Рациональные действительные. Множества чисел

Понятие числа. Виды чисел.

Число - абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа – это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Целые числа – это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z . Можно сказать, чтоZ ={1,2,3,....}.

Рациональные числа – это числа, представимые в виде дроби, где m - целое число, а n - натуральное число. Для обозначения рациональных чисел используется латинская буква Q . Все натуральные и целые числа – рациональные.

Действительные (вещественные) числа – это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа – это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными.

1. Системы счисления.

Система счисления – способ наименования и записи чисел. В зависимости от способа изображения чисел разделяется на позиционные-десятичная и непозиционные-римская.

В ПК используют 2ичную, 8ричную и 16ричную системы счисления.

Отличия:запись числа в 16ной системе счисленич по сравнению с другой записью значительно короче, т.е. требует меньшего количества разрядности.

В позиционной системе счисления каждая цифра сохраняет свое постоянное значение независимо от занимаемой позиции в числе. В позиционной системе счисления каждая цифра определяет не только свое значение, но зависит от того положения, которое она занимает в числе. Каждая система счисления характеризуется основанием. Основание- это количество различных цифр, которые используются для записи чисел в данной системе счисления. Основание показывает во сколько раз изменяется значение одной и той же цифры при переходе на соседнюю позицию. В компьютере используется 2-система счисления. Основанием системы может быть любое число. Арифметические дей-ия над числами в любой позиции выполняются по правилам аналогичным 10 системе счисления. Для 2 системы счисления используется двоичная арифметика, которая реализуется в компьютере для выполнения арифметических вычислений.

Сложение двоичных чисел:0+0=1;0+1=1;1+0=1;1+1=10

Вычитание:0-0=0;1-0=1;1-1=0;10-1=1

Умножение:0*0=0;0*1=0;1*0=0;1*1=1

В компьютере широко применяется 8 система счисления и 16 система счисления. Они используются для сокращения записи двоичных чисел

2. Понятие множества.

Понятие «множество» является фундаментальным понятием математики и не имеет определения. Природа порождения любого множества разнообразна, в частности, окружающие предметы, живая природа и др.

Определение 1 : Объекты, из которых образовано множество, называются элементами данного множества . Для обозначения множества используют заглавные буквы латинского алфавита: например X, Y, Z, а в фигурных скобках через запятую выписывают его элементы строчными буквами, например: {x,y,z}.

Пример обозначения множества и его элементов:

X = {x 1 , x 2 ,…, x n } – множество, состоящее из n элементов. Если элемент x принадлежит множеству X, то следует записать: xÎX, иначе элемент x не принадлежит множеству X, что записывается: xÏX. Элементами абстрактного множества могут быть, например, числа, функции, буквы, фигуры и т.д. В математике в любом разделе используется понятие множества. В частности, можно привести некоторые конкретные множества вещественных чисел. Множество вещественных чисел х, удовлетворяющих неравенствам:

· а ≤ x ≤ b называется сегментом и обозначается ;

· а ≤ x < b или а < x ≤ b называется полусегментом и обозначается: ;

· а < x < b называется интервалом и обозначается (a,b).

Определение 2 : Множество, имеющее конечное число элементов, называется конечным. Пример. X = {x 1 , x 2 , x 3 }.

Определение 3 : Множество называется бесконечным , если оно состоит из бесконечного числа элементов. Например, множество всех вещественных чисел бесконечно. Пример записи. X = {x 1 , x 2 , ...}.

Определение 4 : Множество, в котором нет ни одного элемента, называют пустым множеством и обозначают символом Æ.

Характеристикой множества является понятие мощности. Мощность – это количество его элементов. Множество Y={y 1 , y 2 ,...} имеет ту же мощность, что и множество X={x 1 , x 2 ,...}, если существует взаимно однозначное соответствие y= f(x) между элементами этих множеств. Такие множества имеют одинаковую мощность или равномощны. Пустое множество имеет нулевую мощность.

3. Способы задания множеств.

Считают, что множество задано своими элементами, т.е. множество задано, если о любом объекте можно сказать: принадлежит он этому множеству или не принадлежит. Задавать множество можно следующими способами:

1) Если множество конечно, то его можно задать перечислением всех его элементов. Так, если множество А состоит из элементов 2, 5, 7, 12 , то пишут А = {2, 5, 7, 12}. Количество элементовмножества А равно 4 , пишут n(А) = 4.

Но если множество бесконечно, то его элементы нельзя перечислить. Трудно задать множество перечислением и конечное множество с большим числом элементов. В таких случаях применяют другой способ задания множества.

2) Множество можно задать указанием характеристического свойства его элементов. Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, не принадлежащий ему. Рассмотрим, например, множество Х двузначных чисел: свойство, которым обладает каждый элемент данного множества, – «быть двузначным числом». Это характеристическое свойство дает возможность решать о том, принадлежит какой-либо объект множеству Х или не принадлежит. Например, число 45 содержится в данном множестве, т.к. оно двузначное, а число 4 множеству Х не принадлежит, т.к. оно однозначное и не является двузначным. Случается, что одно и то же множество можно задать, указав различные характеристические свойства его элементов. Например, множество квадратов можно задать как множество прямоугольников с равными сторонами и как множество ромбов с прямым углом.



В тех случаях, когда характеристическое свойство элементов множества можно представить в символической форме, возможна соответствующая запись. Если множество В состоит из всех натуральных чисел, меньших 10, то пишут В = {x N| x <10}.

Второй способ – более общий и позволяет задавать как конечные, так и бесконечные множества.

4. Числовые множества.

Числовое - множество, элементами которых являются числа. Числовые множества задаются на оси действительных чисел R. На этой оси выбирают масштаб и указывают начало отсчета и направление. Наиболее распространенные числовые множества:

· - множество натуральных чисел;

· - множество целых чисел;

· - множество рациональных или дробных чисел;

· - множество действительных чисел.

5. Мощность множества. Приведите примеры конечных и бесконечных множеств.

Множества называются равномощными, эквивалентными, если между ними есть взаимно - однозначное или одно-однозначное соответствие, то есть такое попарное соответствие. когда каждому элементу одного множества сопоставляется один-единственный элемент другого множества и наоборот, при этом различным элементам одного множества сопоставляются различные элементы другого.

Например, возьмём группу студентов из тридцати человек и выдадим экзаменационные билеты по одному билету каждому студенту из стопки, содержащей тридцать билетов, такое попарное соответствие из 30 студентов и 30 билетов будет одно-однозначным.

Два множества, равномощные с одним и тем же третьим множеством, равномощны. Если множества M и N равномощны, то и множества всех подмножеств каждого из этих множеств M и N , также равномощны.

Под подмножеством данного множества понимается такое множество, каждый элемент которого является элементом данного множества. Так множество легковых автомобилей и множество грузовых автомобилей будут подмножествами множества автомобилей.

Мощность множества действительных чисел, называют мощностью континуума и обозначают буквой «алеф» א . Наименьшей бесконечной областью является мощность множества натуральных чисел. Мощность множества всех натуральных чисел принято обозначать (алеф-нуль) .

Часто мощности называют кардинальными числами. Это понятие введено немецким математиком Г. Кантором. Если множества обозначают символическими буквами M, N , то кардинальные числа обозначают через m, n . Г.Кантор доказал, что множество всех подмножеств данного множества М имеет мощность большую, чем само множество М.

Множество, равномощное множеству всех натуральных чисел, называется счетным множеством.

6. Подмножества указанного множества.

Если из нашего множества выбрать несколько элементов и сгруппировать их отдельно – то это будет подмножество нашего множества. Комбинаций, из которых можно получить подмножество много, количество комбинаций лишь зависит от количества элементов в исходном множестве.

Пусть у нас есть два множества А и Б. Если каждый элемент множества Б является элементом множества А, то множество Б называется подмножеством А. Обозначается: Б ⊂ А. Пример.

Сколько существует подмножеств множества А=1;2;3.

Решение. Подмножества состоя из элементов нашего множества. Тогда у нас существует 4 варианта по количеству элементов в подмножестве:

Подмножество может состоять из 1 элемента, из 2, 3 элементов и может быть пустым. Давайте последовательно запишем наши элементы.

Подмножество из 1 элемента: 1,2,3

Подмножество из 2 элементов:1,2,1,3,2,3.

Подмножество из 3 элементов:1;2;3

Не забудем, что пустое множество так же является подмножеством нашего множества. Тогда получаем, что у нас есть 3+3+1+1=8 подмножеств.

7. Операции над множествами.

Над множествами можно выполнять определенные операции, подобные в некотором отношении операциям над действительными числами в алгебре. Поэтому можно говорить об алгебре множеств.

Объединением (соединением) множеств А и В называется множество (символически оно обозначается через ), состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А или В . В форме от х объединение множеств записывается так

Запись читается: «объединение А и В » или «А , объединенное с В ».

Операции над множествами наглядно изображают графически с помощью кругов Эйлера (иногда используют термин «диаграммы Венна-Эйлера»). Если все элементы множества А будут сосредоточены в пределах круга А , а элементы множества В – в пределах круга В , тооперацию объединения с помощью кругов Эйлера можно представить в следующем виде

Пример 1 . Объединением множества А = {0, 2, 4, 6, 8} четных цифр и множества В = {1, 3, 5, 7, 9} нечетных цифр является множество = ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} всех цифр десятичной системы счисления.

8. Графическое изображение множеств. Диаграммы Эйлера-Венна.

Диаграммы Эйлера-Венна – геометрические представления множеств. Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U , а внутри его – кругов (или каких-нибудь других замкнутых фигур), представляющих множества. Фигуры должны пересекаться в наиболее общем случае, требуемом в задаче, и должны быть соответствующим образом обозначены. Точки, лежащие внутри различных областей диаграммы, могут рассматриваться как элементы соответствующих множеств. Имея построенную диаграмму, можно заштриховать определенные области для обозначения вновь образованных множеств.

Операции над множествами рассматриваются для получения новых множеств из уже существующих.

Определение. Объединением множеств А и В называется множество, состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А, В (рис. 1):

Определение. Пересечением множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат одновременно как множеству А, так и множеству В (рис. 2):

Определение. Разностью множеств А и В называется множество всех тех и только тех элементов А, которые не содержатся в В (рис. 3):

Определение. Симметрической разностью множеств А и В называется множество элементов этих множеств, которые принадлежат либо только множеству А, либо только множеству В (рис. 4):

Декартовым (или прямым) произведением множеств A и B называется такое результирующее множество пар вида (x ,y ) , построенных таким образом, что первый элемент из множества A , а второй элемент пары - из множества B . Общепринятое обозначение:

A ×B ={(x ,y )|x A ,y B }

Произведения трёх и более множеств можно построить следующим образом:

A ×B ×C ={(x ,y ,z )|x A ,y B ,z C }

Произведения вида A ×A ,A ×A ×A ,A ×A ×A ×A и т.д. принято записывать в виде степени: A 2 ,A 3 ,A 4 (основание степени - множество-множитель, показатель - количество произведений). Читают такую запись как «декартов квадрат» (куб и т.д.). Существуют и другие варианты чтения для основных множеств. К примеру, R n принято читать как «эр энное».

Свойства

Рассмотрим несколько свойств декартова произведения:

1. Если A ,B - конечные множества, то A ×B - конечное. И наоборот, если одно из множеств-сомножителей бесконечное, то и результат их произведения - бесконечное множество.

2. Количество элементов в декартовом произведении равно произведению чисел элементов множеств-сомножителей (в случае их конечности, разумеется): |A ×B |=|A |⋅|B | .

3. A np ≠(A n ) p - в первом случае целесообразно рассмотреть результат декартова произведения как матрицу размеров 1×np , во втором же - как матрицу размеров n ×p .

4. Коммутативный закон не выполняется, т.к. пары элементов результата декартова произведения упорядочены: A ×B B ×A .

5. Ассоциативный закон не выполняется: (A ×B C A ×(B ×C ) .

6. Имеет место дистрибутивность относительно основных операциях на множествах: (A B C =(A ×C )∗(B ×C ),∗∈{∩,∪,∖}

10. Понятие высказывания. Элементарные и составные высказывания.

Высказывание - это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно (И-1) или ложно (Л-0), но не то и другое одновременно.

Например, «Сегодня идет дождь», «Иванов выполнил лабораторную работу №2 по физике».

Если у нас имеется несколько исходных высказываний, то из них при помощи логических союзов или частиц мы можем образовывать новые высказывания, истинностное значение которых зависит только от истинностных значений исходных высказываний и от конкретных союзов и частиц, которые участвуют в построении нового высказывания. Слова и выражения «и», «или», «не», «если... , то», «поэтому», «тогда и только тогда» являются примерами таких союзов. Исходные высказывания называются простыми , а построенные из них с помощью тех или иных логических союзов новые высказывания - составными . Разумеется, слово «простые» никак не связано с сутью или структурой исходных высказываний, которые сами могут быть весьма сложными. В данном контексте слово «простой» является синонимом слова «исход-ный». Важно то, что значения истинности простых высказываний предполагаются известными или заданными; в любом случае они никак не обсуждаются.

Хотя высказывание типа «Сегодня не четверг» не составлено из двух различных простых высказываний, для единообразия конструкции оно также рассматривается как составное, по-скольку его истинностное значение определяется истинностным значением другого высказыва-ния «Сегодня четверг»

Пример 2. Cледующие высказывания рассматриваются как составные:

Я читаю «Московский комсомолец» и я читаю «Коммерсант».

Если он сказал это, значит, это верно.

Солнце не является звездой.

Если будет солнечно и температура превысит 25 0 , я приеду поездом или автомобилем

Простые высказывания, входящие в составные, сами по себе могут быть совершенно произвольными. В частности, они сами могут быть составными. Описываемые ниже базисные типы составных высказываний определяются независимо от образующих их простых высказываний.

11. Операции над высказываниями.

1. Операция отрицания.

Отрицанием высказывания А (читается «не А », «неверно, что А »), которое истинно, когда А ложно и ложно, когда А – истинно.

Отрицающие друг друга высказывания А и называются противоположными.

2. Операция конъюнкции .

Конъюнкцией высказываний А и В называется высказывание, обозначаемое А В (читается «А и В »), истинные значения которого определяются в том и только том случае, когда оба высказывания А и В истинны.

Конъюнкцию высказываний называют логическим произведением и часто обозначают АВ.

Пусть дано высказывание А – «в марте температура воздуха от 0 С до +7 С » и высказывание В – «в Витебске идет дождь». Тогда А В будет следующей: «в марте температура воздуха от 0 С до +7 С и в Витебске идет дождь». Данная конъюнкция будет истинной, если будут высказывания А и В истинными. Если же окажется, что температура была меньше 0 С или в Витебске не было дождя, то А В будет ложной.

3 . Операция дизъюнкции .

Дизъюнкцией высказываний А и В называется высказывание А В (А или В ), которое истинно тогда и только тогда, когда хотя бы одно из высказываний истинно и ложно – когда оба высказывания ложны.

Дизъюнкцию высказываний называют также логической суммой А+В.

Высказывание «4<5 или 4=5 » является истинным. Так как высказывание «4<5 » – истинное, а высказывание «4=5 » – ложное, то А В представляет собой истинное высказывание «4 5 ».

4 . Операция импликации .

Импликацией высказываний А и В называется высказывание А В («если А , то В », «из А следует В »), значение которого ложно тогда и только тогда, когда А истинно, а В ложно.

В импликации А В высказывание А называют основанием, или посылкой, а высказывание В следствием, или заключением.

12. Таблицы истинности высказываний.

Таблица истинности - это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию и значениями функции.

Таблицы истинности применяются для:

Вычисления истинности сложных высказываний;

Установления эквивалентности высказываний;

Определения тавтологий.

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

Число - важнейшее математическое понятие, меняющееся на протяжении веков.

Первые представления о числе возникли из счета людей, животных, плодов, различных изделий и пр. Результатом являются натуральные числа: 1, 2, 3, 4, ...

Исторически первым расширением понятия числа является присоединение к натуральному числу дробных чисел.

Дробью называется часть (доля) единицы или несколько равных ее частей.

Обозначаются: , где m, n - целые числа;

Дроби со знаменателем 10n , где n - целое число, называются десятичными : .

Среди десятичных дробей особое место занимают периодические дроби : - чистая периодическая дробь, - смешанная периодическая дробь.

Дальнейшее расширение понятия числа вызвано уже развитием самой математики (алгебры). Декарт в XVII в. вводит понятие отрицательного числа .

Числа целые (положительные и отрицательные), дробные (положительные и отрицательные) и нуль получили название рациональных чисел . Всякое рациональное число может быть записано в виде дроби конечной и периодической.

Для изучения непрерывно изменяющихся переменных величин оказалось необходимым новое расширение понятия числа - введение действительных (вещественных) чисел - присоединением к рациональным числам иррациональных: иррациональные числа - это бесконечные десятичные непериодические дроби.

Иррациональные числа появились при измерении несоизмеримых отрезков (сторона и диагональ квадрата), в алгебре - при извлечении корней , примером трансцендентного, иррационального числа являются π, e .

Числа натуральные (1, 2, 3,...), целые (..., –3, –2, –1, 0, 1, 2, 3,...), рациональные (представимые в виде дроби) и иррациональные (не представимые в виде дроби) образуют множество действительных (вещественных) чисел.

Отдельно в математике выделяют комплексные числа.

Комплексные числа возникают в связи с задачей решения квадратных для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: z=a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Свойства:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0i или a – 0i . Например 5 + 0i и 5 – 0i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Действия:

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d )i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число (a – c ) + (b – d )i . Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

(ac – bd ) + (ad + bc )i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = –1.

П р и м е р. (a+ bi )(a – bi )= a 2 + b 2 . Следовательно, произведение двух сопряжённых комплексных чисел равно действительному положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi . Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3i и выполнив все преобразования, получим:

Задание 1: Сложите, вычтите, умножьте и разделите z 1 на z 2

Извлечение корня квадратного: Реши уравнение x 2 = -a. Для решения данного уравнения мы вынуждены воспользоваться числами нового типа – мнимые числа . Таким образом, мнимым называется число, вторая степень которого является числом отрицательным . Согласно этому определению мнимых чисел мы можем определить и мнимую единицу :

Тогда для уравнения x 2 = – 25 мы получаем два мнимых корня:

Задание 2: Реши уравнение:

1) x 2 = – 36; 2) x 2 = – 49; 3) x 2 = – 121

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B –число 2, и O –ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b . Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или) буквой r и равен:

Сопряжённые комплексные числа имеют одинаковый модуль.

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат По осям нужно задать размерность, отмечаем:

е
диницу по действительной оси; Re z

мнимую единицу по мнимой оси. Im z

Задание 3. Построить на комплексной плоскости следующие комплексные числа: , , , , , , ,

1. Числа точные и приближенные. Числа, с которыми мы встречаемся на практике, бывают двух родов. Одни дают истинное значение величины, другие - только приблизительное. Первые называют точными, вторые - приближенными. Чаще всего удобно пользоваться приближенным числом вместо точного, тем более, что во многих случаях точное число вообще найти невозможно.

Так, если говорят, что в классе есть 29 учеников, то число 29 - точное. Если же говорят, что расстояние от Москвы до Киева равно 960 км, то здесь число 960 - приближенное, так как, с одной стороны, наши измерительные инструменты не абсолютно точны, с другой стороны, сами города имеют некоторую протяженность.

Результат действий с приближенными числами есть тоже приближенное число. Выполняя некоторые действия над точными числами (деление, извлечение корня), можно также получить приближенные числа.

Теория приближенных вычислений позволяет:

1) зная степень точности данных, оценить степень точности результатов;

2) брать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата;

3) рационализировать процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точность результата.

2. Округление. Одним из источников получения приближенных чисел является округление. Округляют как приближенные, так и точные числа.

Округлением данного числа до некоторого его разряда называют замену его новым числом, которое получается из данного путем отбрасывания всех его цифр, записанных правее цифры этого разряда, или путем замены их нулями. Эти нули обычно подчеркивают или пишут их меньшими. Для обеспечения наибольшей близости округленного числа к округляемому следует пользоваться такими правилами: чтобы округлить число до единицы определенного разряда, надо отбросить все цифры, стоящие после цифры этого разряда, а в целом числе заменить их нулями. При этом учитывают следующее:

1) если первая (слева) из отбрасываемых цифр менее 5, то последнюю оставленную цифру не изменяют (округление с недостатком);

2) если первая отбрасываемая цифра больше 5 или равна 5, то последнюю оставленную цифру увеличивают на единицу (округление с избытком).

Покажем это на примерах. Округлить:

а) до десятых 12,34;

б) до сотых 3,2465; 1038,785;

в) до тысячных 3,4335.

г) до тысяч 12375; 320729.

а) 12,34 ≈ 12,3;

б) 3,2465 ≈ 3,25; 1038,785 ≈ 1038,79;

в) 3,4335 ≈ 3,434.

г) 12375 ≈ 12 000; 320729 ≈ 321000.

3. Абсолютная и относительная погрешности. Разность между точным числом и его приближенным значением называется абсолютной погрешностью приближенного числа. Например, если точное число 1,214 округлить до десятых, получим приближенное число 1,2. В данном случае абсолютная погрешность приближенного числа 1,2 равна 1,214 - 1,2, т.е. 0,014.

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу, которую она не превышает. Это число называют граничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность. Например, число 23,71 есть приближенное значение числа 23,7125 с точностью до 0,01, так как абсолютная погрешность приближения равна 0,0025 и меньше 0,01. Здесь граничная абсолютная погрешность равна 0,01 * .

Граничную абсолютную погрешность приближенного числа а обозначают символом Δa . Запись

x a (±Δa )

следует понимать так: точное значение величины x находится в промежутке между числамиа – Δa иа + Δа , которые называют соответственно нижней и верхней границейх и обозначают НГx ВГх .

Например, если x ≈ 2,3 (±0,1), то 2,2<x < 2,4.

Наоборот, если 7,3< х < 7,4, тох ≈ 7,35 (±0,05). Абсолютная или граничная абсолютная погрешность не характеризует качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина. Например если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого изменения в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой. Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называют граничной относительной погрешностью; обозначают ее так: . Относительную и граничную относительную погрешности принято выражать в процентах. Например, если измерения показали, что расстояниех между двумя пунктами больше 12,3 км, но меньше 12,7 км, то за приближенное значение его принимают среднее арифметическое этих двух чисел, т.е. их полусумму, тогда граничная абсолютная погрешность равна полуразности этих чисел. В данном случаех ≈ 12,5 (±0,2). Здесь граничная абсолютная погрешность равна 0,2 км, а граничная относительная

Число — абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа - это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Целые числа - это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей - натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z . Можно сказать, чтоZ ={1,2,3,....}.

Рациональные числа - это числа, представимые в виде дроби, где m — целое число, а n — натуральное число. Для обозначения рациональных чисел используется латинская буква Q . Все натуральные и целые числа - рациональные. Также в качестве примеров рациональных чисел можно привести: ,,.

Действительные (вещественные) числа - это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа - это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел - это,,.

Любое действительное число можно отобразить на числовой прямой:


Для перечисленных выше множеств чисел справедливо следующее высказывание:

То есть множество натуральных чисел входит во множество целых чисел. Множество целых чисел входит во множество рациональных чисел. А множество рациональных чисел входит во множество действительных чисел. Это высказывание можно проиллюстрировать с помощью кругов Эйлера.


Натуральные числа - это те числа, с которых когда-то всё началось. И сегодня это первые числа, с которыми встречается в своей жизни человек, когда в детстве учится считать на пальцах или счетных палочках.

Определение: натуральными называют числа, которые используют для счета предметов (1, 2, 3, 4, 5, ...) [Число 0 не является натуральным. Оно и в истории математики имеет свою отдельную историю и появилось много позже натуральных чисел.]

Множество всех натуральных чисел (1, 2, 3, 4, 5, ...) обозначают буквой N.

Целые числа

Научившись считать, следующее, что мы делаем - это учимся производить над числами арифметические действия. Обычно сначала (на счетных палочках) учатся выполнять сложение и вычитание.

Со сложением всё понятно: сложив любые два натуральных числа, в результате всегда получим тоже натуральное число. А вот в вычитании обнаруживаем, что из меньшего отнять большее так, чтобы в результате получилось натуральное число, мы не можем. (3 − 5 = чему?) Здесь возникает идея отрицательных чисел. (Отрицательные числа уже не являются натуральными)

На этапе возникновения отрицательных чисел (а они появились позже дробных) существовали и их противники, считавшие их бессмыслицей. (Три предмета можно показать на пальцах, десять можно показать, тысячу предметов можно представить по аналогии. А что такое "минус три мешка"? — В то время числа хоть уже и использовались сами по себе, в отрыве от конкретных предметов, количество которых они обозначают, всё ещё были в сознании людей гораздо ближе к этим конкретным предметам, чем сегодня.) Но, как и возражения, так и основной аргумент в пользу отрицательных чисел, пришел из практики: отрицательные числа позволяли удобно вести счет долгам. 3 − 5 = −2 — у меня было 3 монеты, я потратила 5. Значит, у меня не просто закончились монеты, но и 2 монеты я кому-то должна. Если верну одну, долг изменится −2+1=−1, но тоже может быть представлен отрицательным числом.

В итоге, отрицательные числа появились в математике, и теперь у нас есть бесконечное количество натуральных чисел (1, 2, 3, 4, ...) и есть такое же количество им противоположных (−1, −2, −3, −4, ...). Добавим к ним ещё 0. И множество всех этих чисел будем называть целыми.

Определение: Натуральные числа, им противоположные и нуль составляют множество целых чисел. Оно обозначается буквой Z.

Любые два целых числа можно вычесть друг из друга или сложить и получить в результате целое число.

Идея сложения целых чисел уже предполагает возможность умножения, как просто более быстрого способа выполнения сложения. Если у нас есть 7 мешков по 6 килограмм, мы можем складывать 6+6+6+6+6+6+6 (семь раз прибавлять к текущей сумме по 6), а можем просто помнить, что такая операция всегда будет давать в результате 42. Как и сложение шести семерок 7+7+7+7+7+7 тоже всегда будет давать 42.

Результаты операции сложения определенного числа самого с собой определенное количество раз для всех пар чисел от 2 до 9 выписываются и составляют таблицу умножения. Для умножения целых чисел больше 9 придумывается правило умножения в столбик. (Которое распространяется и на десятичные дроби, и которое будет рассматриваться в одной из следующих статей.) При умножении любых двух целых чисел друг на друга всегда получим в результате целое число.

Рациональные числа

Теперь деление. По аналогии с тем, как вычитание является обратной операцией для сложения, приходим к идее деления как обратной операции для умножения.

Когда у нас было 7 мешков по 6 килограмм, с помощью умножения мы легко посчитали, что общий вес содержимого мешков составляет 42 килограмма. Представим себе, что мы высыпали всё содержимое всех мешков в одну общую кучу массой 42 килограмма. А потом передумали, и захотели распределить содержимое обратно по 7 мешкам. Сколько килограмм при этом попадет в один мешок, если будем распределять поровну? – Очевидно, что 6.

А если захотим распределить 42 килограмма по 6 мешкам? Тут мы подумаем о том, что те же общие 42 килограмма могли бы получиться, если бы мы высыпали в кучу 6 мешков по 7 килограмм. И значит при делении 42 килограмм на 6 мешков поровну получим в одном мешке по 7 килограмм.

А если разделить 42 килограмма поровну по 3 мешкам? И здесь тоже мы начинаем подбирать такое число, которое при умножении на 3 дало бы 42. Для «табличных» значений, как в случае 6 ·7=42 => 42:6=7, мы выполняем операцию деления, просто вспоминая таблицу умножения. Для более сложных случаев используется деление в столбик, которое будет рассмотрено в одной из следующих статей. В случае 3 и 42 можно «подбором» вспомнить, что 3 ·14 = 42. Значит, 42:3=14. В каждом мешке будет по 14 килограмм.

Теперь попробуем разделить 42 килограмма поровну на 5 мешков. 42:5=?
Замечаем, что 5 ·8=40 (мало), а 5·9=45 (много). То есть, ни по 8 килограмм в мешке, ни по 9 килограмм, из 5 мешков мы 42 килограмма никак не получим. При этом понятно, что в реальности разделить любое количество (крупы, например,) на 5 равных частей нам ничего не мешает.

Операция деления целых чисел друг на друга не обязательно дает в результате целое число. Так мы пришли к понятию дроби. 42:5 = 42/5 = 8 целых 2/5 (если считать в обыкновенных дробях) или 42:5=8,4 (если считать в десятичных дробях).

Обыкновенные и десятичные дроби

Можно сказать, что любая обыкновенная дробь m/n (m – любое целое, n – любое натуральное) представляет собой просто специальную форму записи результата деления числа m на число n. (m называют числителем дроби, n – знаменателем) Результат деления, например, числа 25 на число 5 тоже можно записать в виде обыкновенной дроби 25/5. Но в этом нет необходимости, так как результат деления 25 на 5 может быть записан просто целым числом 5. (И 25/5 = 5). А вот результат деления числа 25 на число 3 уже не может быть представлен целым числом, поэтому здесь и возникает необходимость использования дроби, 25:3=25/3. (Можно выделить целую часть 25/3= 8 целых 1/3. Более подробно обыкновенные дроби и операции с обыкновенными дробями будут рассмотрены в следующих статьях.)

Обыкновенные дроби хороши тем, что, чтобы представить такой дробью результат деления любых двух целых чисел, нужно просто записать делимое в числитель дроби, а делитель в знаменатель. (123:11=123/11, 67:89=67/89, 127:53=127/53, …) Затем по возможности сократить дробь и/или выделить целую часть (эти действия с обыкновенными дробями будут подробно рассмотрены в следующих статьях). Проблема в том, что производить арифметические действия (сложение, вычитание) с обыкновенными дробями уже не так удобно, как с целыми числами.

Для удобства записи (в одну строку) и для удобства вычислений (с возможностью вычислений в столбик, как для обычных целых чисел) кроме обыкновенных дробей придуманы ещё и десятичные дроби. Десятичная дробь – это специальным образом записанная обыкновенная дробь со знаменателем 10, 100, 1000 и т.п. Например, обыкновенная дробь 7/10 – это то же, что и десятичная дробь 0,7. (8/100 = 0,08; 2 целых 3/10=2,3; 7 целых 1/1000 = 7, 001). Переводу обыкновенных дробей в десятичные и наоборот будет посвящена отдельная статья. Операциям с десятичными дробями – другие статьи.

Любое целое число может быть представлено в виде обыкновенной дроби со знаменателем 1. (5=5/1; −765=−765/1).

Определение: Все числа, которые могут быть представлены в виде обыкновенной дроби, называют рациональными числами. Множество рациональных чисел обозначают буквой Q.

При делении любых двух целых чисел друг на друга (кроме случая деления на 0) всегда получим в результате рациональное число. Для обыкновенных дробей есть правила сложения, вычитания, умножения и деления, позволяющие произвести соответствующую операцию с любыми двумя дробями и получить в результате также рациональное число (дробь или целое).

Множество рациональных чисел – это первое из рассмотренных нами множеств, в котором можно и складывать, и вычитать, и умножать, и делить (кроме деления на 0), никогда не выходя за пределы этого множества (то есть, всегда получая в результате рационально число).

Казалось бы, других чисел не существует, все числа рациональные. Но и это не так.

Действительные числа

Существуют такие числа, которые нельзя представить в виде дроби m/n (где m-целое, n-натуральное).

Какие же это числа? Мы ещё не рассмотрели операцию возведения в степень. Например, 4 2 =4 ·4 = 16. 5 3 =5 ·5 ·5=125. Как умножение представляет собой более удобную форму записи и вычисления сложения, так и возведение в степень – это форма записи умножения одного и того же числа самого на себя определенное количество раз.

Но теперь рассмотрим операцию, обратную возведению в степень – извлечение корня. Квадратный корень из 16 – это число, которое в квадрате даст 16, то есть число 4. Квадратный корень из 9 – это 3. А вот квадратный корень из 5 или из 2, например, не может быть представлен рациональным числом. (Доказательство этого утверждения, другие примеры иррациональных чисел и их историю можно посмотреть, например, в Википедии)

В ГИА в 9 классе есть задание на определение того, является ли число, содержащее в своей записи корень, рациональным или иррациональным. Задача заключается в том, чтобы попытаться преобразовать это число к виду, не содержащему корень (используя свойства корней). Если от корня не удается избавиться, то число иррациональное.

Другим примером иррационального числа является число π, знакомое всем из геометрии и тригонометрии.

Определение: Рациональные и иррациональные числа вместе называют действительными (или вещественными) числами. Множество всех действительных чисел обозначают буквой R.

В действительных числах, в отличии от рациональных, мы можем выразить расстояние между любыми двумя точками на прямой или на плоскости.
Если нарисовать прямую и выбрать на ней две произвольные точки или выбрать две произвольные точки на плоскости, то может так получиться, что точное расстояние между этими точками невозможно выразить рациональным числом. (Пример – гипотенуза прямоугольного треугольника с катетами 1 и 1 по теореме Пифагора будет равна корню из двух – то есть иррациональному числу. Сюда же относится точная длина диагонали тетрадной клетки (длина диагонали любого идеального квадрата с целыми сторонами).)
А в множестве действительных чисел любые расстояния на прямой, в плоскости или в пространстве могут быть выражены соответствующим действительным числом.