Интерференции в тонких пленках: явление и условия для его возникновения. Интерференция света в тонких плёнках

Радужная окраска мыльных пузырей или бензиновых пленок на воде возникает в результате интерференции солнечного света, отраженного двумя поверхностями пленки.

Пусть на плоскопараллельную прозрачную пленку с показателем преломления п и толщиной d под углом падает плоская монохроматическая волна с длиной (рис. 4.8).

Рис. 4.8. Интерференция света в тонкой пленке

Интерференционная картина в отраженном свете возникает из-за наложения двух волн, отраженных от верхней и нижней поверхностей пленки. Рассмотрим сложение волн, выходящих из точки С . Плоскую волну можно представить как пучок параллельных лучей. Один из лучей пучка (2) непосредственно попадает в точку С и отражается (2")в ней наверх под углом, равным углу падения . Другой луч (1) попадает в точку С более сложным путем: сначала он преломляется в точке А и распространяется в пленке, затем отражается от нижней ее поверхности в точке 0 и, наконец, выходит, Преломившись, наружу (1") в точке С под углом, равным углу падения . Таким образом, в точке С пленка отбрасывает вверх два параллельных луча, из которых один образовался за счет отражения от нижней поверхности пленки, второй - вследствие отражения от верхней поверхности пленки. (Пучки, возникающие в результате многократного отражения от поверхностей пленки, не рассматриваются ввиду их малой интенсивности.)

Оптическая разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С , равна

Полагая показатель преломления воздуха и учитывая соотношения

Используем закон преломления света

Таким образом,

Кроме оптической разности хода , следует учесть изменение фазы волны при отражении. В точке С на границе раздела «воздух пленка» происходит отражение от оптически более плотной среды , то есть среды с большим показателем преломления. При не слишком больших углах падения в этом случае фаза претерпевает изменение на . (Такой же скачок фазы происходит при отражении волны, бегущей вдоль струны, от ее закрепленного конца.) В точке 0 на границе раздела «пленка - воздух» свет отражается от оптически менее плотной среды, так что скачка фазы не происходит.

В итоге между лучами 1" и 2" возникает дополнительная разность фаз , которую можно учесть, если величину уменьшить или увеличить на половину длины волны в вакууме.

Следовательно, при выполнении соотношения

получается максимум интерференции в отраженном свете, а в случае

в отраженном свете наблюдается минимум .

Таким образом, при падении света на бензиновую пленку на воде в зависимости от угла зрения и толщины пленки наблюдается радужная окраска пленки, свидетельствующая об усилении световых волн с определенными длинами l. Интерференция в тонких пленках может наблюдаться не только в отраженном, но и в проходящем свете.

Как уже отмечалось, для возникновения наблюдаемой интерференционной картины оптическая разность хода интерферирующих волн не должна превышать длины когерентности , что накладывает ограничение на толщину пленки.

Пример. На мыльную пленку (п = 1.3 ), находящуюся в воздухе, падает по нормали пучок белого света. Определим, при какой наименьшей толщине d пленки отраженный свет с длиной волны мкм окажется максимально усиленным в результате интерференции.

Из условия интерференционного максимума (4.28) находим для толщины пленки выражение

(угол падения ). Минимальное значение d получается при :

Вопрос 1.

Основные законы геометрической оптики

Геометрическая оптика - раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при? > 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде?1 к скорости их распространения во второй среде?2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света? в среде:

Законы отражения и преломления: γ = α; n 1 sin α = n 2 sin β.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения, то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

sin α пр = 1 / n,

где n = n 1 > 1 – абсолютный показатель преломления первой среды.

Для границы раздела стекло–воздух (n = 1,5) критический угол равен α пр = 42°, для границы вода–воздух (n = 1,33) α пр = 48,7°.

Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света

ВОПРОС 2

Интерференция света

Интерференция света - перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

Монохроматическая волна

Монохроматическая волна - это строго гармоническая (синусоидальная) волна с постоянными во времени частотой, амплитудой и начальной фазой.

Когерентные волны

Когерентные волны – волны, имеющие одинаковую частоту и разность фаз их колебания была постоянной.

Интерференция световых волн

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при наложении двух или нескольких световых пучков. Интенсивность света в области перекрывания пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра. С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Первый эксперимент по наблюдению интерференции света в лабораторных условиях принадлежит И. Ньютону. Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны (рис. 3.7.1). Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона

Ньютон не смог с точки зрения корпускулярной теории объяснить, почему возникают кольца, однако он понимал, что это связано с какой-то периодичностью световых процессов

Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S 1 и S 2 (рис. 3.7.3). Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S 1 и S 2 , перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.


Рисунок 3.7.3. Схема интерференционного опыта Юнга

Юнг был первым, кто понял, что нельзя наблюдать интерференцию при сложении волн от двух независимых источников. Поэтому в его опыте щели S 1 и S 2 , которые в соответствии с принципом Гюйгенса можно рассматривать как источники вторичных волн, освещались светом одного источника S. При симметричном расположении щелей вторичные волны, испускаемые источниками S 1 и S 2 , находятся в фазе, но эти волны проходят до точки наблюдения P разные расстояния r 1 и r 2 . Следовательно, фазы колебаний, создаваемых волнами от источников S 1 и S 2 в точке P, вообще говоря, различны. Таким образом, задача об интерференции волн сводится к задаче о сложении колебаний одной и той же частоты, но с разными фазами. Утверждение о том, что волны от источников S 1 и S 2 распространяются независимо друг от друга, а в точке наблюдения они просто складываются, является опытным фактом и носит название принципа суперпозиции.

Монохроматическая (или синусоидальная) волна, распространяющаяся в направлении радиус-вектора, записывается в виде

Приборов, которые способны были бы следить за быстрыми изменениями поля световой волны в оптическом диапазоне, не существует; наблюдаемой величиной является поток энергии, который прямо пропорционален квадрату амплитуды электрического поля волны. Физическую величину, равную квадрату амплитуды электрического поля волны, принято называть интенсивностью: I = A 2 .

Несложные тригонометрические преобразования приводят к следующему выражению для интенсивности результирующего колебания в точке P:

где Δ = r 2 – r 1 – так называемая разность хода.

Из этого выражения следует, что интерференционный максимум (светлая полоса) достигается в тех точках пространства, в которых Δ = mλ (m = 0, ±1, ±2, ...). При этом I max = (a 1 + a 2) 2 > I 1 + I 2 . Интерференционный минимум (темная полоса) достигается при Δ = mλ + λ / 2. Минимальное значение интенсивности I min = (a 1 – a 2) 2 < I 1 + I 2 . На рис. 3.7.4 показано распределение интенсивности света в интерференционной картине в зависимости от разности хода Δ.

В частности, если I 1 = I 2 = I 0 , т. е. интенсивности обеих интерферирующих волн одинаковы, выражение (*) приобретает вид:

При смещении вдоль координатной оси y на расстояние, равное ширине интерференционной полосы Δl, т. е. при смещении из одного интерференционного максимума в соседний, разность хода Δ изменяется на одну длину волны λ. Следовательно,

где ψ – угол схождения «лучей» в точке наблюдения P. Выполним количественную оценку. Допустим, что расстояние d между щелями S 1 и S 2 равно 1 мм, а расстояние от щелей до экрана Э составляет L = 1 м, тогда ψ = d / L = 0,001 рад. Для зеленого света (λ = 500 нм) получим Δl = λ / ψ = 5 · 10 5 нм = 0,5 мм. Для красного света (λ = 600 нм) Δl = 0,6 мм. Таким путем Юнг впервые измерил длины световых волн, хотя точность этих измерений была невелика.

Следует подчеркнуть, что в волновой оптике, в отличие от геометрической оптики, понятие луча света утрачивает физический смысл. Термин «луч» употребляется здесь для краткости для обозначения направления распространения волны. В дальнейшем этот термин будет употребляться без кавычек.

В эксперименте Ньютона (рис. 3.7.1) при нормальном падении волны на плоскую поверхность линзы разность хода приблизительно равна удвоенной толщине 2h воздушного промежутка между линзой и плоскостью. Для случая, когда радиус кривизны R линзы велик по сравнению с h, можно приближенно получить:

При r = 0, то есть в центре (точка соприкосновения) Δ = λ / 2; поэтому в центре колец Ньютона всегда наблюдается интерференционный минимум – темное пятно. Радиусы r m последующих темных колец определяются выражением

Эта формула позволяет экспериментально определить длину волны света λ, если известен радиус кривизны R линзы.

Интерферометры

Интерферометр - измерительный прибор, принцип действия которого основан на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок электромагнитного излучения (света, радиоволн и т. п.) с помощью того или иного устройства пространственно разделяется на два или большее количество когерентных пучков. Каждый из пучков проходит различные оптические пути и возвращается на экран, создавая интерференционную картину, по которой можно установить смещение фаз пучков.

Вопрос 3

Дифра́кция во́лн (лат. diffractus - буквально разломанный, переломанный, огибание препятствия волнами) - явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Дифракция первого и второго порядка как интерференция волн, образованных при падении плоской волны на непрозрачный экран с парой щелей. Стрелками показаны линии, проходящие через линии интерференционных максимумов

Принцип Гюйгенса - Френеля - основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.

Принцип Гюйгенса-Френеля следует рассматривать как рецепт приближенного решения дифракционных задач. В основе его лежит допущение о том, что каждый элемент поверхности волнового фронта можно рассматривать как источник вторичных волн, распространяющихся во всех направлениях (рис. 2.1.). Эти волны когерентны, так как они возбуждены одной и той же первичной волной. Результирующее поле в точке наблюдения P может быть найдено как результат интерференции вторичных волн. В качестве поверхности вторичных источников может быть выбрана не только поверхность волнового фронта, но и любая другая замкнутая поверхность. При этом фазы и амплитуды вторичных волн определяются значениями фазы и амплитуды первичной волны.

В соответствии с принципом Гюйгенса–Френеля комплексная амплитуда поля в точке наблюдения P, обусловленная действием вторичных источников, заселяющих малый элемент поверхности ds, может быть записана в виде

Здесь – комплексная амплитуда поля первичной волны от источника на элементе ds, – длина волны (источник предполагается монохроматическим), – так называемый коэффициент наклона, зависящий от угла между нормалью к элементу поверхности ds и радиусом-вектором . В теории Френеля не было дано конкретного вида зависимости ; многие задачи теории дифракции света могут быть решены при весьма общих предположениях относительно этой зависимости. Важно только принять во внимание, что – медленно убывающая функция угла , принимающая значение K = 1 при . Вид функции был получен в теории Кирхгофа (1883 г.), развитой на основе анализа решений волнового уравнения. Таким образом, излучение вторичных источников не изотропно, хотя волновые фронты (то есть поверхности постоянной фазы) являются сферическими.

При более точной количественной формулировке принципа Гюйгенса–Френеля следовало бы учесть в (2.1) фазовый сдвиг на между излучением вторичных источников и первичной волной. Во многих задачах точное значение фазы колебаний не представляет интереса, поэтому не имеет смысла усложнять соотношение (2.1). Полное поле в точке P может быть найдено путем интегрирования (2.1) по всем вторичным источникам.

При решении дифракционных задач, когда речь идет о распространении световых волн вблизи препятствий, принцип Гюйгенса-Френеля следует дополнить постулатом Френеля о граничных условиях.

Пусть на экран с отверстием падает плоская волна (рис. 2.2). Постулат Френеля сводится к требованию заселения вторичными источниками только той части поверхности волнового фронта, которая не затенена экраном. Интегрирование выражения (2.1) следует выполнить по поверхности S, изображенной на рис. 2.2 пунктирной линией. При этом, там, где поверхность S затенена экраном, амплитуда вторичных волн равна нулю. На открытых частях экрана поле первичной волны предполагается невозмущенным. Постулат Френеля означает, что при интегрировании (2.1) комплексную амплитуду первичной волны следует заменить на , определяемую следующим образом:

Постулат Френеля, как и принцип Гюйгенса–Френеля, носит приближенный характер. Его применение сильно упрощает дифракционную задачу и приводит к достаточно хорошим для практики результатам при условии, что размеры препятствий, на которых дифрагирует свет, а также расстояние между препятствием и точкой наблюдения велики по сравнению с длиной волны.

На основе принципа Гюйгенса-Френеля удается получить простое наглядное решение некоторых дифракционных задач (задачи с осевой симметрией, дифракция на одномерных препятствиях). В общем случае дифракционная задача сводится к вычислению интеграла (2.2)

Метод зон Френеля

Френель предложил оригинальный метод разбиения волновой поверхности S на зоны, позволивший сильно упростить решение задач (метод зон Френеля ).

Границей первой (центральной) зоны служат точки поверхности S , находящиеся на расстоянии от точки M (рис. 9.2). Точки сферы S , находящиеся на расстояниях, и т.д. от точки M , образуют 2, 3 и т.д. зоны Френеля.

Колебания, возбуждаемые в точке M между двумя соседними зонами, противоположны по фазе, так как разность хода от этих зон до точки M .

Поэтому при сложении этих колебаний, они должны взаимно ослаблять друг друга:

где A – амплитуда результирующего колебания, – амплитуда колебаний, возбуждаемая i -й зоной Френеля.

Величина зависит от площади зоны и угла между нормалью к поверхности и прямой, направленной в точку M .

Площадь одной зоны

Отсюда видно, что площадь зоны Френеля не зависит от номера зоны i . Это значит, что при не слишком больших i площади соседних зон одинаковы.

В то же время с увеличением номера зоны возрастает угол и, следовательно, уменьшается интенсивность излучения зоны в направлении точки M , т.е. уменьшается амплитуда . Она уменьшается также из-за увеличения расстояния до точки M :

Общее число зон Френеля, умещающихся на части сферы, обращенной в сторону точки M , очень велико: при , , число зон , а радиус первой зоны .

Отсюда следует, что углы между нормалью к зоне и направлением на точку M у соседних зон примерно равны, т.е. что амплитуды волн, приходящих в точку Mот соседних зон , примерно равны.

Световая волна распространяется прямолинейно. Фазы колебаний, возбуждаемые соседними зонами, отличаются на π. Поэтому в качестве допустимого приближения можно считать, что амплитуда колебания от некоторой m -й зоны равна среднему арифметическому от амплитуд примыкающих к ней зон, т.е.

.

Тогда выражение (9.2.1) можно записать в виде

. (9.2.2)

Так как площади соседних зон одинаковы, то выражения в скобках равны нулю, значит результирующая амплитуда .

Интенсивность излучения .

Таким образом, результирующая амплитуда, создаваемая в некоторой точке M всей сферической поверхностью, равна половине амплитуды, создаваемой одной лишь центральной зоной , а интенсивность .

Так как радиус центральной зоны мал следовательно, можно считать, что свет от точки P до точки M распространяется прямолинейно .

Если на пути волны поставить непрозрачный экран с отверстием, оставляющим открытой только центральную зону Френеля, то амплитуда в точке M будет равна. Соответственно, интенсивность в точке M будет в 4 раза больше, чем при отсутствии экрана (т.к. ). Интенсивность света увеличивается, если закрыть все четные зоны.

Таким образом, принцип Гюйгенса–Френеля позволяет объяснить прямолинейное распространение света в однородной среде.

Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонные пластинки – система чередующихся прозрачных и непрозрачных колец.

Опыт подтверждает, что с помощью зонных пластинок можно увеличить освещенность в точке М , подобно собирающей линзе.

Вопрос 4

Дифракционная решётка

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.

Вопрос 5

Поляризация света

Следствием теории Максвелла (см. § 162) является поперечность световых волн: век­торы напряженностей электрического Е и магнитного Н полей волны взаимно пер­пендикулярны и колеблются перпендику­лярно вектору скорости v распространения волны (перпендикулярно лучу). Поэтому для описания закономерностей поляри­зации света достаточно знать поведение лишь одного из векторов. Обычно все рассуждения ведутся относительно све­тового вектора - вектора напряженно­сти Е электрического поля (это название обусловлено тем, что при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах ве­щества).

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые во­лны независимо друг от друга, поэтому световая волна, излучаемая телом в це­лом, характеризуется всевозможными рав­новероятными колебаниями светового век­тора (рис. 272, а; луч перпендикулярен плоскости рисунка). В данном случае рав­номерное распределение векторов Е объясняется большим числом атомарных

излучателей, а равенство амплитудных значений векторов Е - одинаковой (в среднем) интенсивностью излучения каждого из атомов. Свет со всевозможны­ми равновероятными ориентациями векто­ра Е (и, следовательно, Н ) называется естественным.

Свет, в котором направления колеба­ний светового вектора каким-то образом упорядочены, называется поляризован­ным. Так, если в результате каких-либо внешних воздействий появляется преиму­щественное (но не исключительное!) на­правление колебаний вектора Е (рис. 272, б), то имеем дело с частично поляризованным светом. Свет, в котором вектор Е (и, следовательно, Н ) колеблется только в одном направлении, перпендику­лярном лучу (рис. 272, в), называется плоскополяризованным (линейно поляри­зованным).

Плоскость, проходящая через направ­ление колебаний светового вектора плос­кополяризованной волны и направление распространения этой волны, называ­ется плоскостью поляризации. Плоскопо­ляризованный свет является предельным случаем эллиптически поляризованного света - света, для которого вектор Е (вектор Н ) изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу. Если эллипс поляризации вырождается (см. § 145) в прямую (при разности фаз j, равной нулю или p), то имеем дело с рассмотренным выше плоскополяризо­ванным светом, если в окружность (при j=±p/2 и равенстве амплитуд склады­ваемых волн), то имеем дело с циркулярно поляризованным (поляризованным по кру­гу) светом.

Двойное лучепреломление

Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способно­стью двойного лучепреломления, т. е. раздваивания каждого падающего на них светового пучка. Это явление, в 1669г. впервые обнаруженное датским ученым Э. Бартолином (1625-1698) для исландского шпата (разновидность каль­цита СаСО 3), объясняется особенностями распространения света в анизотропных средах и непосредственно вытекает из уравнений Максвелла.

Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу (рис. 277). Даже в том случае, когда первичный пучок пада­ет на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется (рис.278). Второй из этих лучей получил название необыкно­венного (е), а первый - обыкновенно­го (о).

В кристалле исландского шпата имеет­ся единственное направление, вдоль кото­рого двойное лучепреломление не наблю­дается. Направление в оптически анизот­ропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления, называется оптической осью кристалла. В данном случае речь идет именно о направлении, а не о прямой линии, проходящей через какую-то точку кристалла. Любая прямая, проходящая параллельно данному направлению, явля­ется оптической осью кристалла. Кристал­лы в зависимости от типа их симметрии бывают одноосные и двуосные, т. е. имеют одну или две оптические оси (к первым и относится исландский шпат).

Плоскость, проходящая через направ­ление луча света и оптическую ось кристалла, называется главной плоско­стью (или главным сечением кристалла). Анализ поляризации света (например, с помощью турмалина или стеклянного зеркала) показывает, что вышедшие из кристалла лучи плоско поляризованы во взаимно перпендикулярных плоскостях: колебания светового вектора (вектора на­пряженности Е электрического поля)

Рис. 11.13

Прошедшее через поляризатор Р излучение точечного источника S попадает на полуволновую кристаллическую пластинку Q, которая позволяет изменять угол между плоскостями поляризации интерферирующих лучей: ее поворот на угол α поворачивает вектор на 2α. Если наблюдать интерференционные полосы через анализатор А, то при его повороте на π/2 картина, наблюдаемая на экране Э, инвертируется: из-за дополнительной разности фаз π темные полосы становятся светлыми и наоборот. Анализатор здесь необходим также для того, чтобы свести колебания двух различно поляризованных лучей в одну плоскость.

при прохождении поляризованного света через кристаллическую пластинку разность хода между двумя компонентами поляризации зависит от толщины пластинки, среднего угла преломления и разности показателей и . Очевидно, что возникающая при этом разность фаз

Вращение плоскости поляризации.

Вращение плоскости поляризации поперечной волны - физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Волна может быть электромагнитной, акустической, гравитационной и т. д.

Линейно-поляризованная поперечная волна может быть описана как суперпозиция двух циркулярно поляризованных волн с одинаковым волновым вектором и амплитудой. В изотропной среде проекции полевого вектора этих двух волн на плоскость поляризации колеблются синфазно, их сумма равна полевому вектору суммарной линейно-поляризованной волны. Если фазовая скорость циркулярно поляризованных волн в среде различна (циркулярная анизотропия среды, см. также Двойное лучепреломление ), то одна из волн отстаёт от другой, что приводит к появлению разности фаз между колебаниями указанных проекций на выбранную плоскость. Эта разность фаз изменяется при распространении волны (в однородной среде - линейно растёт). Если повернуть плоскость поляризации вокруг волнового вектора на угол, равный половине разности фаз, то колебания проекций полевых векторов на неё будут вновь синфазны - повёрнутая плоскость будет плоскостью поляризации в данный момент.

Вращение плоскости поляризации электромагнитной волны в плазме при наложении магнитного поля (эффект Фарадея).

Таким образом, непосредственной причиной поворота плоскости поляризации является набег разности фаз между циркулярно поляризованными составляющими линейно-поляризованной волны при её распространении в циркулярно-анизотропной среде. Для электромагнитных колебаний такая среда называется оптически активной (или гиротропной

), для упругих поперечных волн - акустически активной. Известен также поворот плоскости поляризации при отражении от анизотропной среды (см., например, магнитооптический эффект Керра ).

Циркулярная анизотропия среды (и, соответственно, поворот плоскости поляризации распространяющейся в ней волны) может зависеть от наложенных на среду внешних полей (электрического, магнитного) и от механических напряжений (см.Фотоупругость

). Кроме того, степень анизотропии и набег фаз, вообще говоря, могут зависеть от длины волны (дисперсия). Угол поворота плоскости поляризации линейно зависит при прочих равных условиях от длины пробега волны в активной среде. Оптически активная среда, состоящая из смеси активных и неактивных молекул, поворачивает плоскость поляризации пропорционально концентрации оптически активного вещества, на чём основан поляриметрический метод измерения концентрации таких веществ в растворах; коэффициент пропорциональности, связывающий поворот плоскости поляризации с длиной луча и концентрацией вещества, называется удельным вращением данного вещества.

В случае акустических колебаний поворот плоскости поляризации наблюдается лишь для поперечных упругих волн (так как для продольных волн плоскость поляризации не определена) и, следовательно, может происходить лишь в твёрдых телах, но не в жидкостях или газах.

Общая теория относительности предсказывает вращение плоскости поляризации световой волны в пустоте при распространении световой волны в пространстве с некоторыми типами метрики вследствие параллельного переноса вектора поляризации по нулевой геодезической - траектории светового луча (гравитационный эффект Фарадея, или эффект Рытова - Скротского)

Эффект вращения плоскости поляризации света используется

§ для определения концентрации оптически активных веществ в растворах (см., например, Сахариметрия

§ для исследования механических напряжений в прозрачных телах;

§ для управления прозрачностью жидкокристаллического слоя в жидкокристаллических индикаторах (циркулярная анизотропия ЖК зависит от приложенного электрического поля).

Уравнение Шредингера. Задание состояние микрочастицы, волновая функция, её статистический смысл. Суперпозиция состояний в квантовой теории. Амплитуда вероятности. Стационарное уравнение Шредингера, стационарные состояния. Частица в однородной прямоугольной яме. Прохождение частицы над и под барьером. Гармонический осциллятор. Элементы квантовой электроники. Волновые функций стационарных состояний.

В природе можно наблюдать радуж-ное окрашивание тонких пленок (масля-ные пленки на воде, мыльные пузыри, оксидные пленки на металлах), возникаю-щее в результате интерференции света, отраженного двумя поверхностями пленки.

Пусть на плоскопараллельную про-зрачную пленку с показателем преломле-ния п и толщиной d под углом i падает плоская монохроматическая волна (рассмотрим один луч). Будем предполагать, что по обе стороны от пленки находится одна и та же среда (например, воздух ) и . Часть фронта падающей волны, перпендикулярного к плоскости чертежа, изображена в виде отрезка АВ ( направлению распространения волны, т.е. лучам 1 и 2). На поверхности пленки в т.A луч разде-лится на два: частично отразится от верх-ней поверхности пленки, а частично пре-ломится. Преломленный луч, дойдя до т.D , частично преломится в воздух, а частично отразится и пойдет к т. C. Здесь он опять частично отра-зится (из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i.

Преломленная волна (луч 1’’ ) накладывается на волну, непосредственно отраженную от верхней поверхности (луч 2’) . Вышедшие из пленки лучи /’, 1’’ и 2’ когерент-ны, если оптическая разность их хода мала по сравнению с длиной когерентности па-дающей волны. Если на их пути поставить собирающую линзу, то они сойдутся в одной из т. Р фокальной плоскости линзы и дадут интерференционную кар-тину. При падении световой волны на тонкую прозрачную пластинку (или пленку) происходит отражение от обеих поверхностей пла-стинки. В результате возникают две световые волны , которые при известных условиях могут интерферировать. Оптическая разность хода, возникаю-щая между двумя интерферирующими лу-чами от т. А до плоскости ВС , где член обусловлен потерей полуволны при отражении света от границы раздела.

Ес-ли n>n 0 , то потеря полуволны произойдет в т.А и будет иметь знак минус, если же n, то потеря полуволны произойдет в точке С и будет иметь знак плюс. AD = DC = , AB = AC sin i = 2d tg r sin i. Учитывая закон преломления sin i = п sin r, получим . С учетом потери полуволны для оптиче-ской разности хода получим или , где преломленный угол (9.1)

Ес-ли n>n 0 , .

В точке Р будет максимум, если или (9.2)

Минимум, если или (9.3)

При освещении пленки белым светом для некоторых длин волн выполняется условие максимума отражения, для некоторых других - минимума. Поэтому в отраженном свете пленка кажется окрашенной.


Интерференция наблюдается не только в отраженном свете, но и проходящем сквозь пленку свете, но т.к. оптическая разность хода для проходящего света отличается от для отраженного света на , то максимумам интерференции в отраженном свете соответствуют минимумы в проходя-щем, и наоборот. Интерференция наблю-дается, только если удвоенная толщина пластинки меньше длины когерентности падающей волны.

1. Полосы равного наклона (интерфе-ренция от плоскопараллельной пластин-ки).

Опр. 9.1. Интерференцион-ные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного на-клона.

Лучи / / и / // , отразившиеся от верхней и нижней граней пластинки, параллельны друг другу, так как пластин-ка плоскопараллельна. Т.о. лучи 1" и I" «пересекают-ся» только в бесконечности, поэтому гово-рят, что полосы равного наклона локали-зованы в бесконечности . Для их на-блюдения используют собирающую линзу и экран (Э), расположенный в фокальной плоскости

Лучи /" и /" / соберутся в фокусе F линзы (на рис. ее оптическая ось параллельна лу-чам Г и /"), в эту же точку придут и дру-гие лучи (луч 2), парал-лельные лучу /, - увеличи-вается общая интенсивность. Лучи 3, наклоненные под другим углом, соберутся в другой т. Р фокальной плоскости линзы. Если оптиче-ская ось линзы перпендикулярна повер-хности пластинки, то полосы равного на-клона будут иметь вид концентрических колец с центром в фокусе линзы.

Задача 1. На толстую стеклянную пластинку, покрытую очень тонкой пленкой , падает нормально пучок лучей монохроматического света . Отраженный свет максимально ослаблен вследствие интерференции. Определить толщину пленки.

Дано: Решение:

Т.к. показатель преломления воздуха меньше показателя преломления пленки , который в свою очередь меньше показателя преломления стекла , то в обоих случаях отражение происходит от среды оптически более плотной, чем та среда, в которой идет падающий луч. Поэтому фаза колебаний дважды меняется на и результат будет такой же, как если бы изменения фазы не было.

Условие минимума: , где не учитывается, , и . Полагая , , , и т.д.

2.

Полосы равной толщины (интерфе-ренция от пластинки переменной толщины).

Пусть на клин (угол а между боковы-ми гранями мал) падает плоская волна, направление распространения которой со-впадает с параллельными лучами / и 2. Р ассмотрим лучи / / и / // , отразившиеся от верхней и нижней поверхностей клина. При опре-деленном взаимном положении клина и линзы лучи / / и 1" пересекутся в не-которой т.А, являющейся изображе-нием точки В.

Так как лучи / / и / // коге-рентны, они будут интерферировать. Если источник расположен далеко от поверхности клина и угол а достаточно мал, то оптическая разность хода между лучами / / и / // может быть вы-числена по формуле (10.1), где в качест-ве d берется толщина клина в месте паде-ния на него луча. Лучи 2" и 2", образо-вавшиеся за счет деления луча 2, падающего в другую точку клина, собираются линзой в т. А". Оптическая разность хода определяется толщиной d". На экране возникает система интерференционных полос. Каж-дая из полос возникает за счет отражения от мест пластинки, имеющих одинаковую толщину.

Опр. 9.2. Интерференционные полосы, возника-ющие в результате интерференции от мест одинаковой толщины, наз. полоса-ми равной толщины.

Так как верхняя и нижняя грани клина не параллельны между собой, то лучи / / и / // {2" и 2"} пересекаются вблизи пластинки. Таким образом, полосы равной толщины локализованы вблизи поверхности клина . Если свет па-дает на пластинку нормально, то полосы равной толщины локализуются на верхней поверхности клина. Если же мы хотим получить изображение интерференционной картины на экране, то собирающую линзу и экран нужно так расположить по отношению к клину, чтобы на экране было видно изображение верхней поверхности клина.

Для определения ширины интерференционных полос в случае монохроматического света, запишем условие для двух соседних максимумов интерференции (m -го и m+1 - го порядков) по формуле 9.2: и , откуда . Если расстояния от ребра клина до рассматриваемых интерференционных полос равны и , то , и , где малый угол между гранями клина (преломляющий угол клина), т.о. . Ввиду малости преломляющий угол клина тоже должен быть очень малым, т.к. в противном случае полосы равной толщины будут столь тесно расположены, что их невозможно будет различить.

Задача 2. На стеклянный клин нормально к его грани падает пучок лучей монохроматического света . Число интерференционных полос, приходящихся на 1 см, равно 10. Определить преломляющий угол клина.

Дано: Решение:

Параллельный пучок лучей, падая нормально к грани клина, отражается как от верхней, так и от нижней грани. Эти лучи когерентны, поэтому наблюдается устойчивая картина интерференции. Т.к. интерференционные полосы наблюдаются при малых углах клина, то отраженные лучи будут практически параллельны.

Темные полосы будут наблюдаться на тех участках клина, для которых разность ходя лучей равна нечетному числу полуволн: или , Т.к. , то . Пусть произвольной темной полосе номера соответствует определенная толщина клина в этом месте , а темной полосе номера соответствует толщина клина в этом месте ,. Согласно условию, 10 полос укладывается в , тогда, т.к. , то .

Кольца Ньютона.

Кольца Ньютона - пример полос равной толщины. Наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиу-сом кривизны. Параллельный пучок света падает на плоскую повер-хность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора меж-ду линзой и пластинкой, т.е. отражается от оптически более плотных сред. При этом обе волны изменяют фазу колебаний на и дополнительной разности хода не возникает. При наложении отра-женных лучей возникают полосы равной толщи-ны, при нормальном падении света имеющие вид концентрических окружностей.

В отраженном свете оптическая разность хода при i = 0: R) определить и, наоборот, по известной найти R..

Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от . Система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относитель-но друга полос, образованных лучами раз-ных длин волн, и интерференционная кар-тина приобретает радужную окраску. Все рассуждения были проведены для отра-женного света. Интерференцию можно на-блюдать и в проходящем свете, причем в этом случае не наблюдается потери полуволны - оптическая разность хода для проходящего и отра-женного света отличатся на /2, т. с. максимумам интерференции в отраженному свете соответствуют минимумы в проходя-щем, и наоборот.

Сегодня мы расскажем об интерференции в тонких пленках. В фокусе нашего внимания открытие, исследование и применения этого замечательного физического явления.

Определение

Прежде чем описывать какой-то закон, сначала надо понять, что за составляющие в него входят. Если этого не сделать, то читатель может пропустить важные детали, и восприятие научного факта исказится. Школьник, который пропустил одно занятие по физике из-за болезни или лени, должен обязательно разобрать эту тему самостоятельно. Потому что каждое следующее понятие опирается на предыдущее. Если упустить одно значение, непонятной будет вся остальная физика. Прежде чем приступать к выводу интерференции в тонких пленках, надо сначала дать определение явлению.

Этот феномен может относиться к любым колебательным процессам. Интерферировать могут волны ветра, моря и звука. Взаимодействие происходит даже у таких сложных квазичастиц, как коллективное колебание решетки кристаллов.

Интерференция - это явление, которое происходит при встрече в одном месте нескольких волн. Оно состоит в том, что при сложении изменяется амплитуда результирующего колебания. Это значит, что волны могут усилить, погасить друг друга или пройти дальше без изменений.

Свет

Явление интерференции в тонких пленках - это взаимодействие волн света. Так что прежде чем приступать к описанию феномена, надо пояснить природу этих колебаний.

Свет - это квант электромагнитного поля. Фотон обладает свойствами как волны, так и частицы. Пока квант движется сквозь пространство, он нерушим и вечен. Доказательством тому свет далеких галактик. Некоторые из них, возможно, уже поменяли форму или вообще перестали существовать. Но их излучение летело сквозь космос миллиарды лет, пока не достигло взгляда людей.

Основной источник света - электронные переходы в атоме. Внутри звезд происходит мощная термоядерная реакция, в результате которой выделяются все виды электромагнитного излучения. Видимый свет - только небольшой участок всей шкалы, который доступен человеческому зрению.

Свойства волны

Чтобы описать кратко интерференцию в тонких пленках, надо рассказать о волновых свойствах света. Для понимания формы идеального колебания без затухания надо только посмотреть на график синуса или косинуса в привычных декартовых координатах. Основные свойства фотона следующие:

  1. Длина волны. Обозначается греческой буквой λ. Длина волны - это расстояние между двумя одинаковыми фазами. Нагляднее всего эта величина демонстрируется как промежуток между двумя соседними максимумами или минимумами.
  2. Частота. В зависимости от вида обозначается по-разному: линейная частота - это ν, циклическая - ω, а если эта величина выражается как функция, то она пишется латинской буквой f , причем непременно курсивом. Частота и длина волны связаны соотношением λ * ν = c, где c - это скорость света в вакууме. Таким образом, зная одну величину, другую получить очень просто.
  3. Амплитуда. Для интерференции данное свойство волны самое важное. Это высота максимумов и минимумов колебания. Именно амплитуда изменяется, когда встречаются две волны.
  4. Фаза. Для единичного кванта этот фактор значения не имеет. При взаимодействии важна разница фаз. Состояние (максимум, минимум или стремление к ним), в котором пришли в одно место две волны, влияет на конечную интенсивность при интерференции.
  5. Поляризация. В целом это свойство описывает форму колебания. Поляризация света бывает линейной, круговой и эллиптической.

Преломление, отражение

Непосредственно явление интерференции света в тонких пленках связано еще с несколькими феноменами линейной оптики.

Встречая препятствие, свет может действовать по-разному:

  • отразиться;
  • преломиться;
  • рассеяться;
  • поглотиться.

В последнем случае фотон отдает свою энергию веществу, и там происходят какие-то изменения. Чаще всего это просто нагрев. Недаром вещь, оставленная на солнцепеке, становится очень горячей. Много разных квантов передают забытому детьми мячу свою энергию.

Рассеяние тоже подразумевает, что свет взаимодействует с материей: он поглощается и вновь излучается обратно. Часто выходящие кванты имеют другую длину волны или поляризацию.

Преломление и отражение не изменяют свойства пучка, разница лишь в направлении распространения света.

Все эти процессы участвуют, например, в формировании изображения поверхности озера.

Поведение света в тонких покрытиях

Простейшим примером пленочного покрытия является мыльная пена. Мыло увеличивает поверхностное натяжение воды. В итоге она образует очень большие площади при маленькой толщине. Мыльные пузыри переливаются всеми цветами радуги. И сейчас мы объясним, почему.

На пленку падает свет. На верхней границе покрытия часть его отражается, часть преломляется. Нас интересует второй пучок, который оказался внутри вещества. Он достигает дна, и дальше тоже часть преломляется, а часть отражается обратно внутрь пленки. Тот свет, который идет в следующую среду, для наблюдателя потерян. А вот тот, который возвращается обратно в пленку, нам как раз интересен, потому что на границе он опять преломляется и выходит в первую среду, из которой он первоначально вошел. Получается, что входящий и выходящий пучки параллельны друг другу. Это один и тот же свет, только фаза его на выходе изменилась. Разница определит, что увидит наблюдатель: светлую полосу или темную. Описанный процесс составляет сущность интерференции в тонких пленках. Кольца Ньютона, которые наблюдаются в параллельном пучке света между выпуклой линзой и плоской стеклянной пластиной, фактически имеют ту же природу. Их очень просто наблюдать: этот опыт способны произвести даже школьники на уроках физики.

Расстояние между светлыми полосами

Надеемся, читатель вполне уяснил себе механизм взаимодействия света и тонких покрытий. Теперь приведем некоторые формулы.

На выходе из пленки наблюдается картина светлых и темных областей. Площади, на которых конечная картина имеет одну и ту же освещенность, называется полосами равного наклона. Интерференция в тонких пленках дает нам следующую формулу для их расчета:

2m * λ = (2nh * cosβ ± λ) / 2.

Здесь: λ - длина волны падающего излучения, m - порядок интерференции, β - угол между преломленным в первый раз пучком и нормалью к поверхности, n - показатель преломления пленки, а h - ее толщина.

Следует отметить, что данное условие покажет геометрическое место точек наиболее светлых областей

Таким образом расположены только те пучки, которые падают на поверхность пленки под одним и тем же углом. Именно поэтому они называются полосами равного наклона.

Фотоаппараты и очки

Школьник, который находит физику скучным предметом, наверняка задает себе вопрос: «Зачем все это нужно?». Тем не менее взаимодействие света и тонких покрытий используется в повседневной жизни достаточно широко.

На линзах любой фото- и телеаппаратуры есть напыление: тончайшая прозрачная пленка. Ее толщина подобрана так, чтобы камера не давала зеленых бликов (свет этой длины волны гасит сам себя, проходя через слой на поверхности стекла). Такое решение делает изображение контрастным и ярким. Ведь человек лучше всего видит зеленый спектр и недостатки этого цвета воспринимает наиболее четко.

Просветляющее напыление наносится также на линзы микроскопов и телескопов. И не обязательно толщина пленки соответствует зеленому цвету. Если ученый исследует процессы с инфракрасным или ультрафиолетовым излучением, аппаратура помогает ему именно в этом диапазоне.

Лазеры

Также интерференция применяется в лазерах, но этот факт известен немногим.

Сегодня без лазеров не обходится ни один из видов человеческой деятельности. Устройство состоит из трех частей - накачки, рабочего тела и отражателя. Зеркало расположено на торцах основного излучающего материала. Его предназначение - собирать генерируемые фотоны конкретной длины волны в одном направлении. Этот элемент прибора часто представляет собой ряд тонких пленок, интерференция на которых позволяет проходить дальше только нужному излучению.

Интерференцию света по методу деления амплитуды во многих отношениях наблюдать проще, чем в опытах с делением волнового фронта . Один из способов, использующих такой метод, – опыт Поля .

В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки (рис. 8.7).

В любую точку P , находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину.

Для определения вида полос можно представить себе, что лучи выходят из мнимых изображений S 1 и S 2 источника S , создаваемых поверхностями пластинки. На удаленном экране, расположенном параллельно пластинке, интерференционные полосы имеют вид концентрических колец с центрами на перпендикуляре к пластинке, проходящем через источник S . Этот опыт предъявляет менее жесткие требования к размерам источника S , чем рассмотренные выше опыты. Поэтому можно в качестве S применить ртутную лампу без вспомогательного экрана с малым отверстием, что обеспечивает значительный световой поток. С помощью листочка слюды (толщиной 0,03 – 0,05 мм) можно получить яркую интерференционную картину прямо на потолке и на стенах аудитории. Чем тоньше пластинка, тем крупнее масштаб интерференционной картины, т.е. больше расстояние между полосами.

Полосы равного наклона

Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения P находится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы (рис. 8.8).

В этом случае оба луча, идущие от S к P , порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC :

Здесь n – показатель преломления материала пластинки. Предполагается, что над пластинкой находится воздух, т.е. . Так как , (h – толщина пластинки, и – углы падения и преломления на верхней грани; ), то для разности хода получаем

Следует также учесть, что при отражении волны от верхней поверхности пластинки в соответствии с формулами Френеля ее фаза изменяется на π. Поэтому разность фаз δ складываемых волн в точке P равна:

,

где – длина волны в вакууме.

В соответствии с последней формулой светлые полосы расположены в местах, для которых , где m порядок интерференции . Полоса, соответствующая данному порядку интерференции, обусловлена светом, падающим на пластинку под вполне определенным углом α. Поэтому такие полосы называют интерференционными полосами равного наклона . Если ось объектива расположена перпендикулярно пластинке, полосы имеют вид концентрических колец с центром в фокусе, причем в центре картины порядок интерференции максимален.

Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая.

Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона (рис. 8.9). Рассмотрим схему интерферометра Майкельсона: з1 и з2 – зеркала. Полупрозрачное зеркало посеребрено и делит луч на две части – луч 1 и 2. Луч 1, отражаясь от з1 и проходя , дает , а луч 2, отражаясь от з2 и далее от , дает . Пластинки и одинаковы по размерам. ставится для компенсации разности хода второго луча. Лучи и когерентны и интерферируют.

Интерференция от клина. Полосы равной толщины

Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называют полосами равной толщины . В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок . Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п.

Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина).

Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают. Отраженные и преломленные лучи встречаются, поэтому интерференционную картину при отражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость).

Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности.

Результат интерференции в точках и экрана определяется по известной формуле , подставляя в неё толщину пленки в месте падения луча ( или ). Свет обязательно должен быть параллельным (): если одновременно будут изменяться два параметра b и α, то устойчивой интерференционной картины не будет.

Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные при освещении белым светом, как показано на рис. 8.11). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины .

На рис. 8.12 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают.

Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света.

Кольцевые полосы равной толщины , наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла (рис. 8.13), называют кольцами Ньютона .

Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны , разность фаз интерферирующих волн обусловлена различием в условиях отражения на двух поверхностях и близка к π. Толщина h воздушного зазора связана с расстоянием r до точки касания (рис. 8.13):

.

Здесь использовано условие . При наблюдении по нормали темные полосы, как уже отмечалось, соответствуют толщине , поэтому для радиуса m -го темного кольца получаем

(m = 0, 1, 2, …).

Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на картина принимает прежний вид, так как место каждого кольца будет занято кольцом следующего порядка. С помощью колец Ньютона, как и в опыте Юнга, можно сравнительно простыми средствами приближенно определить длину волны света.

Полосы равной толщины можно наблюдать и с помощью интерферометра Майкельсона, если одно из зеркал з1 или з2 (рис. 8.9) отклонить на небольшой угол.

Итак, полосы равного наклона получаются при освещении пластинки постоянной толщины () рассеянным светом , в котором содержатся лучи разных направлений. Полосы равной толщины наблюдаются при освещении пластинки переменной толщины (клина) () параллельным пучком света . Полосы равной толщины локализованы вблизи пластинки.