Управление светодиодной лентой при помощи Аrduino. Управление светодиодной лентой при помощи Аrduino Подключение биполярного транзистора к ардуино

Реле Ардуно позволяет подключить устройства, работающие в режимах с относительно большими токами или напряжения. Мы не можем напрямую подключить к плате Arduino мощные насосы, двигатели, даже обычную лампочку накаливания – плата не предназначена для такой нагрузки и работать не будет. Именно поэтому нам придется добавить в схему реле, который вы можете встретить в любом проекте. В этой статье мы поговорим о том, что такое реле, какие они бывают, как можно их подключить своем ардуино проекте.

Реле – это шлюз, который позволяет соединить вместе электрические цепи с совершенно разными параметрами. Обычный шлюз на реке соединяет водные каналы, расположенные на разной высоте, открывая или закрывая ворота. Реле в ардуино включает или выключает внешние устройства, определенным образом замыкая или размыкая отдельную электрическую сеть, в которую они подключены. С помощью ардуино и реле мы управляем процессом включения или выключения так же, как включаем или выключаем свет дома – подавая команду на замыкание или размыкание. Ардуино подает сигнал, само же замыкание или размыкание “мощной” цепи будет делать реле через специальные внутренние механизмы. Реле можно представить себе в виде дистанционного пульта, с помощью которого мы выполняем нужные действия с помощью относительно “слабых” сигналов.

Реле характеризуется следующими параметрами:

  • Напряжение или ток срабатывания.
  • Напряжение или ток отпускания.
  • Время срабатывания и отпускания.
  • Рабочие ток и напряжение.
  • Внутреннее сопротивление.

В зависимости от типа этих внутренних размыкающих механизмов и особенностях устройства можно выделить две основные группы реле: электромеханические реле (включение с помощью электромагнита) и твердотельные реле (включение через специальные полупроводниковые компоненты).

Электромагнитные и твердотельные реле

Электромагнитное реле

Электромагнитное реле – это электрическое устройство, которое механическим путем замыкает или размыкает цепь нагрузки при помощи магнита. состоит из электромагнита, подвижного якоря и переключателя. Электромагнит – это провод, который намотан на катушку из ферромагнетика. В роли якоря выступает пластина из магнитного материала. В некоторые модели устройства могут быть встроены дополнительные электронные компоненты: резистор для более точного срабатывания реле, конденсатор для уменьшения помех, диод для устранения перенапряжений.

Работает реле благодаря электромагнитной силе, возникающей в сердечники при подаче тока по виткам катушки. В исходном состоянии пружина удерживает якорь. Когда подается управляющий сигнал, магнит начинает притягивать якорь и замыкать либо размыкать цепь. При отключении напряжения якорь возвращается в начальное положение. Источниками управляющего напряжения могут быть датчики (давления, температуры и прочие), электрические микросхемы и прочие устройства, которые подают малый ток или малое напряжение.

Электромагнитное реле применяется в схемах автоматики, при управлении различными технологическими установками, электроприводами и другими устройствами. Реле предназначено для регулирования напряжений и токов, может использоваться как запоминающее или преобразующее устройство, также может фиксировать отклонения параметров от нормальных значений.

Классификация электромагнитных реле:

  • Управляющий ток может быть как постоянным, так и переменным. В первом случае устройство может быть нейтральным или поляризованным. Для переменного тока якорь выполняется из электротехнической стали, чтобы уменьшить потери.
  • Якорное или герконовое реле. Для якорного процесс замыкания и размыкания происходит при помощи перемещения якоря, для герконового характерно отсутствие сердечника, магнитное поле воздействует на электрод с контактами.
  • Быстродействие – до 50 мс, до 150 мс и от 1 с.
  • Зщитное покрытие – герметизированное, зачехленное и открытое.

По сравнению с полупроводниковыми устройствами электромагнитное реле обладает преимуществами – оно стоит недорого, коммутация большой нагрузки при небольшом размере устройства, малое выделение тепла на катушке. Из недостатков можно выделить медленное срабатывание, помехи и сложность коммутации индуктивных нагрузок.

Твердотельные реле

Твердотельные реле считаются хорошей альтернативой электромагнитным, они представляет собой модульное полупроводниковое устройство, которое производится по гибридной технологии. В составе реле имеются транзисторы, симисторы или тиристоры. По сравнению с электромагнитными устройствами твердотельные реле обладают рядом преимуществ:

  • Долгий срок эксплуатации.
  • Быстродействие.
  • Малые размеры.
  • Отсутствуют посторонние шумы, акустические помехи, дребезги контактов.
  • Низкое потребление энергии.
  • Качественная изоляция.
  • Стойкость к вибрации и ударам.
  • Нет дугового разряда, что позволяет работать во взрывоопасных местах.

Работают по следующему принципу: подается управляющий сигнал на светодиод, происходит гальваническая развязка управляющей и коммутируемой цепей, затем сигнал переходит на фотодиодную матрицу. Напряжение регулирует силовым ключом.

Твердотельные реле также имеют несколько недостатков. Во-первых, при коммутации происходит нагрев устройства. Повышение температуры устройства приводит к ограничению регулируемого тока – при температурах, превышающих 60 градусов, уменьшается величина тока, максимальная рабочая температура 80 градусов.

Твердотельные реле классифицируются по следующим признакам:

  • Тип нагрузки – однофазные и трехфазные.
  • Способ управления – коммутация происходит за счет постоянного напряжения, переменного или ручного управления.
  • Метод коммутации: контроль перехода через ноль (применяется для слабоиндуктивных, емкостных и резистивных нагрузок), случайное включение (индуктивные и резистивные нагрузки, которым необходимо мгновенное срабатывание) и фазовое управление (изменение выходного напряжения, регулировка мощности, управление лампами накаливания).

Реле в проектах Ардуино

Наиболее распространенное реле для платы Ардуино выполняется в виде модуля, например, SONGLE SRD-05VDC. Устройство управляется напряжением 5 В, может коммутировать до 10 А 30 В DC и 10 А 250 В AC.

Схема изображена на рисунке. Реле состоит из двух не связанных между собой цепей – управляющая цепь А1 и А2 и управляемая 1, 2 и 3.

Между А1 и А2 имеется металлический сердечник. Если пустить по нему электрический ток, к нему притянется якорь (2). 1, 3 – неподвижные контакты. При отсутствии тока якорь будет около контакта 3.

Подключение реле к Ардуино

Рассмотрим одноканальный модуль реле. Он имеет всего 3 контакта, подключаются они к Ардуино Uno следующим образом: GND – GND, VCC – +5V, In – 3. Вход реле – инвертирован, так что высокий уровень на In выключает катушку, а низкий – включает.

Светодиоды нужны для индикации – при загорании красного LED1 подается напряжение на реле, при загорании зеленого LED2 происходит замыкание. Когда включается микроконтроллер, транзистор закрыт. Для его открытия на базу нужен минус, подается при помощи функции digitalWrite(pin, LOW);. Транзистор открывается, протекает ток через цепь, реле срабатывает. Чтобы его выключить, на базу подается плюс при помощи digitalWrite(pin, HIGH);.

Схема подключения лампы и внешний вид макета представлены на рисунках.


Ардуино идеально подходит для управления любыми устройствами. Микропроцессор ATmega с помощью программы-скетча манипулирует большим количеством дискретных выводов, аналогово-цифровых входов/выводов и ШИМ-контроллерами.

Благодаря гибкости кода микроконтроллер ATmega широко используется в модулях различной автоматики, в том числе на его основе возможно создать контроллер управления светодиодным освещением.

Принцип управления нагрузкой через Ардуино

Плата Ардуино имеет два типа портов вывода: цифровой и аналоговый (ШИМ-контроллер). У цифрового порта возможно два состояния – логический ноль и логическая единица. Если подключить к нему светодиод он либо будет светиться, либо не будет.

Аналоговый выход представляет собой ШИМ-контроллер, на который подаётся сигнал частотой около 500Гц с регулируемой скважностью. Что такое ШИМ-контроллер и принцип его работы можно найти в интернете. Через аналоговый порт возможно не только включать и выключать нагрузку, а и изменять напряжение (ток) на ней.

Синтаксис команд

Цифровой вывод:

pinMode(12, OUTPUT); — задаём порт 12 портом вывода данных;
digitalWrite(12, HIGH); — подаём на дискретный выход 12 логическую единицу, зажигая светодиод.

Аналоговый вывод:

analogOutPin = 3; – задаём порт 3 для вывода аналогового значения;
analogWrite(3, значение); – формируем на выходе сигнал с напряжением от 0 до 5В. Значение – скважность сигнала от 0 до 255. При значении 255 максимальное напряжение.

Способы управления светодиодами через Ардуино

Напрямую через порт можно подключить лишь слабый светодиод, да и то лучше через ограничительный резистор. Попытка подключить более мощную нагрузку выведет его из строя.

Для более мощных нагрузок, в том числе светодиодных лент, используют электронный ключ – транзистор.

Виды транзисторных ключей

  • Биполярный;
  • Полевой;
  • Составной (сборка Дарлингтона).
Способы подключения нагрузки
Через биполярный транзистор Через полевой транзистор Через коммутатор напряжения

При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

Принцип работы транзистора для плавного управления светодиодной лентой

Транзистор работает как водопроводный кран, только для электронов. Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

Схема подключения LED ленты к ардуино:

Управление RGB лентой с помощью Andurino

Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.

Схема подключения к Arduino RGB светодиода:

Аналогично построено и управление RGB лентой Arduino:

Аrduino RGB контроллер лучше собирать на полевых транзисторах.

Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.

Скетч управления яркостью светодиодной ленты Arduino

int led = 120; устанавливаем средний уровень яркости

void setup() {
pinMode(4, OUTPUT); устанавливаем 4й аналоговый порт на вывод
pinMode(2, INPUT);

pinMode(4, INPUT); устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок
}
void loop(){

button1 = digitalRead(2);

button2 = digitalRead(4);
if (button1 == HIGH) нажатие на первую кнопку увеличит яркость
{
led = led + 5;

analogWrite(4, led);
}
if (button2 == HIGH) нажатие на вторую кнопку уменьшит яркость
{
led = led — 5;

analogWrite(4, led);
}

При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.

Модули управления Ардуино

Для создания полноценного драйвера управления светодиодной лентой можно использовать модули-датчики.

ИК-управление

Модуль позволяет запрограммировать до 20 команд.

Радиус сигнала около 8м.

Цена комплекта 6 у.е.

По радиоканалу

Четырёхканальный блок с радиусом действия до 100м

Цена комплекта 8 у.е.

Позволяет включать освещение еще при приближении к квартире.

Бесконтактное

Датчик расстояния способен по движению руки увеличивать и уменьшать яркость освещения.

Радиус действия до 5м.

Цена модуля 0,3 у.е.

Платформа для любителей робототехники и автоматики славится своей модульной конструкцией и простотой работы. Порой я натыкаюсь на рекламу, где заявляют, что можно собрать своего робота, практически, не будучи знакомым с электроникой. Но это не совсем так.

При неверном подключении некоторых исполнительных устройств и механизмов вы можете сжечь порты ардуинки (о чем я уже рассказывал в статье про то, ). А если вы не знаете, как обращаться с цифровыми устройствами - в лучшем случае вам просто не удастся установить связь.

Я купил несколько модулей для ардуино, что делать дальше?

Чтобы узнать об особенностях подключения, напряжениях питания, логических уровнях и прочем нужно ознакомиться с даташитом на ваш модуль.

Datasheet или даташит - это техническая документация на изделие. Такую документацию можно скачать на любую микросхему или датчик. Обычно они есть на сайте производителя. Более того, в сети существуют специальные ресурсы, на которых собрана целая масса технической документации, одним из таких является http://www.alldatasheet.com/

Внимательно ознакомьтесь с информацией из даташита, но на что следует обратить внимание? Во-первых, у микросхемы, кроме основной части названия обычно присутствует переменная часть или приставка - чаще всего это одна или несколько букв.

Это свидетельствует о некоторых особенностях конкретной микросхемы, например о максимальной мощности, напряжениях питания и логических уровнях (если устройство цифровое), возможно о корпусе, в котором она исполнена и пр.

Если вы не нашли в даташите сведений о питании и лог. уровнях обратитесь в русскоязычные сообщества arduino, на их форумах обычно рассмотрены особенности всех распространенных модулей.

У ArduinoUno напряжение питания и логических уровней 5 В, если внешнее устройство работает в 3.3 В диапазоне - вам придется сформировать их, питание можно устроить с помощью LDO стабилизатора (линейных с низким падением, для стабилизации ему нужно не менее 1.3 вольт «лишнего напряжения при максимальном токе, против 2-х вольт на стабилизаторах 78xx серии, что позволяет получить 3.3 вольта от 4.5 вольт (трёх пальчиковых батареек).

В технической документации для цифровых датчиков и устройств также указываются и названия протоколов, по которым они «общаются» друг с другом. Это могут быть индивидуальные протоколы и стандартные, те же:

Ардуино работает с ними. Это облегчит вам задачу в поиске готовых библиотек и примеров кода.

Согласование и усиление сигналов

Вопросы о согласовании устройств и исполнительных механизмов с ардуиной довольно часто возникают у новичков. Мы рассмотрим часто встречающиеся:

1. Согласование цепей по напряжению.

2. Согласование мощности выходного пина и исполнительного устройства, иными словами усиление напряжения и/или тока.

Что делать если на моём модуле логические уровни 3.3 Вольта, а на ардуино 5 Вольт? Довольно просто использовать конвертер логически уровней. Его можно собрать из дискретных элементов, а можно приобрести готовый модуль на плате, к примеру такой:

Такой преобразователь двунаправленный, т.е. он понижает высокий уровень и повышает ответный низкий. LV(1,2,3,4) - площадки для подключения низкоуровневых сигналов, HV(1,2,3,4) - высоких уровней, HV и LV без цифр - это напряжения 5 и 3.3 Вольта, как и у источников преобразуемых сигналов, GND - земля или минусовой провод. В конкретном экземпляре есть 4 независимых канала.

Вероятность появления высокого потенциала на плате ардуино в этом случае крайне мала, это обеспечивается отсутствием электрического контакта, а связь осуществляется через оптический канал, т.е. с помощью света. Подробнее об этом вы можете узнать изучив фото- и оптоэлектронные приборы.

Если и произойдет большой скачок - то сгорит оптопара, на картинке это PC8171, но никак вы не перегрузите порты микроконтроллера.

Подключение мощных потребителей

Так как микроконтроллер может только УПРАВЛЯТЬ работой устройств, вы не можете подключить мощный потребитель к её порту. Примеры таких потребителей:

    Электродвигатели;

    Сервоприводы.

1. Подключение сервопривода

Основная задача сервопривода - это задать положение ротора подключенного к исполнительным механизмам, контролировать и изменять его с помощью малых усилий. То есть, вы, с помощью потенциометра, если сервопривод рассчитан на вращение в пределах половины оборота (180 градусов) или с помощью энкодера, если необходимо круговое вращение (360 градусов) можете управлять положением вала сервопривода (электродвигателя в нашем случае) произвольной мощности.

Многие любители робототехники используют ардуину в качестве основы своих роботов. Здесь сервоприводы нашли отличное применение. Их используют в качестве привода поворотных механизмов для камер, датчиков и механических рук. Радиомоделисты используют для привода поворота колес в моделях автомобилей. В промышленности используют большие приводы в ЧПУ станках и прочей автоматизации.

В любительских маленьких сервах плата с датчиком положения и электроникой встроена в корпус. Из них обычно выходит три провода:

    Красный - плюс питания, если привод мощный лучше подключать к внешнему источнику, а не к плате ардуино;

    Черный или коричневый - минус, по подключению также, как и плюс;

    Желтый или оранжевый - управляющий сигнал - его подают из цифрового пина микроконтроллера (digital out).

Для управления сервой предусмотрена специальная библиотека, обращение к ней объявляется в начале кода, командой "#include servo.h".

Подключение электродвигателя

Для привода в движение механизмов и регулировки скорости их вращения проще всего использовать ДПТ (щеточный двигатель постоянного тока с возбуждением от постоянных магнитов). Такие моторчики вы, наверняка, видели в радиоуправляемых машинках. Они легко реверсируются (включаются на вращение в нужном направлении) нужно просто сменить полярность. Не пытайтесь их подключить к пинам напрямую!

Лучше использовать транзистор. Подойдет , хоть прямой (pnp), хоть обратной (npn) проводимости. Полевые тоже подойдут, но при выборе конкретного убедитесь, работает ли его затвор с логическим уровнями?

В противном случае он не будет открываться полностью, либо вы сожжете цифровой выход микроконтроллера во время заряда затворной емкости - для них используют драйвер, простейший способ - раскачка сигнала через биполярный транзистор. Ниже приведена схема управления через .

Если между G и S не поставить резистора - тогда затвор (G) не будет притянут к земле и может самопроизвольно “гулять” от помех.

Как определить, что полевой транзистор пригоден для прямого управления с микроконтроллера смотрите ниже. В даташите найдите параметр Vgs, например для IRL540 все измерения и графики привязаны к Vgs=5v, даже такой параметр, как сопротивления открытого канала указан для этого напряжения между затвором и истоком.

Кроме щеточного ДПТ по такой же схеме можно подключить куллер от компьютера, хотя там безщеточный двигатель, обмотки которого управляются встроенным преобразователем плата которого расположена прямо в его корпусе.

Обороты этих двух типов двигателей легко регулировать изменяя питающее напряжение. Это можно сделать если базу транзистора подключить не в цифровому (digital output), а шим пину (~pwm), значение которого определяется функцией "analogWrite()".

Реле и соленоиды

Для коммутации цепей, где не нужно регулирование и частое переключение удобно использовать реле. Правильно подобрав подходящее, вы можете коммутировать любые токи и напряжения при минимальных потерях в проводимости и нагреве силовых линий.

Для этого нужно подать напряжение нужной на катушку реле. На схеме реле, его катушка рассчитана на управление 5-ю вольтами, силовые контакты могут коммутировать и пару вольт и сетевые 220 В.

    Привод замков дверей автомобиля;

    Электромагнитные клапана;

    Электромагнит в металлургическом производстве;

    Силовая установка пушки гаусса и прочее.

В любом случае типовая схема подключения катушек постоянного тока к микроконтроллеру или логике выглядит так:

Транзистор для усиления управляющего тока, диод подключен в обратном направлении для защиты выхода микроконтроллера от всплесков ЭДС самоиндукции.

Устройства ввода и датчики

Вы можете управлять своей системой с помощью кнопок, резисторов, энкодеров. Кнопкой вы можете подать сигнал на цифровой вход ардуины высокого (high/5V) или низкого (low/0V) уровня.

Для этого есть два варианта включения. Нужна нормально-разомкнутая кнопка без фиксации для некоторых целей нужен тумблер или кнопка с фиксацией - выбирайте сами в зависимости от ситуации. Чтобы подать единицу нужно первый контакт кнопки подключить к источнику питания, а второй к точке соединения резистора и входа микроконтроллера.

Когда кнопка нажата на сопротивлении падает напряжение питания, то есть высокий (high) уровень. Когда кнопка не нажата - тока в цепи нет, потенциал на резисторе низкий, на вход подается сигнал "Low/0V". Это состояние называется "пин подтянут к земле, а резистор "pull-down".

Если нужно, чтобы, при нажатии на кнопку, микроконтроллер получал 0 вместо 1, подключите по этой же схеме нормально-замкнутую кнопку или читайте дальше как это сделать с нормально-разомкнутой.

Чтобы давать микроконтроллеру команду нулевым сигналом схема немного изменяется. К напряжению питания подключается одна нога резистора, вторая к точке соединения нормально-разомкнутой кнопки и цифрового входа ардуины.

Когда кнопка отпущена все напряжение остается на ней, вход получает высокий уровень. Это состояние называется "пин подтянут к плюсу", а резистор "pull-up". Когда вы нажмете кнопку вы шунтируете (замыкаете) вход на землю.

Делитель напряжения и ввод сигнала с потенциометра и резистивных аналоговых

Делитель напряжения применяется для подключения переменных сопротивлений, таких как терморезисторы, фоторезисторы и прочее. За счет того, что один из резисторов постоянный, а второй переменный - можно наблюдать изменение напряжения в их средней точки, на картинке выше оно обозначено, как Ur.

Таким образом можно подключать различные аналоговые датчики резистивного типа и датчики которые под воздействием внешних сил изменяют свою проводимость. А также потенциометры.

На картинке ниже вы видите пример подключения таких элементов. Потенциометр можно подключать без дополнительного резистора, тогда в крайнем положении будет полное напряжение, однако в минимальном положении нужно обеспечить стабилизацию или ограничение тока - иначе будет .

Выводы

Чтобы без ошибок подключить любой модуль и дополнение к микроконтроллеру нужно знать основы электротехники, закон Ома, общие сведения об электромагнетизме, а также основы работы полупроводниковых приборов. На самом деле вы можете убедиться, что это всё гораздо проще сделать, чем слушать эти сложные слова. Пользуйтесь схемами из этой статьи в своих проектах!

Алексей Бартош

Научно-технические

Подключение мосфета к Ардуино

"Научно-технические статьи" - подборка научно-технических статей радиоэлектронной тематики: новинки электронных компонентов , научные разработки в области радиотехники и электроники , статьи по истории развития радиотехники и электроники , новые технологии и методы построения и разработки радиоэлектронных устройств, перспективные технологии будущего, аспекты и динамика развития всех направлений радиотехники и электроники , обзоры выставок радиоэлектронной тематики.

Программируемый микроконтроллер Arduino идеально подходит для создания нестандартных устройств. А имеющиеся в избытке готовые модули, расширения и скетчи значительно облегчают задачу.

Однако, всегда находятся проекты, в которых к Arduino необходимо подключить мощный узел или устройство. Микроконтроллер будет отвечать за логику работы, а узел или устройство – выполнять простую работу.

С одной стороны – ничего сложного, с другой – Arduino обеспечивает на выходе только небольшой ток и напряжение (U – не более 5В, I – 40 мА). Значит. Мощную нагрузку нужно подключать через специальный "усилитель". В качестве последнего могут выступать специализированные транзисторы Дарлинтона, биполярные, полевые (мосфеты), реле (механические или на оптопаре) и т.п.

Мы уже подробно рассмотрели основные варианты . Здесь же детально осветим вариант с полевым транзистором.

Нагрузка через мосфет к Ардуино - схема

В первую очередь следует определиться с тем, какие устройства или типы нагрузок лучше всего подключать через полевики:

  • Двигатели (шаговые или постоянного тока);
  • Нагревательные приборы;
  • Мощные лампы;
  • Соленоиды;
  • И т.п.

Не стоит через мосфеты подключать "быстрые" приборы (работающие на высоких частотах или часто включаемые/отключаемые) или сеть с переменным током (для этой задачи лучше всего использовать реле).

Во-первых, полевой транзистор будет греться, во-вторых, его реакция определённо "медленная" для ВЧ техники.

Типовая схема включения нагрузки будет иметь такой вид.

Рис. 1. Типовая схема включения нагрузки

Или такой (для лучшего понимания принципа работы).

Рис. 2. Вариант схемы включения нагрузки

Резистор 3к на затворе – это ограничитель (подстроечное сопротивление). А 10к – это своего рода предохранитель от перехода мосфета в Z-режим (исключается эффект "дребезжания" на малых токах управления).

Если нагрузка обладает большой индуктивностью (актуально, например, для двигателей), то следует использовать дополнительный диод (несмотря на то, что в большинстве мосфетов он уже встроен, не помещает дополнительная защита).

Схема принимает следующий вид.

Рис. 3. Схема устройства

На случай исключения обратного пробоя и выхода из строя платы микроконтроллера, можно реализовать гальванический разрыв цепи через оптрон.

Например, так.

Рис. 4. Гальванический разрыв цепи через оптрон

Если логика работы предполагает быструю реакцию мосфета на сигналы с ШИМ-пина (PWM), то выходной сигнал лучше всего предварительно усилить биполярными транзисторами, например, так.

Рис. 5. Вариант схемы устройства

На случай острой необходимости управления сетью с переменным током 220В с ШИМ-выхода можно воспользоваться следующей схемой.

Рис. 6. Вариант схемы устройства

Она подойдёт на роль "автоматического диммера" с продвинутыми настройками.

При работе с полевыми транзисторами стоит проявлять особую осторожность, они очень боятся статического электричества. Поэтому необходимо предпринять все меры, чтобы снять статический заряд в процессе работ.

Для этого понадобится сопроводительная документация (даташит) к выбранному полевому транзистору. Здесь стоит отметить, что подбирать мосфет необходимо из серий, помеченных как "Logic Level", они разрабатываются специально для работы с микроконтроллерами.

Из даташита необходимо уточнить график зависимости параметров транзистора, например, для IRF630.

Рис. 7. График зависимости параметров транзистора

При напряжении на затворе в 5 Вольт (см. линия в центре с подписью 5V) и токе в цепи (вертикальная ось координат) 5 А, падение напряжения составит около 2В (горизонтальная ось координат).

То есть сопротивление транзистора можно рассчитать по закону Ома как 2/8=0,25 (Ом).

Мы рассмотрели работу с фоторезистором для управления LED. Однако, зачастую нужно управлять более мощной нагрузкой, такой как лампа накаливания, электродвигатель, электромагнит и т.п. Выходы Arduino не могут обеспечить питание столь мощной нагрузки и большого напряжения. К примеру в робототехнике, часто используются двигателя на 12В, 24В, 36В и т.п. К тому же выходной ток вывода Arduino ограничен как правило 40 мА.

Одним из способов управления мощной нагрузкой, является использование MOSFET-транзисторов. Это дает возможность подключать достаточно мощную нагрузку с напряжением питания по 40-50 и более вольт и токами в несколько ампер, скажем электрические двигатели, электромагниты, галогенки и так далее.

Схема подключения достаточно простая, как вы видите.

Если нагрузка индуктивная (электродвигатель, электромагнитный клапан и т.д.), то рекомендуется ставить защитный диод, который защитит мосфет от напряжения самоиндукции. Если вы управляете электродвигателем при помощи ШИМ без защитного диода, то могут возникнуть такие проблемы, как нагрев мосфета или его вылет, медленно будет крутиться ваш двигатель, возникнут потери мощности и т.д. Так что всегда ставьте защитный диод для индуктивной нагрузки. Встроенный в мосфет защитный диод в большинстве случаев не спасает от индуктивных выбросов!

Если нагрузка у вас активная – светодиод, галогенная лампа, нагревательный элемент и т.д., то в этом случае диод не нужен.

В цепь затвора желательно поставить Pull-Down резистор (стягивающий резистор между затвором и истоком ). Он необходим, чтобы гарантированно удерживать низкий уровень на затворе мосфета при отсутствии сигнала высокого уровня от Ардуино. Это исключает самопроизвольное включение транзистора.

При подборе мосфета, для того, чтобы он напрямую открывался от микроконтроллера и не нужно было ставить перед ним биполярных транзисторов и драйверов, обращайте внимание на параметр Gate Threshold, который должен быть примерно от 1 до 4 Вольт. Часто такие транзисторы помечаются как Logic Level .

Давайте к примеру рассмотрим транзистор: IRL3705N N-Channel Hexfet Power MOSFET.

Данный транзистор способен выдерживать продолжительный ток до 89А (естественно с теплоотводом) и открывается при напряжении затвора 1В (параметр V GS(th)). Поэтому, мы можем напрямую подсоединить данный транзистор к ногам Arduino. Когда транзистор полностью открыт, сопротивление Исток-Сток всего 0.01 Ом (параметр R DS(on) ) . Поэтому, если к нему подключить электрический мотор 12В, 10А на транзисторе падение напряжения будет всего лишь 0.1В, а рассеиваемая мощность 1 Ватт.

Если использовать ШИМ-выход контроллера, мы можем управлять мощностью (а значит и скоростью вращения) мотора.