Столкновение между Большим и Малым Магеллановыми облаками было! Магеллановы облака Магеллановы облака млечный путь андромеда.

Исследователи из НАСА и Университета штата Пенсильвания с помощью аппарата “Swift” выполнили самый детальный обзор, из когда либо проводившихся в ультрафиолетовом спектре, Большого и Малого Магеллановых Облаков. Полученную 160-ти мегапиксельную мозаику Большого Магелланова Облака (БМО) и 57-ми магепиксельное Малое Магелланово Облако (ММО) представили 3 июня 2013 года на 222 съезда Американского Астрономического Общества.

На новых изображениях показан приблизительно один миллион источников в БМО и около 250 тысяч в ММО в пределах от 1600 до 3300 ангстрем (ангстрем – международная единица измерения длины волны, равна одной десятимиллионной миллиметра), что соответствует ультрафиолетовому диапазону длин волн, большая часть которого полностью блокируется атмосферой Земли.

Чтобы получить 160-ти мегапиксельную мозаику БМО потребовалось сделать 2200 снимков этого объекта, а их сложение заняло около пяти с половиной суток. Изображение ММО несколько проще и составлено из 656 частей, время обработки составило около двух суток. Оба полученных изображения имеют угловое разрешение в 2.5 угловых секунды, которое является предельно возможным для этого телескопа.

Говорит Майкл Сигель (Michael Siegel), ведущий исследователь по программе Swift’s Ultraviolet/Optical Telescope (UVOT):

“До сих пор проводилось очень мало наблюдений в ультрафиолетовом свете за этими галактиками, и не было ни одного исследования с таким беспрецендентным разрешением. Таким образом, этот обзор закрывает множество вопросов о текущем состоянии Большого и малого Облаков. С полученными мозаиками мы может наблюдать на одном изображении за тем, как звезды проходят через все стадии своей жизни, что очень трудно понять, изучая нашу Галактику, так как мы находимся внутри нее”.

БМО и ММО находятся от нас на расстоянии в 163 тысячи и 200 тысяч световых лет, соответственно, и вращаются вокруг друг друга, а так же и вокруг Млечного Пути. БМО имеет размеры приблизительно в одну десятую нашей Галактики и содержит всего один процент ее массы. ММО в половину меньше БМО и содержит две трети ее массы.

Изучение галактик в ультрафиолете позволяет астрономам подробно изучать звезды, входящие в них. В ультрафиолетовом диапазоне свет от тусклых звезд подавляется, делая выразительнее структуру горячих скоплений, газовых облаков и областей звездного формирования. На сегодняшней день не существует аналогов ультрафиолетовому телескопу, установленному на аппарате “Swift”, по разрешающей способности и полю зрения.

    Общий вид на Большое и Малое Магеллановы Облака. Источник: Axel Mellinger, Central Michigan Univ.

    Изображение Большого Магелланова Облака в ультрафиолетовом диапазоне.

> > Большое Магелланово Облако

Большое Магелланово Облако – карликовая галактика и ближайший спутник Млечного Пути: расстояние, созвездие Золотой Рыбы, обнаружение, рождение звезд, вращение.

Большое Магелланово Облако (БМО) – карликовая галактика, выступающая спутником для Млечного Пути (одна из ближайших к нашей планете). Удалена на 163000 световых лет (между созвездиями и ) и напоминает слабую туманность в южной сфере.

Вместе с наименованы в честь Фердинанда Магеллана. Однако, астрономы из южного полушария обнаружили эти явления еще до кругосветного путешествия в 1519 году. Сам Магеллан умер во время поездки, но команда оставила записи после возвращения.

Местоположение Большого Магелланова Облака

Облака заметны невооруженным глазом, поэтому их обнаружение опередило изобретение телескопа. Но понадобилось еще много веков, чтобы точно вычислить удаленность. До 1994 года считался ближайшим галактическим объектом, пока не проявилась карликовая эллиптическая галактика в . Но и она продержалась на пьедестале лишь до 2003 года, когда нашли Карликовую галактику в Большом Псе.

Большое Магелланово Облако состоит в . Наиболее известный член – (в северном полушарии), наблюдаемая без использования техники. Она удалена на 2.5 миллионов световых лет и приближается к нам для финального столкновения.

Звездообразование в Большом Магеллановом Облаке

Здесь также заметно рождение новых звезд. Удалось запечатлеть в некоторых участках огромные газовые скопления, которые подготавливают условия для «рождения».

В туманности Тарантула были замечены признаки активности и радиации. Это показало, что в центральной части сосредоточены тысячи массивных звезд, которые сдувают материал и создают интенсивное излучение с мощными ветрами. Можете полюбоваться на звезды галактики Большое Магелланово Облако на фото.

На снимке отображена молодая звездная группа в Большом Магеллановом Облаке.

Небольшая зона формирования звезд находится на участке LHA 120-N 11. Расположен далеко от плоскости , но этой дистанции хватает, чтобы изучать «новорожденных». Тем более, что область повернута «лицом», что только упрощает наблюдение.

Вращения Большого Магелланова Облака

Небольшая удаленность от Земли также помогла изучить Большое Магелланово Облако детальнее, чтобы осознать модель поведения других галактик. Стоит обратить внимание на вращение, которое способствует пониманию внутренней структуры дисковых галактик. Если у нас есть скорость вращения, то можно вычислить массу.

На вращение БМО уходит 250 миллионов лет. Это выяснили благодаря отслеживанию звездного передвижения относительно небесной плоскости (впервые этот метод применили на галактике). Если провести подобный эксперимент на Малом, то можно выяснить, как они движутся, а потом применить эту схему и к другим объектам в Местной Группе.

Большое Магелланово Облако – это и путеводный объект для мореплавателей, и интереснейшее космическое образование, привлекающее внимание астрономов не одно столетие.

Темное небо Южного полушария расцвечено мириадами светящихся точек, среди них хорошо различимо яркое скопление звезд в форме облака. Это верные спутники родного нам Млечного Пути – Большое и Малое Магеллановы Облака. Много столетий они служат единственным ориентиром для путешественников южных широт. Описание этих скоплений попало в Европу с кораблями первого кругосветного мореплавателя Фернана Магеллана.

Созвездие Золотая рыба, Большое Магелланово облако находится в нижней части схемы

Записывая все значительные события путешествия, делая заметки обо всем увиденном, Пифагетта в 1519 году поведал жителям Северного полушария о невиданных ими облаках. Современным названием они также обязаны благодарному спутнику Магеллана. После трагической гибели первопроходца в бою с туземцами, летописец предложил таким образом увековечить память о великом путешественнике.

Размеры и свойства

После пересечения экватора в направлении юга, можно рассмотреть Большое Магелланово Облако (БМО), которое представляет собой особенный мир, отдельную галактику. По своим размерам она ощутимо уступает Млечному Пути, как и все спутники – центральным объектам. БМО двигается по круговой орбите, испытывая сильное воздействие гравитации нашей Галактики. Величина этого скопления звезд оценивается в 10 тыс. световых лет, а по массе находящихся в нем космических тел и газа оно в 300 раз уступает Млечному Пути. Нашу планету и БМО разделяет расстояние в163 тыс. световых лет, но все же, это наш ближайший сосед среди далеких миров Местной Группы. В начале изучения Магеллановы Облака отнесли к неправильным галактикам, не имеющим четко определенной структуры, но новые факты помогли заметить наличие спиральных ветвей и перемычки. Карликовая галактика была причислена к подкатегории SBm.

Место нахождения и состав

Занимающее значительную часть созвездия Золотой Рыбы, Большое Магелланово Облако включает 30 млрд. звезд. Оно значительно крупнее и ближе к Земле, чем связанное с ним потоком водорода и общей газовой пеленой Малое Облако. В его изучении, начатом персами еще в X веке, ученые смогли продвинуться значительно. Здесь сказалось удачное расположение объекта и то, что все его составляющие находятся на примерно одинаковом расстоянии. Множество уникальных объектов, наполняющих малую галактику: туманности, звезды-сверхгиганты, шаровые скопления, цефеиды, стали источниками неоценимых знаний об эволюции мироздания.

Систематические наблюдения за затмениями звезд и изменением их яркости помогли точно вычислить расстояние до космических тел, их размеры и массу. Изучение Большого Магелланова Облака дало много важных открытий, которые невозможно переоценить. Замечена нехарактерная для солидного возраста нашей Галактики динамика, сопровождающая появление новых звезд. Для Млечного Пути такие процессы закончились несколько миллиардов лет назад. Большое же Облако насчитывает тысячи объектов I типа, содержащих большое количество металла, присущего юным звездам.

Значимые объекты БМО

Снимок туманности Тарантул полученный с использованием фильтров Ha, OIII и SII. Общее время экспозиции 3,5 ч. Автор Alan Tough.

Знаменитая область, где наблюдается энергичное звездообразование, – это туманность «Тарантул», получившая такое имя за сходство с огромным пауком. На снимках БМО это место выделяется особой яркостью. Внутри облака газа, размером в тысячу световых лет, рождаются новые звезды, выбрасывая колоссальную энергию в охватывающее их пространство, и заставляя его светиться.

Катаклизмы, сопровождающие конец жизненного цикла звезд, нередкое явление в туманности. Такой выброс энергии астрономы зафиксировали в 1987 году – это была самая близкая к Земле вспышка из всех отмеченных. Центральная часть «Тарантула» известна находящимся здесь уникальным объектом, названным R131a1. Он представлен массивнейшей из изученных звезд, которая превосходит Солнце по весу в 265 раз, а по световому потоку – в 10 млн. раз.

Одна из уникальных звезд Большого Магелланова Облака стала родоначальницей отдельного класса светил. S Золотой Рыбы – гипергигант, довольно редкий, имеющий огромную массу и светимость, существующий непродолжительный срок. Его имя использовалось для названия класса голубых переменных звезд. Излучаемый им световой поток превосходит солнечный в 500 тыс. раз. Кроме перечисленных голубых гигантов, необходимо выделить звезду БМО WHO G64. Это красный сверхгигант, его температура невысока – 3200 K, радиус равен 1540 радиусов нашего светила, а яркость – выше в 280 тыс. раз.

Наблюдая за миллиардом звезд, наполняющих Большое Магелланово Облако, замечено, что часть из них движется в обратном направлении и отличается своим составом. Это объекты, украденные притяжением галактике у ее соседки, Малого Облака. Расположение БМО в Южном полушарии лишает жителей северных широт возможности его наблюдать. А если бы S Золотой Рыбы заменила собой ближайшую к нам звезду, на Земле не стало бы темного времени суток.

Если вы окажетесь в Южном полушарии ясной ночью, вы легко увидите на небе два светящихся облака неподалеку от Млечного Пути. Эти звездные облака — спутниковые галактики Млечного Пути под названием Малое Магелланово облако и Большое Магелланово облако.

Используя новую информацию мощного космического телескопа, астрономы Мичиганского университета (США) обнаружили, что юго-восточная область, или Крыло Малого Магелланова облака, движется прочь от основного тела этой карликовой галактики, обеспечивая первое явное доказательство того, что Малое и Большое Магеллановы облака недавно столкнулись.

Малое Магелланово облако. ESA

Вместе с международной командой ученых профессор астрономии Салли Ои и студент Джонни Дориго Джоунс изучали Малое Магелланово облако на предмет наличия сбежавших звезд или звезд, которые были выброшены скоплениями облака. Чтобы наблюдать за этой галактикой, они использовали последний отчет Gaia, нового орбитального телескопа, запущенного Европейским космическим агентством.

Gaia разработан, чтобы делать снимки звезд снова и снова в течение нескольких лет. Это помогает составить план их движений в реальном времени. Таким образом, ученые могут измерить, как звезды двигаются по небу.

Изучение звезд, находящихся в одной галактике, помогает ученым сразу в двух аспектах. Во-первых, исследователи получают пример «набора» звезд одной родительской галактики. Во-вторых, это дает астрономам возможность единым образом замерить расстояние до всех звезд, что помогает вычислить их индивидуальные скорости.

«Интересно, что Gaia получил данные о собственном движении этих звезд, — говорит Дориго Джоунс. — Если мы наблюдаем, как кто-то ходит в кабине самолета во время полета, движение, которое мы видим, включает движение самолета и намного более медленное движение идущего человека».

«Поэтому мы убрали движение всего Малого Магелланова облака, чтобы рассчитать скорости отдельных звезд. Мы заинтересованы в скорости индивидуальных звезд, так как пытаемся понять физические процессы, которые происходят в облаке».

Ои и Дориго Джоунс изучают сбежавшие звезды, чтобы определить, как они были выброшены из этих кластеров. При сценарии двоичной сверхновой, одна звезда в гравитационно связанной двоичной паре взрывается как сверхновая, выбрасывая другую звезду как рогатка. Этот механизм производит двоичные звезды, которые выделяют рентгеновские лучи.

Другой механизм — когда гравитационно неустойчивое звездное скопление выбрасывает одну или две звезды из группы. Это называется сценарием динамического извержения, которое производят обычные двоичные звезды.

Исследователи нашли значительное число сбежавших звезд среди рентгеновских двоичных систем и обычных двоичных систем, а это значит, что оба механизма важны для выбрасывания звезд из кластера.

Команда также заметила, что все звезды в Крыле движутся в похожем направлении и скорости. Это демонстрирует то, что Большое и Малое Магеллановы облака, вероятно, столкнулись несколько сотен миллионов лет назад.

Соавтор исследования Гуртина Бесла, астроном из Аризонского университета (США), смоделировала столкновение Большого и Малого Магеллановых облаков. Она и ее команда предсказали несколько лет назад, что прямое столкновение, заставит Крыло Малого Магелланова облака двигаться к Большому, а если две галактики просто будут проходить одна рядом с другой, звезды Крыла будут двигаться в перпендикулярном направлении. Данные Gaia показали, что Крыло действительно двигается прочь от Малого Магелланова облака к Большому, что еще раз подтверждает, что прямое столкновение галактик произошло.

Соперники – две карликовые галактики, Большое и Малое Магеллановы облака, которые вращаются вокруг Млечного Пути и вокруг друг друга. Каждая из них перетягивает материю из другой, и одной все-таки удалось выдернуть из своего компаньона огромное облако газа.

Так называемый «Передний рукав», состоящий из межзвездного газа, соединяет Магеллановы облака с нашей Галактикой. Огромная концентрация газа поглощается Млечным Путем и поддерживает его звездообразование. Но какая же карликовая галактика вытянула газ, которым теперь пирует наш звездный дом? После долгих дебатов ученые получили ответ на эту загадку.

«Возникает вопрос: из Большого Магелланова облака или из Малого вырван этот газ? На первый взгляд кажется, что он возвращается к Большому Магелланову облаку. Но мы подошли к этому вопросу по-другому, спросив: из чего состоит Передний рукав?» – объясняет Эндрю Фокс, автор исследования из Научного института космического телескопа в Балтиморе (США).

Большое Магелланово Облако. Credit: AURA/NOAO/NSF

Исследование Фокса является продолжением его работы 2013 года, в которой основное внимание уделялось функции позади Большого и Малого Магеллановых облаков. Газ в лентоподобной структуре, называемой Магеллановым Потоком, был найден в обеих карликовых галактиках. Теперь Фокс задумался о Переднем рукаве. В отличие от Магелланова Потока эта потрепанная и вытянутая структура уже достигла Млечного Пути и совершила свое путешествие внутрь галактического диска.

Передний рукав – это пример газовой аккреции в реальном времени. Его очень трудно рассмотреть в галактиках вдалеке от Млечного Пути. «Поскольку эти две галактики находятся на нашем заднем дворе, нам досталось кресло в первом ряду, чтобы посмотреть на это действие», – говорит Кэт Баргер из Техасского христианского университета (США).

Малое Магелланово Облако глазами телескопа VISTA. Credit: ESO/VISTA VMC

В новой работе Фокс и его команда использовали ультрафиолетовое зрение «Hubble» для химического анализа газа в Переднем рукаве. Они наблюдали свет семи квазаров, ярких ядер активных галактик, сквозь это газовое облако. Используя спектрограф космического телескопа, ученые измерили, как фильтруется свет.

В частности, они искали поглощение ультрафиолета кислородом и серой. Это хорошие показатели того, сколько тяжелых элементов находится в газе. Затем группа сравнила замеры «Hubble» с измерениями водорода, проведенными Национальным научным фондом Роберта Берда в обсерватории «Green Bank», а также несколькими другими радиотелескопами.

«С помощью комбинаций наблюдений «Hubble» и «Green Bank» мы можем измерить состав и скорость газа, чтобы определить, какая карликовая галактика виновна в воровстве», – пояснила Кэт Баргер.

На окраинах нашей Галактики развернулось космическое перетягивание каната, и только космическому телескопу «Hubble» под силу рассмотреть, кто побеждает. Credit: D. Nidever et al., NRAO/AUI/NSF and A. Mellinger, Leiden-Argentine-Bonn (LAB) Survey, Parkes Observatory, Westerbork Observatory, Arecibo Observatory, and A. Feild

Ответ был найден только благодаря уникальным способностям «Hubble». Из-за фильтрующих эффектов атмосферы Земли ультрафиолет нельзя изучать наземными телескопами. После большого анализа команда наконец-то определила химические «отпечатки пальцев», соответствующие происхождению газа Переднего рукава. «Мы обнаружили, что газ соответствует Малому Магелланову облаку. Это указывает на то, что Большое Магелланово облако выигрывает в перетягивании каната, потому что оно вырвало столько газа из своего меньшего соседа», – сообщил Эндрю Фокс.

Газ от Переднего рукава теперь пересекает диск нашей Галактики. По мере пересечения, он взаимодействует с собственным газом Млечного Пути и рассеивается. Это важное исследование показывает, как газ попадает в галактики и зажигает звезды. Однажды планеты и звездные системы в Млечном Пути родятся из материала, который когда-то был частью Малого Магелланова облака.