Для пожарной сигнализации главное - это разумный компромисс между двумя задачами:

  • не выдать ложного сообщения о пожаре;
  • отреагировать на наличие факторов пожара. Функцию определения факторов пожара и передачи тревожного извещения выполняют пожарные извещатели, а приемно-контрольный прибор должен уметь надежно детектировать это извещение и принять решение о том, каким образом реагировать на него, чтобы избежать возможных потерь как от самого пожара, так и от последствий работы средств пожарной автоматики.

Какие же особенности реализации пожарных шлейфов могут пригодиться в этом случае?

  1. Возможность автоматического сброса пожарного извещателя для перевода его в исходное состояние после срабатывания. Эта возможность чрезвычайно важна для реализации функции верификации (перезапроса) сработавшего в шлейфе извещателя. Извещатели не идеальны и могут формировать ложные извещения о пожаре. Чтобы удостовериться в том, что извещение не ложное, прибор сбрасывает извещатель и ожидает его повторного срабатывания. Лишь после повторного срабатывания принимается решение о наличии в защищаемом помещении опасности пожара.
  2. Возможность обнаружения нескольких сработавших извещателей в одном шлейфе. Как известно, аппаратура системы пожарной сигнализации при срабатывании не менее двух пожарных извещателей должна формировать команды на управление автоматическими установками пожаротушения, или дымоудаления, или оповещения о пожаре, или управления инженерным оборудованием объектов. Для шлейфов, которые могут различать срабатывание одного, двух и более извещателей, введено специальное обозначение: двухпороговые. Использование двухпороговых шлейфов позволяет сэкономить на количестве извещателей, устанавливаемых в одном помещении (три извещателя в одном шлейфе, вместо четырех в двух шлейфах для однопороговых ШС), а также сэкономить на проводах показаны. На рис. 3 показаны схемы и диаграммы двухпороговых пожарных ШС.
  3. Реализация механизмов, минимизирующих влияние переходных процессов в шлейфах. Внутренние схемы большинства извещателей можно представить в виде эквивалентной RC-схемы, позволяющей оценить процессы, происходящие в нагруженном шлейфе. Чем больше извещателей включено в шлейф, тем выше его эквивалентная емкость. Чем выше емкость шлейфа, тем больше время завершения переходных процессов.

В каких случаях возникают переходные процессы в шлейфах и на что они могут повлиять? Учитывать переходные процессы необходимо прежде всего в шлейфах со знакопеременным напряжением. Каждый раз при изменении полярности происходят циклы заряда/разряда внутренней емкости извещателя, и напряжение в шлейфе "выравнивается" не сразу. Как правило, приемно-контрольные приборы выдерживают определенную паузу перед тем, как начать измерять напряжение в шлейфе после изменения полярности. Длительность такой паузы должна быть заведомо больше длительности переходного процесса и, как правило, составляет сотни миллисекунд (200- 300 мс). Но этого времени может быть недостаточно, если в шлейф включено слишком много извещателей! В этом случае длительность переходного процесса больше паузы, отведенной на его завершение, и результаты измерения оказываются искаженными. Этот эффект также присущ и шлейфам с постоянным напряжением: в случае сброса напряжения питания в шлейфе или при обрыве оконечного элемента нагруженного шлейфа. Искажение результатов измерения параметров шлейфа под влиянием переходного периода может явиться причиной формирования ложного сигнала о пожаре. Это необходимо учитывать при расчете количества извещателей, включаемых в один шлейф. Диаграммы напряжений в шлейфах сигнализации при переходных процессах показаны на рис. 4. Как же минимизировать влияние переходных процессов, если расчет максимального количества извещателей в шлейфе определяется лишь максимальным током нагрузки шлейфа, а нелинейные характеристики извещателей не приводятся? Эту задачу должен решать сам прием-но-контрольный прибор, фактически вычисляя производную процесса изменения состояния шлейфа. Это может несколько затягивать время реакции на срабатывание извещателя, но надежно защищает от ложных тревог.


Перспективы развития

Как уже отмечалось, списывать со счетов традиционные радиальные системы сигнализации преждевременно. В числе перспективных задач -дальнейшее расширение функциональности таких систем с точки зрения интеграции с инженерными системами объектов. Развитие так называемой технологической сигнализации на аппаратной базе существующих систем охранно-

пожарной сигнализации оправдано тем, что большая часть инженерного оборудования (насосы, клапаны, задвижки и пр.) имеет контактные выходы, идеально подходящие для включения в радиальные шлейфы сигнализации. Кроме того, постоянно ведутся работы, направленные на повышение надежности проводных радиальных систем. Здесь можно выделить три составные части, каждая из которых вносит свой вклад в общий показатель надежности:

  • извещатель;
  • проводной шлейф, в качестве канала связи;
  • приемно-контрольный прибор.

Эволюция сегментов радиальных систем

Оглянувшись примерно на 10 лет назад, мы увидим, какой путь развития прошли извещатели и какая огромная работа была проделана. Если внешне конструкция извещателей изменилась незначительно, то внутреннее наполнение эволюционировало весьма существенно. Использование микроконтроллеров позволило применить математические методы обработки сигналов от первичных преобразователей, реагирующих на факторы пожара или тревоги. Это позволяет отфильтровывать случайные или наводимые помехи, регулировать при необходимости уровень порогового значения фактора тревоги и накапливать данные об его изменении с течением времени. Развитые функции самодиагностики дымовых пожарных извещателей позволяют сейчас детектировать неисправность оптического канала или неисправности собственной схемы извещателя, предотвращая формирование ложных сигналов о пожаре. Дальнейшее повышение надежности работы извещателей, многофакторное определение тревоги/пожара, использование новых методов и алгоритмов работы обусловливают пути их развития. Вслед за извещателями не меньший путь развития прошли и приемно-контрольные приборы. Но самым "неразвитым" сегментом радиальных систем остается собственно шлейф, как канал связи между извещателями и приемно-контрольным прибором. Сейчас иметь двухпроводную линию для передачи бинарного состояния - непозволительная роскошь. В дальней перспективе, когда стоимость адресно-аналогового извещателя приблизится к стоимости традиционного порогового извещателя, радиальные системы уступят свои л-идирующие позиции, но в близкой перспективе, пока стоимость адресных систем достаточно высока, широкой альтернативы радиальным системам нет. Но это утверждение не означает, что радиальные системы не будут развиваться.

Гибридные системы

Уже сейчас на рынке есть гибридные системы, сочетающие в себе достоинства адресных и пороговых систем. В таких гибридных системах, называемых опросными адресно-пороговыми, реализованы следующие достоинства адресных систем:

  • позиционирование места возгорания/проникновения с точностью до места установки извещателя;
  • проверка работоспособности и автоматическая идентификация каждого неисправного извещателя;
  • указание на необходимость технического обслуживания извещателя;
  • возможность ветвления шлейфа;
  • отсутствие необходимости обрывать шлейф при извлечении извещателя из розетки.

Перспектива развития радиальных систем, на взгляд автора, заключается в совмещении в рамках одного прибора обычных пороговых шлейфов и опросных адресно-пороговых шлейфов сигнализации. По стоимости один адресно-пороговый извещатель, вероятно, будет сопоставим со стоимостью двух традиционных пороговых извещателей, но для небольших и средних объектов их применение позволит удешевить систему в целом. При наличии функции контроля исправности допускается установка одного извещателя в помещении вместо двух обычных пороговых.

Итак, в завершение статьи можно сделать следующие выводы:

  • для малых и средних объектов радиальные системы ОПС с точки зрения затрат, надежности и функциональности являются наиболее рациональным решением;
  • использование механизмов защиты от саботажа охранных зон потенциально снижает риск материальных потерь;
  • верификация состояния пожарных извещателей, а также учет влияния переходных процессов в пожарных шлейфах способны минимизировать количество ложных сигналов о пожаре;
  • применение двухпороговых пожарных шлейфов позволяет оптимизировать расходы на материалы и оборудование;
  • перспективное направление развития радиальных систем ОПС: опросные адресно-пороговые системы.

Шлейф сигнализации (ШС) – одна из составных частей объектовой системы охранно-пожарной сигнализации. Это проводная линия, электрически связывающая выносной элемент (элементы), выходные цепи охранных, пожарных и охранно-пожарных извещателей с выходом приемно-контрольных приборов. Шлейф охранно-пожарной сигнализации – это электрическая цепь, предназначенная для передачи на приемно-контрольный прибор тревожных и служебных сообщений от извещателей, а также (при необходимости) для подачи на извещатель электропитания. ШС состоит обычно из двух проводов и включает в себя выносные (вспомогательные) элементы, устанавливаемые в конце электрической цепи. Эти элементы называются нагрузкой или оконченным резистором ШС.

Рассмотрим двухпроводный ШС. В качестве примера на рисунке 2.4 изображен комбинированный пожарный ШС с нагрузочным R н на конце.

Рис. 2.4 Комбинированный пожарный ШС с нагрузочным R н на конце

Кроме нагрузочного сопротивления имеются ряд факторов, создающий добавочную нагрузку в цепи ШС – это эквивалентное сопротивление самих проводов ШС, сопротивление «утечки» между проводами ШС и между каждым проводником шлейфа и «землей». Допустимые предельные значения этих параметров при эксплуатации указываются в технической документации на конкретный прибор. Вход ШС подсоединяется к элементам приемно-контрольного прибора.

ШС является одним из наиболее «уязвимых» элементов объектовой системы охранно-пожарной сигнализации. Он подвержен воздействию различных внешних факторов. Основной причиной неустойчивой работы системы является нарушение ШС. В процессе работы может произойти отказ в виде обрыва или короткого замыкания ШС, а также самопроизвольное ухудшение его параметров. Возможно умышленное вмешательство в электрическую цепь шлейфа с целью нарушения его правильного функционирования (саботаж). В местах соединения ШС, его крепления и прокладки могут образовываться «утечки» тока между проводами и проводниками на «землю». На сопротивление «утечки» большое влияние оказывает наличии влаги. Например, в помещениях с повышенной влажностью сопротивление между проводами достигает нескольких кОм.

Рассмотрим наиболее распространенные методы ШС:

С описанием ШС постоянным током, используемым в качестве выносного элемента резистором;

С электропитанием ШС знакопеременным импульсным напряжением и используемым в качестве нагрузки последовательными соединенными резисторами и полупроводниковым диодом;

С электропитанием ШС пульсирующим напряжением и используемым в качестве выносного элемента – конденсатора.

Метод контроля с электропитанием его постоянным током подразумевает непрерывных контроль входного сопротивления шлейфа сигнализации. На рисунке 2.5 дана схема типового узла контроля приемно-контрольного прибора. В узле контроля ШС входное сопротивление определяется по значению амплитуды аналогового сигнала U к, снимаемого с плеча делителя, который образуется ШС с входным сопротивлением R вх и измерительным элементом – резистором – R и:

U = U п R вх / (R вх + R и)

Рис. 2.5. Схема типового узла контроля приемно-контрольного прибора.

На выходе аналогово-цифрового преобразователя (АЦП) устанавливается

Два порога напряжения, соответствующие верхней и нижней границам зоны разрешенных значений входного напряжения ШС. В процессе эксплуатации и изменений сопротивления ШС и сопротивления «утечки» входное сопротивление ШС не должно выходить за пределы допустимых значений. Так как точное значение порога может быть установлено только с некоторой погрешностью, определяемой технологическим разбросом R и и погрешностью АЦП, то в данном случае под допустимым значением подразумевается верхняя и нижняя пороговые зоны. При достижении R и верхнего (что соответствует обрыву ШС) или нижнего порога (что соответствует короткому замыканию проводников ШС) прибор должен переходить с тревожный режим работы. Оптимально выбранным считается значение выносного резистора (нагрузочного сопротивления), при котором обеспечивается контроль ШС с заданными параметрами и формирование извещения «Тревога» при срабатывании извещателя, установленного в этот ШС.

Новые технологии, энергосберегающие компоненты, способность программного обеспечения выполнять определенные действия и другие новшества в последние годы изменили не только технологии изготовления пожарных извещателей, но и методы их установки и монтажа. Это, в свою очередь, вызвало изменения в существующих стандартах и нормативах по проектированию систем пожарной сигнализации. Например, давно применяющаяся и считавшаяся до недавнего времени традиционной топология радиального шлейфа в настоящее время все больше и больше заменяется кольцевой топологией. Возможность установки большого количества пожарных извещателей в одном шлейфе без снижения их надежности и работоспособности делает применение кольцевых шлейфов довольно привлекательным по сравнению с радиальными. Современные кольцевые шлейфы являются многофункциональными и позволяют кроме подключения автоматических и ручных пожарных извещателей управлять дополнительным оборудованием с помощью различных модулей входов/выходов.

Преимущества использования аналогово-кольцевых шлейфов:

Рис.1. Радиальные шлейфы Рис.2. Кольцевой шлейф

  • Предельная информативность шлейфа, достигаемая применением интеллектуальных пожарных извещателей и их полной адресацией;
  • Высокая надёжность кольцевого шлейфа, по сравнению с радиальным - при обрыве или коротком замыкании, радиальный шлейф частично, или полностью выходит из строя, в кольцевом шлейфе устройства, называемые изоляторами, автоматически отсекают повреждённый участок, и шлейф продолжает функционировать как две радиальные ветви. При обрыве шлейфа, изоляторы не активизируются;
  • Возможность создания радиальных ответвлений, если это необходимо для оптимизации кабельной схемы;
  • Меньшие трудозатраты и расход кабельных материалов при одинаковом количестве извещателей.

Esserbus - максимум надежности, минимум затрат
Пожарные приемно-контрольные приборы ESSER поддерживают кольцевые шлейфы esserbus и esserbus-PLus. Кольцевой шлейф esserbus это двухпроводный шлейф, обладающий следующими особенностями:

  • Максимальная длина шлейфа 3500 м;
  • До 127 устройств на шлейф;
  • До 127 групп извещателей на шлейф;
  • До 63 радиальных ответвлений (до 32 устройств в ответвлении) на шлейф;
  • До 32 транспондеров на шлейф (до 100 транспондеров на ПКП);
  • Напряжение в шлейфе 27,5 в.

В дополнении к вышеописанным особенностями технологий esserbus существует кольцевой шлейф esserbus-PLus с улучшенными характеристиками. Новый шлейф поддерживает автоматические извещатели серии IQ8Quad со встроенными устройствами оповещения, адресные устройства оповещения серии IQ8Alarm и беспроводные устройства IQ8Wireless. Для подключения всех этих устройств не требуется прокладки дополнительных проводов, т.е. передача данных, сигналы и питание всех устройств шлейфа осуществляется всего по двум проводам. Кольцевой шлейф esserbus-PLus поддерживается только ПКП серии IQ8Control.


Чтобы обеспечить бесперебойную работу пожарной сигнализации датчики соединяются с устройствами оповещения и пультом диспетчера посредством проводов (шлейфов). Кабели также передают контрольные извещения, оптический сигнал и т.д. Типы шлейфов пожарной сигнализации делятся по своей структуре, требования к ним оговариваются в СНиП и ФЗ №123.

Требования к проводам пожарной сигнализации

Все основные требования к шлейфам пожарной сигнализации заключаются в обеспечении работоспособности системы в случае возгорания в течение необходимого времени. В идеале кабель должен иметь идентичную помещению степень огнестойкости.

Оконечное устройство шлейфа обеспечивается конструктивной дополнительной или любой другой огнезащитой.

Согласно ФЗ нормы по кабелю регламентируются указом от 10.07.2012. В частности указывается:

  • Сопротивление шлейфа пожарной сигнализации должно выдерживать воздействие открытого пламени в течение заданного количества времени. Работоспособность систем оповещения и сигнализации при этом сохраняется в полном объеме, до тех пор, пока сотрудники и посетители не покинут здание.
  • Поможет выбрать кабели соответствующий ГОСТ. Обозначение шлейфов пожарной сигнализации регламентируется в ФЗ, поэтому маркировка провода должна в обязательном порядке присутствовать на обмотке.
  • Горизонтальные и вертикальные защищаются негорючими конструкциями и огнезащитой. Нормы прокладки кабелей пожарной сигнализации предписывают использовать провод с термостойкой обмоткой. Внутри стен перекрытия, пустотах и нишах монтаж осуществляется в гофротрубе. При открытой прокладке пожарной сигнализации используется негорючий провод.
  • Проходка кабельных линий через стены нуждается в обязательной обработке огнезащитными составами. Во время работ выполняется герметизация стыков и другими . Способ прокладки через стены определяется с учетом технических характеристик здания, его огнеопасности. Обязательность прокладки в коробах определяется степенью пожароопасности помещения.
  • Прокладка с другими кабелями допускается при условии наличия термоизолирующей обмотки.
  • Проводить ТО пожарной сигнализации должен специалист, представитель компании осуществляющей установку систем оповещения.

Чтобы определить месторасположение возгорания, необходимо, чтобы все системы находились в работоспособном состоянии. Для пожарной сигнализации должен применяться кабель устойчивый к открытому воздействию огня. Предел огнестойкости высчитывается по требованиям ППБ предъявляемым к несущим конструкциям в помещении.

Виды шлейфов для противопожарной сигнализации

Выбор сечения кабеля, максимальная длина шлейфа ПС и многие другие аспекты рассчитываются после выбора схемы подключения датчиков. Существует несколько основных способов выполнения этой задачи:
  1. Пороговые системы с радиальным шлейфом . Один прибор управления, моноблок в состоянии обслуживать не более десяти линий и датчиков. Увеличение возможностей достигается благодаря установке еще одного блока контроля шлейфа. Название система получила благодаря используемому принципу работы. У каждого датчика есть свой порог чувствительности. При достижении его срабатывает оповещение.
    Недостатком пороговой системы является большое количество ложных сигналов. Прокладка совместно с другими кабелями только усугубляет ситуацию. Еще один минус – невозможность точного определения места возгорания. Система оповещает только о разрыве линии, поэтому проверять приходится весь шлейф радиального типа.
    К преимуществу решения можно отнести низкую стоимость оборудования и монтажных работ.
  2. Пороговые структуры с модульным шлейфом . Практически ничем не отличается от предыдущей схемы. Отличие состоит в том, что используемый модуль может контролировать работу многих линий одновременно. Параметры шлейфа позволяют дублировать сигнал оповещения, методом подключения двухпороговых конструкций.
  3. Адресно-аналоговые линии . Контроль над системой осуществляет модуль, к которому подключен кольцевой шлейф. Отличием адресно-аналогового устройства является то, что сам датчик не принимает решение о наличие возгорания, а просто передает необходимую информацию на пульт.
    Система с кольцевым построением шлейфов позволяет отсеивать ненужную информацию. Сигнал дублируется и передается на пульт контроля. Анализ позволяет отличить случаи возгорания от обрыва кабеля и других неисправностей шлейфов. Транзитная прокладка допускает использования длины кабеля до 2000 м.
  4. Комбинированные системы . Для вывода сигнала диспетчеру используется как пороговое, так и аналоговое оборудование. Современная сигнализация, в которой учитываются все недостатки предыдущих линий. Алгоритм поиска неисправностей шлейфа облегчен благодаря использованию кольцевой схемы.
    Комбинированные системы могут использоваться как внутри, так и снаружи помещения. Во втором случае используется экранированный кабель уличного исполнения.

Для некоторых категорий помещений ППБ устанавливают определенные ограничения по шлейфам. Монтаж исключительно негорючего провода, недопустимость скрытой проводки, прокладка в кабельном лотке – эти и другие ограничения описаны в СНиП 3.05.06-85 и ВСН 116-87.


Какой нужен кабель для ПС

Марка провода для монтажа определяется по категории пожароопасности здания и установленной системы оповещения. Решение об использовании термокабеля и других видов материалов принимается во время разработки проектной документации.

Во время выбора кабеля важную роль играют следующие показатели:

  • Расчет сечения. Недостаточная мощность и пропускная способность может привести к неточным показаниям датчиков. В случае пороговых систем слаботочный кабель, может стать причиной постоянного срабатывания ложной сигнализации.
  • Достаточная защита кабеля. Помимо теплоизоляции и наличия негорючей обмотки, может потребоваться понизить чувствительность шлейфа. В обычной ситуации можно сразу использовать защищенный провод. Но если по недосмотру или другим причинам ПС дает сбои из-за чувствительности кабеля, проводят измерение сопротивления изоляции шлейфа.
  • Маркировка. Предел огнестойкости кабелей, наличие экранирования шлейфа и другие показатели должны указываться на обмотке провода. Правила маркировки кабельных линий также требуют указывать коэффициент дымности и горючести.
Монтаж проводной пожарной сигнализации можно осуществлять исключительно промаркированным кабелем с обязательным указанием класса огнеопасности. Существуют классы провода, имеющие следующее буквенное обозначение:
  • НГ – негорючий - имеет классификацию по мере огнестойкости от A до D.
  • LS – рекомендована прокладка во взрывоопасных зонах, а также в групповом лотке. Не распространяют вредные испарения во время горения.
  • HF – при горении не выделяют вещества, обладающие высокими коррозионными свойствами. Допускается прокладка в кабельном лотке вместе с другими проводами сигнализации.
Бухты с проводом помимо обозначения на самой обмотке должны иметь маркировочную бирку и инструкцию по монтажу. Срок эксплуатации кабельной линии также указывается изготовителем.

Нормы по прокладке шлейфов зависят от используемой системы сигнализации и действующими требованиями ППБ. Перечень кабелей допустимых к применению приводится в СНиП и ПУЭ. Нарушения рекомендаций приводит к неисправности ПС.

Если кабель не соответствует нормам, при обнаружении этого, инспектор МЧС выпишет пояснительную записку и привлечет к административной ответственности с указанием сроков замены действующих шлейфов.

Способы прокладки шлейфов ПС

Монтаж и техническое обслуживание системы сигнализации описан в ВСН 116-87, дополнительные требования находятся в СНиП 3.05.06-85. Среди всех указаний можно выделить следующее: