Как определить длину люминесцентной лампы. Анализируем технические характеристики разных видов люминесцентных ламп

Весь мир уже давно твердит об экономии электроэнергии и под этот гомон навязывает покупку дорогих энергосберегающих ламп. Однако, уже лет 50 известен альтернативный лампам накаливания, способ освещения. Это освещение люминесцентными лампами. Правда вопрос их утилизации и эко безопасности оставляет массу вопросов.

Люминесцентные лампы: описание и устройство

Люминесцентные лампы, по внешнему виду, представляют собой стеклянную колбу, различной формы, белого цвета с торчащими на краях контактами подключения.

Справка: Первые люминесцентные лампы были созданы в России в 1936-40 году группой под руководством Вавилова С.И.

Форма люминесцентных ламп может быть в виде стержня (трубка), тора, или спиралей. При производстве из колбы лампы выкачивают воздух и закачивают инертный газ. Именно поведение инертного газа под действием электричества приводит к свечению лампы, создавая потоки холодного или теплого света, который принято называть «дневным». Отсюда второе название этих ламп, лампы дневного света.

Стоит отметить, что светить лампа не смогла, если бы с внутренней стороны на колбу не был нанесен люминофор, а в самой лампе не находилась бы ртуть.

Именно ртуть стала тем фактором, который вытесняет этот тип ламп с рынка. Опасность ртутных загрязнений при разбиении ламп вызывает много вопросов и экологов мира.

Как работает люминесцентная лампа

Инертный газ в лампе нужен для создания тлеющего разряд (поток ионизированных частиц инертного газа). Ртуть нужна для усиления этого разряда. Люминофор нужен для преобразования ультрафиолетового света, в свет видимого спектра. Электроды нужны для подключения лампы в электрическую схему и создания разряда электронов.

После подачи напряжения на контакты лампы, электроды внутри колбы начинают испускать электроны, которые перемещаясь по колбе, пытаются создать разряд. Однако, в нормальных параметрах схемы силы тока не достаточно для создания разряда. Поэтому, в схему подключения люминесцентной лампы обязательно включают устройство, создающее разовый электрический разряд для старта свечения.

Называется это устройство стартер фото. Его задача, при подаче электричества кратковременно увеличить силу токов 3-4 раза.

Для обеспечения запуска и работы (свечения) люминесцентной лампы (группы ламп), нужно другое устройство, называемое по-простому дроссель. Это название устарело фактически, но активно используется.

Правильное название дросселя, пускорегулирующий аппарат (ПРА). На сегодня, название дроссель (ПРА) преобразили в ЭмПРА и ЭПРА.

  • ЭмПРА: электромагнитный пуск–регулирующий аппарат;
  • ЭПРА: электронный пуск–регулирующий аппарат (электронный балласт).

ЭПРА более быстро зажигает лампу, не гудит при работе и регулирует запуск при пониженных напряжениях. Если старый дроссель, по сути, был увесистая электромагнитная катушка, то современный ЭПРА это компактные даже изящные устройства.

Типы люминесцентных ламп

Современные люминесцентные лампы различаются на:

  • Стандартные (люминофор в один слой);
  • С улучшенной светопередачей (люминофор в три или пять слоёв);
  • Специальные (люминофор со спец добавками: бактерицидные, УФ загар, шоу бизнес).

По спектру освещения ЛЛ делятся на:

  • Лампы мягкого света: t=2,7×1000 гр.;
  • Дневной свет: (2,7 – 4,2)×1000 гр.;
  • Холодный свет: (4,2 – 6,4)×100 гр.

Отсюда обозначения:

  • Д — дневной;
  • ХБ — холодный белый;
  • Б — белый;
  • ТБ — теплый белый;
  • Е — естественный белый;
  • К, Ж, 3, Г, С — цвета;
  • УФ – ультрафиолет;
  • Ц-улучшенная светопередача;
  • ЦЦ — сверх улучшенная светопередача.

Последними в маркировке ламп стоят буквы обозначающие особенность конструкции:

  • Р — рефлектор,
  • У – в форме буквы U,
  • К — кольцо,
  • А – amalgama (сплав ртути),
  • Б – быстрый пуск.
  • ТЛ – тлеющий разряд.

Маркировка импортных ламп

Маркировку импортных ламп компаний Fhilips, Osram, General Electric смотрим на фото.

Для завершения покажу три схемы простого подключения люминесцентных ламп в светильнике дневного света на одну и две лампы.

Люминесцентные источники дневного света пришли на смену намного менее эффективным аналогам, в частности, лампам накаливания. Они характеризуются немалым количеством плюсов, которые могут перевесить недостатки. Учитывая сравнительно небольшую стоимость, такие осветительные элементы сегодня применяются довольно широко.

Принцип действия и строение

Функционируют лампы дневного света по принципу явления люминесценции. Для этого внутренние стенки колбы должны быть покрыты люминофором. Это специальное вещество, которое поглощает ультрафиолетовый свет, и выдает видимое глазу свечение. Следует отметить, что УФ-излучение продуцируется в результате прохождения электрического заряда через газообразное наполнение колбы (инертный газ, пары ртути).

Основные элементы конструкции: колба, внутри которой находятся электроды; цоколь в количестве 1 или 2 шт. в зависимости от исполнения лампы; пускорегулирующий аппарат. Последний из названных элементов может быть встроенным или вынесенным.

Боле новый и совершенный вариант – электронный ПРА, но люминесцентные источники дневного света линейного типа сегодня часто оснащаются вынесенными электромагнитными ПРА.

Устройство и схема подключения

В состав пускорегулирующего аппарата входит дроссель и стартер. Задача первого из названных узлов – ограничение силы тока до нужного значения, стартер же ответственен за более быстрый нагрев электродов, а значит, и ускоренное срабатывание лампы.

Схема включения источника света более новых моделей (Т 5 или Т8):

Процесс включения осветительного элемента обеспечивается посредством реализации основных этапов:

  • нагрев электродов;
  • процесс поджига, для которого требуется высоковольтный импульс;
  • стабилизация напряжения, благодаря чему обеспечивается нормальный и достаточно щадящий режим работы осветительного элемента.

Кроме того, современные люминесцентные лампы защищены от перегорания, что позволяет избежать необходимости частой замены источников света.

Какие существуют виды?

Различают несколько разновидностей, отличных по форме колбы:

  1. линейные (прямые) исполнения;
  2. кольцевые;
  3. U-образные.

Люминесцентные источники дневного света встречаются в разных вариациях, отличных по длине изделия. Это может быть колба 450, 600, 900, 1200, 1500 мм. Примечательно, что по значению данного параметра можно определить уровень мощности лампы.

Это значит, что между указанными характеристиками наблюдается прямая зависимость. Чем больше длина, тем выше величина создаваемой нагрузки. Например, исполнение длиной 450 мм характеризуется мощностью 15 Вт, а в конструкции 900 мм уровень нагрузки равен 30 Вт.

Люминесцентные источники дневного света представлены разными исполнениями, которые отличаются диаметром колбы:

В обозначении зашифрован размер изделия в дюймах (например, диаметр 4/8 для Т4). Еще одна особенность заключается в том, что линейные лампы обычно оснащаются штырьковым типом держателя в единственном варианте – G13. В обозначении этого цоколя скрыта информация о расстоянии между штырьками (13 мм). Соответственно, при выборе светильников нужно учитывать этот нюанс.

Понятие «лампочки дневного света» строится на основной характеристике – цветовой температуре изделия. Так, данный род осветительных элементов характеризуется температурой света в пределах от 5 000 до 6 500 К. Но качество освещения обеспечивает еще и уровень яркости источника света: чем ниже интенсивность излучения, тем сильнее будут искажены цвета.

Основные технические характеристики

Оценка эффективности работы осветительных элементов данного вида осуществляется на основании соответствия их параметров тем условиям, при которых планируется эксплуатация. Люминесцентные лампы отличаются такими характеристиками:

  1. Обозначение изделия. Дневной свет определяется буквой Д.
  2. Диаметр колбы. Данный параметр влияет на продолжительность работы: чем больше его значение, тем дольше будет функционировать изделие.
  3. Значение мощности, благодаря чему определяется возможность лампочки осветить требуемый участок. Если сравнить с лампой накаливания, то рассматриваемый аналог экономит до 80% энергии благодаря невысокому уровню мощности.
  4. Тип цоколя. В линейных исполнениях обычно применяется держатель G13.
  5. Напряжение источника питания. Различают люминесцентные лампы, которые рассчитаны на 220 или 127 В.
  6. Форма колбы.
  7. Цветовая температура. В зависимости от модели осветительный элемент может характеризоваться температурой в пределах от 5 000 К и выше.
  8. Индекс цветопередачи – показывает, насколько качественное освещение.
  9. Диаметр трубки.
  10. Световой поток изделия.

Классификация и характеристики различных производителей

Как видно, характеристик довольно много, но зато все они в совокупности позволяют более точно подобрать осветительный элемент в соответствии с условиями эксплуатации.

Плюсы и минусы ламп данного вида

Люминесцентные источники света выделяются на фоне галогенных ламп и аналогов с нитью накаливания благодаря следующим преимуществам:

  • высокий КПД;
  • отличная светоотдача, что позволяет при небольшой мощности выдавать яркий свет;
  • качество освещения (рассеянное свечение);
  • низкое энергопотребление, опять же, если сравнивать с лампами накаливания;
  • долговременная эксплуатация (в среднем 6 000-9 000 часов), при условии соблюдения идеальных условий работы подобные лампочки способны функционировать в несколько раз дольше (до 20 000 часов).

Ртутьсодержащие источники света имеют главный недостаток – наличие опасных веществ в составе газообразного наполнения. Содержание ртути в колбе линейного осветительного элемента может достигать 1 г на единицу изделия. Учитывая довольно крупные габариты и тонкое стекло, из которого изготовлена колба, нужно обращаться с такими лампочками предельно осторожно. Другие минусы:

  • узкий диапазон рабочих температур, так как осветительные элементы данного вида характеризуются снижением интенсивности свечения в условиях холода, а при минусовой температуре такая лампочка может вовсе не включиться;
  • мерцание, что обусловлено конструктивными особенностями, отчасти данную проблему решает электронный пускорегулирующий аппарат;
  • спустя некоторый отрезок времени люминесцентные лампы светят хуже, что обусловлено выработкой слоя люминофора, а в результате изменяется цветовая температура.

Как видно, проблем, связанных с работой подобных осветительных элементов, немало. Но все же они продолжают использоваться благодаря относительной экономичности и более высокой эффективности, чем лампы накаливания.

Критерии выбора

Перед покупкой следует принять во внимание особенности помещения (площадь, возможность установки крупногабаритного источника света), на основании чего подбирается осветительный элемент нужной модели.

В первую очередь следует учесть мощность изделия, цветовую температуру, значение питающего напряжения. Остальные характеристики являются второстепенными, но при этом не менее важными: диаметр, длина и форма трубки, индекс цветопередачи, световой поток.

Качество сборки должно быть высоким, учитывая присутствие опасных веществ в составе газообразного наполнения. Сегодня можно купить линейные источники света по небольшой цене даже от известных и надежных производителей – Osram стоимостью в пределах 60-100 руб. Причем указана ценовая категория изделий большой мощности и наиболее крупных габаритов (1 500 мм).

Нюансы эксплуатации и утилизации

Особенностей в работе линейных ламп немало: не моментальное срабатывание; иногда требуется повторное включение из-за того, что не произошел поджиг; мерцание; затруднительная эксплуатация в условиях низких температур, а порой и полное отсутствие реакции при коммутации.

Кроме того, есть и другие проблемы, а именно, необходимость утилизации источника света при повреждении колбы или после окончания срока службы.

Наиболее распространены газоразрядные лампы высокого и низкого давления.

  • лампы высокого давления применяют в основном в уличном освещении и в осветительных установках большой мощности;
  • лампы низкого давления применяют для освещения жилых и производственных помещений.

Газоразрядная ртутная лампа низкого давления (ГРЛНД) - представляет собой стеклянную трубку с нанесённым на внутреннюю поверхность слоем люминофора, заполненную аргоном под давлением 400 Па и (или амальгамой).

Преимущества и недостатки

Популярность люминесцентных ламп обусловлена их преимуществами (над лампами накаливания):

К недостаткам относят:

  • наличие дополнительного приспособления для пуска лампы - пускорегулирующего аппарата (громоздкий шумный дроссель с ненадёжным стартером или же ЭПРА);
  • мерцание лампы с частотой питающей сети (нивелируется применением ЭПРА);
  • вышедший из строя стартёр вызывает фальстарт лампы (визуально определяется несколько вспышек перед стабильным зажиганием), сокращая срок службы нитей накала;
  • очень низкий коэффициент мощности ламп - такие лампы являются неудачной для электросети нагрузкой;
Существуют и более мелкие недостатки .

История

Первым предком лампы дневного света были газоразрядные лампы. Впервые свечение газов под воздействием электрического тока наблюдал Михаил Ломоносов, пропуская ток через заполненный водородом стеклянный шар. Считается что первая газоразрядная лампа изобретена в 1856 году. Генрих Гайсслер получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида. 23 июня 1891 года Никола Тесла запатентовал систему электрического освещения газоразрядными лампами (патент № 454,622), которая состояла из источника высокого напряжения высокой частоты и газоразрядных аргоновых ламп запатентованных им ранее (патент № 335,787 от 9 февраля 1886 г. выдан United States Patent Office). Аргоновые лампы используются и в настоящее время. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет сине-зелёного цвета, и таким образом была непригодна в практических целях. Однако, её конструкция была очень близка к современной, и имела намного более высокую эффективность, чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Гермер (Edmund Germer) и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой в более однородно бело-цветной свет. Э.Гермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Гермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году. В СССР первые люминесцентные лампы были разработаны под руководством академика С. И. Вавилова В. А. Фабрикантом , Ф. А. Бутаевой и др .

Принцип работы

При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы, возникает тлеющий разряд . Лампа заполнена инертным газом и парами ртути, проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции . Внутренние стенки лампы покрыты специальным веществом - люминофором , которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора, можно менять оттенок свечения лампы. В качестве люминофора используют в основном галофосфаты кальция и ортофосфаты кальция-цинка.

Маркировка

Трёхцифровой код на упаковке лампы содержит как правило информацию относительно качества света (индекс цветопередачи и цветовой температуры).

Первая цифра - индекс цветопередачи в 1х10 Ra (компактные люминесцентные лампы имеют 60-98 Ra, таким образом чем выше индекс, тем достоверней цветопередача)

Вторая и третья цифры - указывают на цветовую температуру лампы.

Таким образом маркировка «827» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 (что соответствует цветовой температуре лампы накаливания)

Кроме того, индекс цветопередачи может обозначаться в соответствии с DIN 5035, где диапазон цветопередачи 20-100 Ra поделён на 6 частей- от 4 до 1А. (нем.)

Особенности восприятия

Цветовосприятие человека сильно изменяется в зависимости от яркости. При небольшой яркости мы лучше видим синий и хуже красный. Поэтому цветовая температура дневного света (5000-6500K) в условия низкой освещённости будет казаться чрезмерно синей. Средняя освещённость жилых помещений - 75 люкс, в то время как в офисах и других рабочих помещениях - 400 люкс. При небольшой яркости (50-75 люкс) наиболее естественным выглядит свет с температурой 3000K. При яркости в 400 люкс такой свет уже кажется жёлтым, а наиболее естественным кажется свет с температурой 4000-6000K.

Международная маркировка по цветопередаче и цветовой температуре

Код Определение Особенности Применение
530 Basic warmweiß / warm white Свет тёплых тонов с плохой цветопередачей. Объекты кажутся коричневатыми и малоконтрастными. Посредственная светоотдача. Гаражи, кухни. В последнее время встречается всё реже.
640/740 Basic neutralweiß / cool white «Прохладный» свет с посредственной цветопередачей и светоотдачей Весьма распространён, должен быть заменён на 840
765 Basic Tageslicht / daylight Голубоватый «дневной» свет с посредственной цветопередачей и светоотдачей Встречается в офисных помещениях и для подсветки рекламных конструкций (ситилайтов)
827 Lumilux interna Похожий на свет лампы накаливания с хорошей цветопередачей и светоотдачей Жильё
830 Lumilux warmweiß / warm white Похожий на свет галогеновой лампы с хорошей цветопередачей и светоотдачей Жильё
840 Lumilux neutralweiß / cool white Белый свет для рабочих поверхностей с очень хорошей цветопередачей и светоотдачей Общественные места, офисы, ванные комнаты, кухни. Внешнее освещение
865 Lumilux Tageslicht / daylight «Дневной» свет с хорошей цветопередачей и посредственной светоотдачей Общественные места, офисы. Внешнее освещение
880 Lumilux skywhite «Дневной» свет с хорошей цветопередачей Внешнее освещение
930 Lumilux Deluxe warmweiß / warm white «Тёплый» свет с отличной цветопередачей и плохой светоотдачей Жильё
940 Lumilux Deluxe neutralweiß / cool white «Холодный» свет с отличной цветопередачей и посредственной светоотдачей. Музеи, выставочные залы
954, 965 Lumilux Deluxe Tageslicht / daylight «Дневной» свет с непрерывным спектром цветопередачи и посредственной светоотдачей Выставочные залы, освещение аквариумов

Маркировка цветопередачи по ГОСТ 6825-91*

Люминесцентная лампа производства СССР мощностью 20 Вт(«ЛД-20»). Зарубежный аналог этой лампы - TLD 20W

В соответствии с ГОСТ 6825-91* (МЭК 81-84) «Лампы люминесцентные трубчатые для общего освещения», действующий, лампы люминесцентные линейные общего назначения маркируются, как:

  • ЛБ (белый свет)
  • ЛД (дневной свет)
  • ЛЕ (естественный свет)
  • ЛХБ (холодный свет)
  • ЛТБ (тёплый свет)

Добавление буквы Ц в конце означает применение люминофора «де-люкс» с улучшенной цветопередачей, а ЦЦ - люминофора «супер де-люкс» с высококачественной цветопередачей.

Лампы специального назначения маркируются, как:

Параметры выпускавшихся в СССР ламп по цветопередаче приведены в таблице:

Аббревиатура Расшифровка Оттенок Цветовая т-ра, К Назначение Цветопередача Примерный эквивалент по международной маркировке
Лампы дневного света
ЛДЦ, ЛДЦЦ Лампы дневного света, с улучшенной цветопередачей; ЛДЦ - де-люкс, ЛДЦЦ - супер-де-люкс Белый с лёгким голубоватым оттенком и относительно низкой светоотдачей 6500 Для музеев , выставок , в фотографии , в производственных и административных помещениях с повышенными требованиями к цветопередаче, образовательных учреждениях , жилых помещениях Хорошая (ЛДЦ), отличная (ЛДЦЦ) 865 (ЛДЦ),
965 (ЛДЦЦ)
ЛД Лампы дневного света Белый с лёгким голубоватым оттенком и высокой светоотдачей 6500 В производственных и административных помещениях без высоких требований к цветопередаче Приемлемая 765
Лампы естественного света
ЛЕЦ, ЛЕЦЦ Лампы естественного света, с улучшенной цветопередачей; ЛЕЦ - де-люкс, ЛЕЦЦ - супер-де-люкс Солнечно-белый с относительно низкой светоотдачей 4000 Для музеев, выставок, в фотографии, в образовательных учреждениях, жилых помещениях Приемлемая (ЛЕЦ), хорошая (ЛЕЦЦ) 754 (ЛЕЦ),
854 (ЛЕЦЦ)
ЛЕ Лампы естественного света Белый без оттенка и высокой светоотдачей 4000 Неудовлетворительная 640
Другие осветительные лампы
ЛБ Лампы белого света Белый с лиловатым оттенком, плохой цветопередачей и высокой светоотдачей 3500 В помещениях, где нужен яркий свет и не требуется цветопередача: производственных и административных помещениях, в метрополитене Неудовлетворительная 635
ЛХБ Лампы холодно-белого света Белый с заметным голубым оттенком 4850 Неудовлетворительная 685
ЛТБ Лампы тёпло-белого света Белый с «тёплым» розовым оттенком, для освещения помещений, богатых бело-розовыми тонами 2700 В продовольственных магазинах , предприятиях общественного питания Относительно приемлемая для тёплых тонов, неудовлетворительная для холодных 530, 630
ЛТБЦ Лампы тёпло-белого света с улучшенной цветопередачей Белый с «тёплым» розовым оттенком 2700 Такое же, как и для ЛТБ, а также для жилых помещений. Приемлемая для тёплых тонов, менее удовлетворительная для холодных 730
Лампы специального назначения
ЛГ, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР Лампы с цветным люминофором ЛГ - голубой,
ЛК - красный,
ЛЗ - зелёный,
ЛЖ - жёлтый,
ЛР - розовый,
ЛГР - лиловый
- Для светового дизайна , художественной подсветки зданий, вывесок, витрин - ЛГ: 67, 18, BLUE
ЛК: 60, 15, RED
ЛЗ: 66, 17, GREEN
ЛЖ: 62, 16, YELLOW
ЛСР Лампы синие рефлекторные Лампы ярко-синего света - В электрофотографических копировально-множительных аппаратах - -
ЛУФ Ультрафиолетовые лампы Лампы тёмно-синего света с выраженной ультрафиолетовой компонентой - Для ночной подсветки и дезинфекции в медицинских учреждениях , казармах и т. д., а также в качестве «чёрного света» для светового дизайна в ночных клубах , на дискотеках и т. п. - 08

Особенности подключения

Дешёвый вариант электронного подключения

Люминесцентная лампа, в отличие от лампы накаливания, не может быть включена напрямую в электрическую сеть. Причин для этого две:

  • Для зажигания дуги в люминесцентной лампе требуется импульс высокого напряжения.
  • Люминесцентная лампа имеет отрицательное дифференциальное сопротивление , после зажигания лампы ток в ней многократно возрастает. Если его не ограничить, лампа выйдет из строя.

Для решения этих проблем применяют специальные устройства - балласты. Наиболее распространённые на сегодняшний день схемы: электромагнитный балласт с неоновым стартером и различные разновидности электронных балластов.

Электромагнитный балласт

Электромагнитный балласт «1УБИ20» серии 110 завода ВАТРА, СССР.

Современный Электромагнитный балласт «L36A-T» завода Helvar, Финляндия.

Электромагнитный балласт представляет собой электромагнитный дроссель , подключаемый последовательно с лампой. Последовательно нитям лампы подключается стартер, представляющий собой неоновую лампу с биметаллическими электродами и конденсатор. Дроссель формирует за счёт самоиндукции запускающий импульс, а также ограничивает ток через лампу. В настоящее время преимуществами электромагнитного балласта являются простота конструкции, надёжность и низкая стоимость. Недостатков же такой схемы достаточно много:

  • Долгий запуск (1-3 сек в зависимости от степени износа лампы);
  • Большее потребление энергии, чем у электронной схемы - при напряжении 220 Вольт светильник 2 по 58 Ватт = 116 Ватт потребляет 130 Ватт;
  • Малый cos φ =0.5 (без компенсирующих конденсаторов);
  • Низкочастотный гул (100Гц), исходящий от дросселя, возрастающий со старением дросселя;
  • Мерцание лампы с удвоенной частотой сети, которое может повредить зрение, а иногда бывает опасным (из-за стробоскопического эффекта вращающиеся синхронно с частотой сети предметы могут казаться неподвижными. Поэтому люминесцентные лампы с электромагнитным балластом не рекомендуется применять для освещения подвижных частей станков и механизмов);
  • Большие габариты и масса;
  • При температуре ниже 10 °C яркость лампы значительно снижается ввиду уменьшения давления газа в лампе;
  • При отрицательных температурах лампы по классической схеме могут не зажигаться вообще, при этих условиях применяются автотрансформаторы.

Электронный балласт

Электронный балласт подаёт на электроды лампы напряжение не с частотой сети, а высокочастотное (25-133 кГц), в результате чего заметное для глаз мигание ламп исключено. Однако высокочастотные колебания, проходя через лампу, как антенну, создают электромагнитные помехи в широком спектре, поэтому радиодиапазон ДВ - длинные волны, начинающийся с 150 кГц, стал не пригоден для использования, но аргументировали это тем, что невыгодно строить антенны большого размера и перешли на диапазон УКВ, волны которого распространяются только в пределах прямой видимости и нужны повторители-репитеры.

Может использоваться один из двух вариантов запуска ламп:

  • Холодный запуск - при этом лампа зажигается сразу после включения. Такую схему лучше использовать в случае, если лампа включается и выключается редко, так как режим холодного пуска более вреден для электродов лампы.
  • Горячий запуск - с предварительным прогревом электродов. Лампа зажигается не сразу, а спустя 0,5-1 сек, зато срок службы увеличивается, особенно при частых включениях и выключениях.

Потребление электроэнергии люминесцентными светильниками при использовании электронного балласта обычно на 20-25 % ниже. Материальные затраты (медь, железо) на изготовление и утилизацию меньше в несколько раз. Использование централизованных систем освещения с автоматической регулировкой позволяет сэкономить до 85 % электроэнергии. Существуют электронные балласты с возможностью диммирования (регулировки яркости) путём изменения скважности тока питания лампы.

Механизм запуска лампы с электромагнитным балластом

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампу, обычно неоновую. Один электрод стартера неподвижный жёсткий, другой - биметаллический, изгибающийся при нагреве. Есть также стартеры и с двумя гибкими электродами (симметричные). В исходном состоянии электроды стартера разомкнуты. Стартер подключен параллельно лампе так, чтобы при замыкании его электродов ток проходил через спирали лампы.

В момент включения к электродам лампы и стартера прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные, разряд отсутствует, и напряжения сети недостаточно для её зажигания. Но в стартере от приложенного напряжения возникает тлеющий разряд, и ток проходит через электроды лампы и стартера. Ток разряда мал для разогрева электродов лампы, но достаточен для разогрева электродов стартера, отчего биметаллическая пластинка, изгибается и замыкается с жёстким электродом. Ток течет через электроды лампы и разогревает их. Когда электроды стартера остывают, цепь размыкается, и благодаря самоиндукции происходит бросок напряжения на дросселе, необходимый для зажигания разряда. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для обеспечения условия возникновения резонанса тока совместно с индуктивностью дросселя и, вследствие, зажигания лампы. При отсутствии конденсатора этот импульс будет слишком коротким, а амплитуда слишком большой, и энергия, накопленная в дросселе, израсходуется на разряд в стартере. К моменту размыкания стартера электроды лампы уже достаточно разогреты, но в лампе ещё не вся ртуть испарилась и разряд проходит в атмосфере аргона , из-за чего разряд в лампе неустойчивый и процесс запуска может повториться неоднократно. Как только вся ртуть в колбе лампы испаряется в достаточном количестве, лампа выходит на рабочий режим.

Рабочее напряжение лампы ниже сетевого за счёт падения напряжения на дросселе, поэтому повторного срабатывания стартера не происходит. В процессе зажигания лампы стартер иногда срабатывает несколько раз подряд, если он размыкается в момент, когда мгновенное значение тока дросселя равно нулю, либо электроды лампы ещё недостаточно разогреты. По мере износа рабочее напряжение растёт, количество циклов срабатывания стартера увеличивается, и в конце концов лампа уже не может выйти на рабочий режим. Это вызывает характерное мигание вышедшей из строя лампы. Когда лампа гаснет, можно видеть свечение катодов, разогретых током, протекающим через стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного балласта обычно не требуется отдельный специальный стартер, так как такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют различные способы запуска люминесцентных ламп. Чаще всего электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, обычно - переменное и более высокой частоты, чем сетевое (что заодно устраняет мерцание лампы, характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать, например, плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска, когда лампа запускается не только за счет факта подогрева катодов лампы, но и за счет того, что цепь, в которую включена лампа, является колебательным контуром. Параметры колебательного контура подбираются так, что при отсутствии разряда в лампе в контуре возникает явление электрического резонанса , ведущее к значительному повышению напряжения между катодами лампы. Как правило, это ведет и к росту тока подогрева катодов, поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно высокого напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, добротность уменьшается и ток в контуре значительно падает, уменьшая нагрев катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам, что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям, применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей, поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов, которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности, этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычными люминесцентными лампами со встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может ещё долго служить невзирая на перегорание спиралей подогрева, и её срок службы будет ограничен только временем до полного распыления электродов.

Причины выхода из строя

Проверка электродов одной стороны на целостность. Сопротивление 9,9Ω говорит о том, что нить электрода на этой стороне цела.

Проверка электродов одной стороны на целостность. Бесконечно большое сопротивление говорит о том, что нить электродов разорвана. Вторым признаком является потемнение вблизи электрода.

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный разряд и предохраняет вольфрамовые нити от перегрева. В процессе работы она постепенно осыпается с электродов, выгорает и испаряется. Особенно интенсивно она осыпается во время запуска, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к локальным перепадам температур. Поэтому люминесцентные лампы всё же имеют конечный срок службы (он зависит главным образом от качества изготовления электродов, скорости зажигания), хотя он и больший, чем у обычных ламп накаливания, у которых спираль с постоянной скоростью испаряется. Отсюда потемнение на концах лампы, которое усиливается ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать.

Выход из строя ламп с электромагнитным балластом

Повышение напряжения на лампе в процессе её старения приводит к тому, что начинает постоянно срабатывать стартер - отсюда всем известное мигание вышедших из строя ламп. При этом электроды лампы постоянно разогреваются, и в конце концов (примерно через 2 - 3 дня мигания) одна из нитей перегорает. Затем минуту-две лампа горит без мерцания, разряд исходит от остатков перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после этого разряд переходит на траверсу (проволоку, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется и лампа вновь начинает мерцать. Если её выключить, она больше не загорится. При этом из-за длительной работы в непрерывном режиме часто выходит из строя и стартер, так что при замене лампы приходится менять и его тоже. При выходе из строя стартера из-за плохого качества (замыкание биметаллических контактов или пробой конденсатора) электроды лампы разогреваются и через несколько дней перегорают. При пробое дросселя лампа сгорает мгновенно.

Выход из строя ламп с электронным балластом

В процессе старения лампы постепенно выгорает активная масса электродов, после чего нити разогреваются и перегорают. В качественных балластах предусмотрена схема автоматического отключения перегоревшей лампы. В некачественных ЭПРА подобная защита отсутствует, и после повышения напряжения лампа погаснет, а в цепи наступит резонанс, приводящий к значительному возрастанию тока и перегоранию транзисторов балласта.

Также нередко в балласты низкого качества (обычно на компактных люминесцентных лампах со встроенным балластом) на выходе устанавливается конденсатор , рассчитанный на напряжение, близкое к рабочему напряжению новой лампы. По мере старения лампы напряжение повышается и в конденсаторе возникает пробой, также выводящий из строя транзисторы балласта .

При выходе из строя лампы с электронным балластом мерцание, как в случае с электромагнитным балластом, отсутствует, лампа гаснет сразу. Установить причину выхода из строя можно, проверив целостность нитей лампы любым омметром , мультиметром или специализированным прибором для проверки ламп. Если нити лампы имеют низкое сопротивление (порядка 10 Ом, то есть не перегорели), то причина выхода из строя в низком качестве балласта, если одна либо обе из нитей имеют высокое (бесконечное) сопротивление, то лампа перегорела от старости либо от перенапряжения. В последнем случае имеет смысл попробовать заменить саму лампу, однако, если новая лампа также не светится и питание схемы балласта присутствует, то это также говорит о низком качестве балласта (при этом есть риск испортить и новую лампу).

Люминофоры и спектр излучаемого света

Типичный спектр люминесцентной лампы.

Многие люди считают свет, излучаемый люминесцентными лампами, грубым и неприятным. Цвет предметов, освещенных такими лампами, может быть несколько искажён. Отчасти это происходит из-за синих и зелёных линий в спектре излучения газового разряда в парах ртути, отчасти - из-за типа применяемого люминофора, отчасти от неправильно выбранной лампы, предназначенной для складов и нежилых помещений.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, но при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы, как правило, имеют очень высокую световую отдачу.

Если учесть, что в человеческом глазе три типа цветовых рецепторов, и восприятие сплошного спектра - лишь результат работы мозга, то стремиться воссоздавать сплошной солнечный спектр нет необходимости, достаточно воссоздать такое же воздействие на эти три рецептора. Этот принцип давно используется в цветном телевидении и цветной фотографии. Поэтому в более дорогих лампах используется «трёхполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы, как правило, имеют меньшую световую отдачу.

Колбы специальных ламп изготавливаются из увиолевого стекла, пропускающего лучи в ультрафиолетовом диапазоне волн.

В домашних условиях оценить спектр лампы можно с помощью компакт-диска. Для этого нужно посмотреть на отражение света лампы от рабочей поверхности диска - в дифракционной картине будут видны спектральные линии люминофора. Если лампа расположена близко, между лампой и диском лучше поместить экран с маленьким отверстием.

Специальные люминесцентные лампы

Также существуют специальные люминесцентные лампы с различными спектральными характеристиками:

  • Лампы дневного света, отвечающие самым высоким требованиям к цветопередаче естественного цвета при дневном освещении 5400К, служат для устранения эффекта цветовой мимикрии. Она незаменима в случаях, когда нужна атмосфера живого дневного света, например, в типографиях, картинных галереях, музеях, зубоврачебных кабинетах, и лабораториях, при просмотре диапозитивов и в специализированных магазинах текстильных товаров.
  • Лампы дневного света, которые излучают свет, который по своей спектральной характеристике схож с солнечным светом. Данные лампы рекомендуется для помещений с недостатком дневного света, например для офисов, банков и магазинов. Благодаря своей очень хорошей цветопередаче и высокой температуре цвета (6500К) она идеально подходит для сравнения красок и медицинской светотерапии.
  • Лампы дневного света для растений и аквариумов с усиленным излучением в спектральном диапазоне синего и красного света. Идеально воздействует на фотобиологические процессы. Данные лампы с обозначениями излучают свет с минимальным содержанием ультрафиолетовой составляющей типа А (при абсолютном отсутствии ультрафиолетовых составляющих типа В и С). Обычно комбинируются с лампами дневного света (5400K - 6700K), для придания естественности фонового освещения.
  • Лампы для морских обитателей аквариумов с излучением в диапазоне синего цвета и ультрафиолета . Служат для придания естественной окраски кораллов и обитателей коралловых рифов . Также, данные лампы позволяют некоторым видам кораллов флуоресцировать , что в свою очередь «оживляет» композицию. Обычно комбинируются с лампами дневного света (5400K - 6700K), для придания естественности фонового освещения.
  • Декоративные лампы красного, жёлтого, зелёного, синего и малинового цветов. Цветные люминесцентные лампы особенно пригодны для декоративного освещения и создания специальных световых эффектов. Цвет лампы получают применением специального люминофора или окрашиванием колбы.Помимо прочего, люминесцентная лампа жёлтого цвета не содержит в своем спектре ультрафиолетовую составляющую. Поэтому эта лампа рекомендована для стерильных производств, например, для цехов по изготовлению микросхем (в подобном производстве используют фоторезисты - вещества, реагирующие с УФ), а также для общего освещения без УФ-излучения.
  • Люминесцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы . Спектр этих ламп содержит ближний ультрафиолет , что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырёхкомпонентное зрение.

Светильники из ламп «чёрного» света

  • Лампы со специальными цветовыми характеристиками:
    • лаков , красок на глубину не более 1 мм; лечение гипербилирубинемии .
    • для полимеризации пластмасс, клеев, лаков , красок на глубину более 1 мм; лечение псориаза ; привлечения насекомых в инсектоловушки; для распознавания подделок.

Варианты исполнения

Люминесцентные лампы - газоразрядные лампы низкого давления - разделяются на линейные и компактные.

Линейные лампы

Линейная люминесцентная лампа - ртутная лампа низкого давления прямой, кольцевой или U-образной формы, в которой большая часть света излучается люминесцентным покрытием, возбуждаемым ультрафиолетовым излучением разряда. Часто такие лампы совершенно неправильно называют - колбчатыми или трубчатыми, такое определение является устаревшим, хотя не противоречит ГОСТ 6825-91 , в котором принято обозначение «трубчатые».

Двухцокольная прямолинейная люминесцентная лампа представляет собой стеклянную трубку, по концам которой вварены стеклянные ножки с укрепленными на них электродами (спиральными нитями подогрева). На внутреннюю поверхность трубки наносится тонкий слой кристаллического порошка - люминофора. Трубка заполнена инертным газом или смесью инертных газов (Ar, Ne, Kr) и герметически запаяна. Внутрь вводится дозированное количество ртути, которая при работе лампы переходит в парообразное состояние. На концах лампы имеются цоколи с контактными штырьками для подключения лампы в цепь.

Линейные лампы различаются по:

  • Длине трубки (обычно длина трубки пропорциональна потребляемой мощности):
  • Диаметру трубки и имеют следующие обозначения:
Обозначение Диаметр в дюймах Диаметр в мм
T4 4/8 12,7
T5 5/8 15,9
T8 8/8 25,4
T10 10/8 31,7
T12 12/8 38,0
  • Тип цоколя G13 - расстояние между штырьками 13 мм.

Лампы такого типа часто можно увидеть в производственных помещениях, офисах , магазинах , на транспорте и т. д.

В практике производителей светодиодных светильников и ламп часто также встречается обозначение ламп типа «Т8» или «Т10», а также цоколя «G13». Светодиодные лампы могут быть установлены в стандартный светильник (после его незначительной доработки) для люминесцентных ламп. Но принцип действия отличается и кроме внешнего сходства они ничего общего с люминесцентными лампами не имеют.

Компактные лампы

Компактные люминесцентные лампы

Представляют собой лампы с изогнутой трубкой. Различаются по типу цоколя на:

  • G24
    • G24Q1
    • G24Q2
    • G24Q3

Выпускаются также лампы под стандартные патроны E27, E14 и Е40 что позволяет использовать их во многих светильниках вместо ламп накаливания.

Безопасность и утилизация

Все люминесцентные лампы содержат (в дозах от 1 до 70 мг), ядовитое вещество 1-го класса опасности. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся отстраниться от проблемы.

Добавить сайт в закладки

  1. Высокая эффективность: КПД - 20-25% (у ламп накаливания около 7%) и светоотдача в 10 раз больше.
  2. Длительный срок службы – 15000-20000 ч. (у ламп накаливания - 1000 ч., сильно зависит от напряжения) питания.

Имеют ЛЛ и некоторые недостатки:

  1. Как правило, все разрядные лампы для нормальной работы требуют включения в сеть совместно с балластом. Балласт, он же пускорегулирующий аппарат (ПРА), -- электротехническое устройство, обеспечивающее режимы зажигания и нормальной работы ЛЛ.
  2. Зависимость устойчивой работы и зажигания лампы от температуры окружающей среды (допустимый диапазон 55 о C, оптимальной считается 20 о C). Хотя этот диапазон постоянно расширяется с появлением ламп нового поколения и использованием электронных балластов (ЭПРА).

Остановимся подробнее на достоинствах и недостатках ЛЛ. Известно, что оптическое излучение (ультрафиолетовое, видимое, инфракрасное) оказывает на человека (его эндокринную, вегетативную, нервную системы и весь организм в целом) значительное физиологическое и психологическое воздействие, в основном благотворное.

Дневной свет -- самый полезный. Он влияет на многие жизненные процессы, обмен веществ в организме, физическое развитие и здоровье. Но активная деятельность человека продолжается и тогда, когда солнце скрывается за горизонты. На смену дневному свету приходит искусственное освещение. Долгие годы для искусственного освещения жилья использовались (и используются) только лампы накаливания – теплый источник света, спектр которого отличается от дневного преобладанием желтого и красного излучения и полным отсутствием ультрафиолета.

Кроме того, лампы накаливания, как уже упоминалось, неэффективны, их коэффициет полезного действия - 6-8%, а срок службы очень мал – не более 1000 ч. Высокий технический уровень освещения с этими лампами невозможен.

Вот почему вполне закономерным оказалось появление ЛЛ – разрядного источника света, имеющего 5-10 раз большую световую отдачу, чем лампы накаливания, и в 8-15 раз больший срок службы. Преодолев различные технические трудности, ученые и инженеры создали специальные ЛЛ для жилья – компактные, практически полностью копирующие привычный внешний вид и размеры ламп накаливания и сочетающие при этом ее достоинства (комфортную цветопередачу, простоту обслуживания) с экономичностью стандартных ЛЛ.

В силу своих физических особенностей ЛЛ имеют еще одно очень важное преимущество перед лампами накаливания: возможность создавать свет различного спектрального состава – теплый, естественный, белый, дневной, что может существенно обогатить цветовую палитру домашней обстановки. Не случайно существуют специальные рекомендации по выбору типа ЛЛ (цветности света) для различных областей применения. Наличие контролируемого ультрафиолета в специальных осветительно-облучательных ЛЛ позволяет решить проблему профилактики «светового голодания» для городских жителей, проводящих до 80% времени в закрытых помещениях.

Так, лампы, выпускаемые фирмой OSRAM ЛЛ типа BIOLUX, спектр излучения которых приближен к солнечному и насыщен строго дозированным ближним ультрафиолетом, успешно используются одновременно и для освещения, и для облучения жилых, административных, школьных помещений, особенно при недостаточности естественного света.

Выпускаются также специальные агарные ЛЛ типа CLEO (PHILIPS), предназначенные для принятия «солнечных» ванн в помещении и для других косметических целей. При использовании этих ламп следует помнить, что для обеспечения безопасности необходимо строго соблюдать инструкции изготовителя облучательного оборудования. А теперь остановимся на недостатках люминесцентного освещения, к которым многие причисляют его пресловутую «вредность для здоровья».

Природа газового разряда такова, что, как уже было сказано выше, любые ЛЛ имеют в спектре небольшую долю ближнего ультрафиолета. Известно, что при передозировке даже естественного солнечного света могут возникнуть неприятные явления, в часности избыточное ультрафиолетовое облучение может привести к заболеваниям кожи, повреждению глаз. Однако, сравнив воздействие на человека в течение жизни естественного солнечного и искусственного люминесцентного излучения, становится понятно, насколько необоснованно предположение о вреде излучения ЛЛ.

Было доказано, что работа в течение года (240 рабочих дней) при искусственном освещении ЛЛ холодно-белого света с очень высоким уровнем освещенности в 1000 лк (это в 5 раз превышает оптимальный уровень освещенности в жилье) соответствует пребыванию на открытом воздухе в г. Давос (Швейцария) в течении 12 дней по 1 часу в день (в полдень). Следует заметить, что реальные условия в жилых помещениях бывают в десятки раз более щадящими, чем в приведенном примере.

Следовательно, о вреде обычного люминесцентного освещения говорить не приходится. К аналогичным выводам пришли медики, гигиенисты и светотехники, принявшие участие в проводившейся в Мюнхене развернутой научной дискуссии на тему «Влияние освещения ЛЛ на здоровье человека». Все участники дискуссии были единодушны: строгое соблюдение правил грамотного устройства освещения, которые включают ограничение прямой и отраженной блескости, ограничение пульсации светового потока, обеспечение благоприятного распределения яркости и правильной светопередачи, полностью устранит существующие жалобы на люминесцентное освещение.

В приведенном выше перечне важное место занимает вопрос ограничения пульсации светового потока. Дело в том, что традиционные линейные трубчатые ЛЛ, подключенные к сети с помощью электромагнитного пускорегулирующего аппарата (чаще всего применяемого в светильниках), создают свет непостоянный во времени, а «микропульсирующий», т.е. при имеющейся в сети частоте переменного тока 50 Гц пульсация светового потока лампы происходит 100 раз в секунду.

И хотя эта частота выше критической для глаза и, следовательно, мелькающие яркости освещаемых объектов глазом не улавливаются, пульсация освещения при длительном воздействии может отрицательно влиять на человека, вызывая повышенную утомляемость, снижение работоспособности, особенно при выполнении напряженных зрительных работ: чтение, работе за компьютером, рукоделии и т. д.

Вот почему появившиеся достаточно давно светильники с электромагнитным низкочастотным ПРА рекомендуется использовать в так называемых «нерабочих» зонах (подсобных помещениях, повалах, гаражах и т. д.). В светильниках с электронным высокочастотным ПРА указанная особенность работы ЛЛ полностью устранена, но даже такие светильники с линейными ЛЛ достаточно громоздки и для местного (рабочего) освещения не всегда удобны. Поэтому для традиционного освещения жилья люстрами, настенными, напольными, настольными светильниками целесообразно применять упомянутые выше компактные люминесцентные лампы.

И, наконец, последнее небольшое замечание, связанное с эксплуатацией светильников с ЛЛ. В лампу для ее работы вводится капля ртути – 30-40 мг, а компактных 2-3 мг, Если вас это пугает, вспомните, что в термометре, имеющемся в каждой семье, содержится 2 г этого жидкого металла. Разумеется, если лампа разобьется, поступить следует так же, как мы поступаем, когда разбиваем термометр, – тщательно собрать и удалить ртуть. ЛЛ в жилье – это не только более экономичный, чем лампа накаливания, источник света.

Грамотное освещение ЛЛ имеет множество преимуществ перед традиционным: экономичность, обилие и красочность света, равномерность распределения светового потока, особенно в случаях высвечивания протяженных объектов линейными лампами, меньшая яркость ламп и значительно меньшее выделение тепла.

На сегодняшний день наиболее качественную продукцию и широкий ассортимент на нашем рынке представляют мировые светотехнические брэнды:

  1. Германская фирма OSRAM.
  2. Голландская PHILIPS и ряд других, которые предлагают широчайший выбор высококачественных ЛЛ на любой вкус и цвет.

Люминесцентная лампа или лампа дневного света (ЛЛ, ЛДС) - инертный газ в стеклянной колбе, излучающий видимый свет.

Принцип работы ЛДС заключается в насыщении газа ртутью с последующим пропусканием через него разряда, в результате чего образуется УФ-излучение, преобразуемое в видимый свет благодаря слою люминофора, содержащемуся во внутренней поверхности колбы. В этой статье будут рассмотрены ЛДС, их описание и технические характеристики.

Разновидности

В реализации наиболее используются газоразрядные лампы на основе ртути высокого (ГРЛВД) или низкого (ГРЛНД) давления:


Область применения

Люминесцентные источники света получили большой спрос в организациях общественного назначения: школах, больницах, госучреждениях.

С дальнейшим развитием светильники оснастили электронным балластом, стало возможным их применение в распространенных патронах стандарта Е14 и Е27.

ЛЛ актуальнее применять в помещениях промышленного сектора для обеспечения большего периметра освещения при минимальных энергозатратах. Также их используют в освещении рекламных щитов и фасадов.

Люминесцентные приборы сочетают в себе характерные черты эффективного и экономного использования электроэнергии. В быту лампы дневного света потолочные и настольные применяются для растений, освещения рабочей поверхности и жилых комнат.

Актуальность применения люминесцентных ламп

Широкое распространение ЛЛ получили благодаря многим преимуществам, а именно:

  • высокая световая отдача (ЛДС мощностью 10 Вт обеспечивает освещенностью, сравнимой с лампочкой накаливания 50 Вт);
  • большой диапазон оттенков испускаемого света;
  • полная рассеянность света.

Гарантированный срок эксплуатации ЛДС от 2 тыс. часов против 1 тыс. часов у ламп накаливания.

Недостатки люминесцентных устройств:

  • химопасность (в ЛДС содержится до 1г ртути);
  • неравномерный спектр, который неприятен человеческому глазу;
  • постепенное разрушение слоя люминофора, приводящее к ослаблению освещенности;
  • мерцание лампы с двухкратной частотой от сети;
  • наличие механизма, регулирующего пуск;
  • мощность ЛЛ не обеспечивает высокого коэффициента.

Принципы работы

Во время работы ЛЛ между двумя электродами, расположенными на ее краях, горит дугообразный разряд, который приводит к созданию УФ-свечения внутри колбы, наполненной газом, в составе которого ртутные пары.

Зрение человека невосприимчиво к УФ диапазону свечения, поэтому внутренние стенки колбы обработаны люминофорным составом, имеющим свойства поглощения ультрафиолета с дальнейшим преобразованием его в видимое белое свечение. Ортофосфаты кальция-цинка и галофосфаты лежат в основе люминофорного слоя. Также люминофор может быть насыщен другими веществами с целью получения определенного оттенка света. Термоэлектронная эмиссия электродов с катода создает поддержку электрической дуги в ЛДС. Дальнейшее разогревание катодов путем пропуска через них тока или ионной бомбардировки приводит к запуску устройства.

Технические характеристики

От технических характеристик зависит конечная работа ЛДС - необходимое освещение.

Мощность

От показателя мощности ЛЛ зависит светоотдача, которая влияет на площадь освещения. В реализации распространены лампы различной мощности.

Лампы 4–6 W

Применимы в помещениях небольшой комнаты. Отлично подходят в сельскохозяйственной местности, сторожевых будках или палатках. Эти ЛДС неприхотливы к потреблению электроэнергии, а также благодаря трансформаторным преобразователям эти лампы способны работать от 12 вольт, что дает возможность запустить лампу подсоединением к авто аккумулятору в условиях отсутствия электроснабжения. Также маломощные люминесцентные устройства применяются для освещения растений или аквариумов.

Самые распространенные ЛЛ по мощности лампы. Их можно встретить везде: в комнате, автомобильных боксах, офисах, павильонах.

Также получили большое распространение. Применяются в тех же помещениях, что и ЛЛ 18 W, с разницей в увеличении площади освещения.

58 W и 80 W

Эти ЛДС большой мощности применяются только в производственных цехах большой площади, хранилищах и ангарах, на подземной территории.

Иногда ЛЛ такой мощности можно встретить на участках открытой местности в условиях большой рассеянности света. Такие ЛЛ, в отличии от ламп 18 W и 36 W, более энергозатратные и их применение в быту или офисного освещения нерентабельно. Также они оснащены дополнительно светильниками дневного света, что приводит в еще большую неактуальность их применения в качестве потолочных светильников дневного света в помещениях малой площади.

Цветовая температура

Еще один главный параметр ЛДС. От качества света и цветовой температуры зависит качество освещения. Эти параметры отображены трехзначным значением на колбе устройства.

Значение 627

Соответствует устройствам с 60%-м качеством света и цветовой температурой 2700 К.

Значение 727

Лампы с качеством света 70% и аналогичной цветовой температурой.

Значение 765

Цветовая температура 6500 К, которой и обладают все без исключения ЛДС. Качество цвета на уровне 70%.

Необходимо учесть, что 2700 Кельвинов - цветовая температура лампочек накаливания, и ЛЛ с такой же цветовой температурой будет излучать лучи, воспринимаемые человеческим зрением, желтого цвета. С учетом восприятия человеком цветности свечения изготовляются люминесцентные устройства разной цветовой температуры.

Многие ЛЛ (энергосберегающие источники свечения) компактной формы излучают именно желтый свет. Цветовая температура 6500 присуща всем устройствам линейной формы и соответствует белому свету со слабым оттенком синего. Также изготовляются ЛЛ узкопрофильного назначения с температурой цвета 1300К, при включении которых наблюдается красный оттенок. В отдельных случаях для получения уникального оттенка свечения применяются цветные ЛДС.

Подключение к сети

Простейшая схема подключения ламп дневного света выполнена на основе стартера, дросселя (балласта) и конденсатора. Сами лампы не предусматривает их прямого включения в электрическую цепь, так как в отключенном состоянии люминесцентные устройства имеют высокое сопротивление, преодолеть которое можно только импульсом высокого напряжения.

Возможно также последовательное соединение двух ламп, при этом стартеров будет 2 штуки, а дроссель один, но он должен быть рассчитан на суммарную мощность ламп. Схема светильника на 2 лампы приведена ниже. На схеме нет конденсатора, но он также может быть установлен на входе светильника.

Принципиальная схема светильника иногда наносится на корпус стартера.

Дроссель (балласт), включается в электроцепь в качестве дополнительного сопротивления, предохраняющего от короткого замыкания. Стартер позволяет в моменты высокого сопротивления лампы зарядить дроссель, одновременно прогреть спирали лампы.

Лампу дневного света без дросселя невозможно запустить. От того, как устроена схема подключения, зависит общее энергопотребление всех устройств, подключенных вместе с люминесцентным источником света к электрической цепи.

Электромагнитный дроссель (ЭмПРА)

Дроссель постоянного индуктивного сопротивления, подключаемый только в цепь с ЛЛ определенной мощности. Сопротивление включенного в цепь ЭмПРА при включении начинает играть роль ограничителя подачи тока к светильнику.

Конструкция ЭмПРА проста и дешева в производстве, соответственно, дешевле и лампы с электромагнитным балластом. Несмотря на свою дешевизну и простоту обладает рядом недостатков:

  • длительность запуска до 3 секунд (время зависит от износа лампы);
  • высокое потребление электроэнергии дросселем;
  • постепенное возрастание частоты в пластинах дросселя из-за его износа;
  • мерцание с двухкратной частотой электросети (100 или 120 Гц) при включении, которое отрицательно влияет на зрение;
  • массивность и габаритность люминесцентных устройств (в сравнении с аналогами ЭПРА);
  • вероятный отказ в работе электрической цепи с дроссельным механизмом при температуре ниже нуля по Цельсию;
  • короткое замыкание, приводящее к припайке электродов дросселя к устройству, после чего его невозможно снять.

Схема подключения газоразрядных люминесцентных ламп с ЭмПРА предусматривает наличие стартера, регулирующего зажигание ЛЛ. Однако он дополнительно потребляет электроэнергию.

Электронный дроссель

Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает лампы высокочастотным питанием 25–133 кГц. В момент включения ЛДС с электронным дросселем человек в течение короткого времени наблюдает яркое мерцание. С помощью электронного балласта реализовано два принципа работы по включению ламп.

Холодный запуск

Сразу запускает устройство, но наносит значительный вред электродам. Лампы с таким вариантов запуска рассчитаны на малую частоту включения/отключения в течение дня.

Горячий запуск

Перед включением лампы, в течение 1 секунды, происходит разогрев электродов, затем она работает. Также присутствует тепловой индикатор, обеспечивающей устройство защитой от перегрева.

ЛЛ на основе ЭПРА более экономичные, чем и заполучили значительную популярность, чего нельзя сказать об аналогах ЭмПРА.

Причины неисправности

Электроды ЛДС представлены вольфрамовой спиралью, покрытой активными щелочными металлами, которые обеспечивают заряд. С периодом эксплуатации активная масса осыпается с электродов, они приходят в негодность.

В момент включения лампы (пуск разряда и последующий разогрев электродов) происходит дополнительная нагрузка на активную массу, что еще сильнее разрушает ее. На участках с наибольшей потерей активной массы поступает меньше напряжения, что приводит к неравномерной отдаче, и человек наблюдает мерцание лампы в период ее работы. Также осыпание активной массы приводит к полной неисправности лампы, а на концах трубки появляется темный оттенок.

Отсюда следует, что срок службы ЛЛ зависит еще от качества активной массы и частоты включения лампы. Но даже при этих ограничениях срок службы ЛДС как минимум намного выше (2000 запусков против 1000 у обычных лампочек накаливания).

Типы исполнения

Люминесцентные устройства подразделяются на два типа по варианту исполнения колбы.

Линейные лампы

Эти ЛЛ представлены ртутными лампами низкого давления. Большая часть света этих ламп излучается люминофором. Люминесцентные устройства, крепящиеся на потолок, являются основным представителем линейных ЛЛ. Потолочный светильник дневного света получил огромный спрос во всем мире в помещениях различного назначения.

Среди линейных ламп в России распространены ЛДС с круглой трубкой Т8 (D=26 мм) и цоколем типа G13. Мощность этих ламп взаимосвязана с размером трубки - стандартные ЛДС мощностью 18 W имеют длину трубки 600 мм, а лампы 36 W уже вдвое длиннее, 1200 мм. Также существуют лампы других мощностей, но они получили меньшее распространение либо у них узкий круг применения.

Стоит отметить, в советский период наибольшее применение получили ЛДС с колбой Т12, диаметр которой составлял 38 мм. Эти лампы были более энергозатратными - 20 W короткие и 38 W длинные против 18 W и 36 W соответственно. Также встречались лампы с трубкой Т10 (32 мм), но они не получали широкого спроса по сравнению с T12.

В западных странах в последние годы стали преобладать лампы с трубкой последнего поколения Т5 диаметром 16 мм. Они достаточно тонкие и получили более обширное применение в интерьере.

Если затрагивать технологический прогресс, то буквально недавно китайские разработчики создали устройство с колбой Т4 (12,5 мм). Это только новинка, которая еще не получила обширного применения, и о перспективах таких трубчатых ламп пока рано говорить. ЛДС с еще меньшим диаметром трубки на практике пока не сделали.

Двухцокольная прямолинейная лампа представляет собой стеклянную трубку с вваренными на концах стеклянными ножками, в которые вмонтированы электроды. Герметично запаянная трубка содержит аргоном или неон, обогащенный ртутью, которая при включении лампы переходит в газообразное состояние. Цоколи на концах трубки оснащены контактами для подключения лампы в цепь.

Линейные ЛДС потребляют всего 15% от потребления лампы накаливания, обеспечивая аналогичную освещенность. Эти лампы часто встречаются на производстве, в офисах, транспорте.

Компактные лампы

Представляют собой светильники дневного света с изогнутой трубкой.

Компактные лампы могут иметь свободную (любую) форму колбы и распространены для частного использования. К компактным люминесцентным устройствам также относятся, так называемые, энергосберегающие лампы.

Также распространены компактные лампы под патроны стандарта Е14, Е27, Е40, которые применяются в светильниках.

Варианты применения

В настоящее время люминесцентные устройства получили большое применение, как в освещении промышленных объектов, так и в организации интерьера помещения. Светильники с лампами дневного и белого света применяются во многих целях:

  • Люминесцентные светильники ЛБ 40 низкого давления, предназначенные для освещения всей площади помещения закрытого типа.
  • Люминесцентная лампа для аквариумов и комнатных растений, обеспечивающая локальное освещение.
  • Фитолампы (цветочные светильники) - люминесцентные лампы для цветов и растений.
  • Настольная и настенная лампа дневного света, придающая мягким освещением уютную обстановку при чтении или отдыхе.

Маркировка

Маркировка устроена так, что потребитель без труда сможет выбрать необходимую ЛЛ при покупке. Наиболее распространены следующие обозначения:

  • ЛБ (белый свет);
  • ЛД (дневной свет);
  • ЛХБ (холодно-белый свет);
  • ЛТБ (тёпло-белый свет);
  • ЛЕ (естественный свет);
  • ЛХЕ (холодный естественный свет).

Видимый оттенок напрямую зависим от цветовой температуры. Цветовая температура ЛДС составляет 6400–6500К, что соответствует примерной цветности белого света.

Помимо типа лампы также указываются необходимые технические характеристики лампы: напряжение, форма, размеры и так далее. Маркировка наносится на стеклянную колбу или корпус ЛДС.

Все без исключения ЛДС содержат газы, насыщенные парами ртути. При происшествиях, в результате которых лампа разбилась, пары ртути проникают в воздух.

В дальнейшем ртуть может оказаться в организме человека и нанести вред здоровью. Поэтому стоит бережно обращаться с люминесцентными лампами.

Видео по теме