Получение полимеров. Полимеры, методы получения полимеров

11.05.11 09:41

Благодаря реакциям двух типов поликонденсации и полимеризации, получают синтетические полимеры.

Реакции полимеризации происходят за счет кратных связей (С = С, С = О и др.), и проходят, как процесс соединения друг с другом большого числа молекул мономера. Так же реакция происходит за счет раскрытия циклов гетероатомов,- всех атомов, кроме атома углерода.

Это один из методов синтеза полимеров, при котором взаимодействие мономеров не сопровождается выделением побочным низкомолекулярных соединений. В результате этого, мономеры и полимеры имеют одинаковый состав элементов.

Поликонденсация - метод синтеза полимеров, при котором взаимодействие молекул мономеров обычно сопровождается выделением побочных низкомолекулярных соединений - воды, спирта и т.д. Это взаимосвязь мономеров, содержащих две и более функциональные группы (ОН, СО, СОС, NHS и др.). Полимеры же, получаемые с помощью этой реакции по элементному составу совершенно не совпадают с исходными мономерами.

Полимеризационная реакция мономеров с кратными связями происходит с помощью разрыва непредельных связей, по законам цепных реакций.

При цепной полимеризации, макромолекула имеет способность быстро образовываться и приобретать сразу окончательный размер, то есть не увеличиваться при возрастании длительности самого процесса.

Реакция полимеризации мономеров циклического строения происходит в результате раскрытия цикла, и, зачастую проходит не по цепному механизму, а по ступенчатому.

В случае ступенчатой полимеризации, макромолекула образовывается поэтапно. Вначале образуется димер, со временем - тример и так далее. В этом случае, молекулярная масса полимера увеличивается по прошествии определенного времени.

Цепная же полимеризация принципиально отличается от ступенчатой полимеризации и поликонденсации. Ее отличия состоят в том, что на любой стадии процесса, активная смесь всегда состоит из полимера и мономера. Она не вмещает в себе ди-, три-, тетрамеров. При увеличении длительности реакции, мономер используется постепенно, а число макромолекул полимера постоянно растет. Переработка мономера определяет только выход полимера. От степени завершенности реакции молекулярная масса полимера совершенно не зависит.

На заметку: Отделка деревянного дома и все что с этим связано - этот вопрос прекрасно раскрыт на сайте izba-iz-brevna.ru. Рекомендуем вам уже сегодня посетить этот сайт и ознакомится с информацией на нем.

Реакции в цепях полимеров

Некоторые полимеры невозможно получить ни поликонденсацией, ни полимеризацией. Причиной является неизвестность первоначальных мономеров. Так же бывает, что некоторые мономеры не способны к образованию высокомолекулярных соединений. В данном случае синтез полимеров производят при помощи высокомолекулярных соединений, в которых макромолекулы содержат функциональные группы, способные для получения реакции. Полимеры вступают в процессы по этим группам, что инизкомолекулярные соединения, которые содержат те же группы.

Полимер - аналогичные превращения - это реакции в цепях полимера, происходящие без изменения массы молекулы полимера. Если происходит увеличение молекулярной массы, то такая реакция называется «Синтез привитых и блок сополимеров». Если же масса молекулы полимера уменьшается, то произошла деструкция макромолекул.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ (ВМС)

Высокомолекулярные соединения или полимеры - это химические вещества с большой молекулярной массой, молекулы которых состоят из многократно повторяющихся элементарных звеньев. Такие молекулы называются макромолекулами. Элементарные звенья получаются при взаимодействии одинаковых или разных молекул, называемых мономерами. Число элементарных звеньев в макромолекуле называется степенью полимеризации (n) полимера. Молекулярный вес полимера зависит от степени полимеризации.

Классификация полимеров

Полимеры с низкой степенью полимеризации называются олигомеры, а с высокой степенью полимеризации называются – полимеры. Различают органические, неорганические и элементоорганические полимеры. Полимеры классифицируются:

1. По происхождению:

· природные

· синтетические

К природным относятся крахмал, целлюлоза, построенные из звеньев моносахаридов (клетчатка С 6 Н 10 О 5); белки, построенные из звеньев α – аминокислот [Н 2 N-RCH-COOH]; натуральный каучук (CH 2 -C(CH 3)= CH-CH 2 -)n.

К синтетическим относятся полимеры , полученные из мономеров искусственным путем (полиэтилен, синтетический каучук, полистирол и т.д.).

2. По строению:

· линейные

· разветвленные



· сетчатые

Элементоорганические полимеры содержат в основной цепи других элементов.

Например:


O – Si – O – Si –

силиконы

В составе молекул неорганических полимеров атомов углерода нет.

По отношению к нагреванию различают термопластичные и термореактивные полимеры. Термопластичные при нагревании переходят в высокопластичное состояние, а при охлаждении снова затвердевают. Термореактивные при нагревании разрушаются необратимо.

В зависимости от способов получения полимеры делят на на полимеризационные, при образовании которых не происходит выделение побочных продуктов и на поликонденсационные , образование которых сопровождается выделением низкомолекулярных соединений.

Методы получения полимеров

Полимеры получают методами полимеризации и поликонденсации.

Полимеризация – это образование полимеров путем последовательного присоединения мономера за счет разрыва двойных или тройных связей без выделения побочных продуктов. Полимеризация – самопроизвольный экзотермический процесс, т.к. разрыв кратных связей ведет к уменьшению энергии системы.

Процесс полимеризации протекает в несколько стадий: инициирование, рост цепи, и обрыв цепи .

Если в стадии инициирования участвуют радикалы это радикальная полимеризация, если участвуют анионы - анионная полимеризация , если катионы – катионная полимеризация .

К полимеризационным полимерам относят, например, полистирол (-СН 2 -СН-)n, поливинилхлорид (-СН-СН-)n,

поливинилацетат (-СН 2 -СН(OCOCH 3)-)n, полиэтилен (-СН 2 -СН 2 -).

Поликонденсация - это реакция синтеза полимера из соединений, имеющих две или более функциональные группы сопровождающаяся образованием низкомолекулярных соединений (H 2 O, NH 3 , HCl и др.).

Например: поликонденсация фенола (C 6 H 5 OH) с формальдегидом (СH 2 =O) дает фенолформальдегидную смолу:

ОН ОН ОН ОН

nC 6 H 4 -H + CH 2 =O + nH-H 4 C 6 → (-С 6 H 4 -CH 2 -C 6 H 4 -)n + nH 2 O

К поликонденсационным полимерам относятся мочеформальдегидная смола.

[-CH 2 -NH-CO-NH-CH 2 -O]n

Капрон является продуктом конденсации аминокапроновой кислоты содержащей цепь из 6 атомов углерода:

(-NH – (CH 2) 5 -CO – NH- (CH 2) 5 - CO-)n

9.3 Физико – химические свойства полимеров

Большинство полимеров находятся в аморфном состоянии. Лишь небольшая часть имеет кристаллическую структуру. Кристаллические полимеры состоят из кристаллов, между которыми находятся участки с неупорядоченной структурой (аморфные области). Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т.е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры – температурой плавления.

Аморфные полимеры могут находиться стеклообразном, высокопластичном и вязкотекучем состоянии. При низкой температуре полимер находится в стеклообразном состоянии, в котором полимер ведет себя как упругое твердое тело. При повышении температуры полимер переходит в высокоэластическое состояние , свойственное только высокомолекулярным соединениям. Высокоэластическое состояние полимеров проявляется в интервале от температуры стеклования до температуры текучести. Если температурный интервал достаточно широк и захватывает обычные температуры, то такие полимеры называют эластиками или эластомерами, или каучуками . Полимеры с узким интервалом температур, смещенным в область повышенных температур, называют пластиками или пластомерами . При обычных температурах пластики находятся стеклообразном состоянии. При температуре выше температуры текучести полимер переходит в вязкотекучее состояние. Повышение температуры выше Тр ведет к деструкции - разрушению полимера. Вещество в вязкотекучем состоянии под действием напряжений сдвига течет как вязкая жидкость, причем деформация полимера является необратимой. К необратимым деформациям приводят воздействие оксидантов, ультрафиолетовое излучение, механические нагрузки.

9.4 Материалы, получаемые на основе полимеров

На основе полимеров получают волокна, пленки, лаки, клеи, резины, пластмассы и композиционные материалы (композиты).

Полимерные волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относят полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями или методом нанесения растворов полимеров на движущуюся ленту или методом каландрования полимеров. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Лаки – растворы пленкообразующих веществ в органических растворителях. Кроме полимеров лаки содержат вещества, повышающие пластичность (пластификаторы), растворимые красители, отвердители и др. Применяются для изоляционных покрытий, а также в качестве основы грунтовочного материала и лакокрасочных эмалей.

Клеи - композиции, способные соединять различные материалы вследствие образования связей между их поверхностями и клеевой прослойкой. Синтетические органические клеи составляются на основе мономеров, олигомеров, полимеров или их смесей. В состав композиции входят отвердители, наполнители, пластификаторы и др.

Пластмассы - это материалы, содержащие полимер, который при формировании изделия находятся в вязкотекучем состоянии, а при его эксплуатации - в стеклообразном.

Кроме полимеров в состав пластмасс могут входить пластификаторы, стабилизаторы, красители и наполнители. Пластификаторы, например диоктилдфталат, дибутилсерацинат, хлорированный парафин, снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико – механические свойства полимеров. В качестве наполнителей применяют порошки (графит, мел, сажа, металл и т.д.), бумагу, ткань. Особую группу пластмасс составляют композиты на основе полимеров, армированных стекловолокном (стеклопластики), обладают механической прочностью (прочность при разрыве 1300-1700 МПа) и хорошими электроизоляционными свойствами. Композиты на основе полимеров, армированных углеродными волокнами (углепластики), сочетают высокую прочность и вибропрочность с повышенной теплопроводностью и химической стойкостью.

В настоящее время есть 4 основных метода синтеза ВМС:

1) полимеризация

2) поликонденсация

3) ступенчатая полимеризация

4) реакции превращения

Полимеризация – цепная реакция получения ВМС, в ход которой молекулы мономера последовательно присоединяются к активному центру, находящемуся на конце растущей цепи. Реакция полимеризации характерна для соединений с двойными связями, число и характер которых в молекуле мономера могут быть различными. Полимеризация олефинов и их производных в результате раскрытия двойных связей является простейшим примером. Полимеризоваться также могут мономеры, содержащие в молекуле две или более двойных связей (полиены), тройные связи (производные ацетилена).

При протекании реакции полимеризации всегда наблюдается снижение количества двойных связей в реагирующих веществах, уменьшение общего числа молекул в системе и увеличение их средней молекулярной массы.

В результате полимеризации непредельных углеводородов образуются карбоцепные полимеры.

Полимеризация не сопровождается выделением побочных продуктов и протекает без изменения элементарного состава реагирующих веществ. Процесс полимеризации состоит из трех основных стадий:

1) образование активного центра, связанное с инициированием молекул мономера, т. е. переходом их в активное состояние: А à А * .

2) рост цепи, характеризующийся ростом макромолекул и переходом активного центра на какую-либо другую частицу.

3) обрыв цепи, связанный с гибелью активного центра в результате реакции с другим активным центром или каким-либо другим веществом.

Активными центрами в реакциях полимеризации могут быть либо свободный радикал, либо ион. В зависимости от этого различают радикальную и ионную полимеризацию.

При радикальной полимеризации активными центрами являются свободные радикалы – электронейтральные частицы, имеющие один или два неспаренных электрона, благодаря чему свободные радикалы легко вступают в реакции с различными мономерами. Образование свободных радикалов может быть связано с превращением мономера в первичный радикал под влиянием внешних факторов (тепловая энергия, свет, ионизирующие излучения), а также за счет введения в систему свободных радикалов извне или веществ, легко распадающихся на свободные радикалы (инициаторов).

При ионной полимеризации активными центрами являются положительно и отрицательно заряженные частицы – ионы, образующиеся в присутствии катализаторов, в качестве которых выступают соединения металлов (алюминий, титан), легко отдающие или принимающие электроны. В зависимости от заряда образующего иона различают катионную и анионную полимеризацию. При катионной полимеризации растущая цепь имеет положительный заряд, при анионной – отрицательный. В отличие от инициаторов радикальной полимеризации, катализаторы, активирующие процесс ионной полимеризации, в ходе протекающих реакций не расходуются и не входят в состав полимера.

Поликонденсация – это реакция образования ВМС из нескольких молекул мономеров одинакового или различного строения, протекающая по механизму замещения функциональных групп. Реакции поликонденсации протекают с выделением низкомолекулярных продуктов (воды, спирта, аммиака и др.), вследствие чего элементарный состав образующего полимера отличается от элементарного состава мономеров. Непременным условием протекания реакции является содержание в мономерах не менее двух функциональных групп (-ОН, -СООН, -NH 2 и др.). Функциональность исходных веществ оказывает влияние на строение и свойства получаемых продуктов.

При поликонденсации бифункциональных соединений образуются линейные или циклические ВМС. Если в качестве мономера используются три- или тетрафункциональные мономеры, реакция их поликонденсации приводит к образованию пространственно-сшитых ВМС.

Способы проведения реакций синтеза.

1. Синтез в блоке или массе

2. При синтезе в

3. Синтез на поверхности раздела фаз (межфазный).

4. Синтез в расплаве

5. Синтез в твердой фазе.

6. Синтез в газовой фазе

Существует ряд методов синтеза за счет использования химических реагентов для реакций, вызывающих появление новых веществ. Путем химических превращений в материал можно внести различные атомы (фтор, хлор, аминные группы и др.), которые позволяют регулировать длину макромолекул, а также подвергать их сшиванию. Очень часто эти методы используются, когда получить другим способом ВМС нельзя из-за его нестабильности в какой-либо среде.

1) Реакции внутримолекулярных перегруппировок заключаются в перегруппировках атомов в цепи полимера.

2) Реакция сшивания (структурирования) – реакция образования поперечных химических связей между макромолекулой и получение систем сетчатого строения.

3) Реакция деструкции – реакция, протекающая с разрывом химической связи в главной цепи макромолекулы. Реакция приводит к снижению молекулярной массы полимера. Характеризуется понятием степень деструкции – отношение количества разорванных валентных связей в основной цепи к их общему числу.

Синтезы полимеров обычно осуществляют на основе, реакций двух типов: полимеризации и поликонденсации. Кроме того, некоторые виды полимеров получают с помощью метода полимераналогичных превращений, основанного на химических превращениях готовых полимерных соединений.

Полимеризация. Полимеризацией называется химическая реакция образования высокомолекулярных органических соединений из низкомолекулярных (мономеров), причем образующиеся полимеры имеют тот же элементный состав, что и исходные мономеры. Полимеризация может быть цепной или ступенчатой.

Механизм цепной полимеризации аналогичен механизму реакций, получавших общее название цепных, теория которых была разработана советским ученым академиком Н. Н. Семеновым.

Цепная полимеризация, в результате которой образуются длинные макромолекулы полимеров, состоит из трех основных этапов: 1) начало роста цепи (возникновение активных центров); 2) рост цепи; 3) обрыв цепи.

Для того чтобы начался рост цепи, необходимо активировать молекулы мономеров. Для этой цели пользуются инициаторами или катализаторами.

Некоторые мономеры (например, стирол) обладают способностью полимеризоваться под действием повышенной температуры. При этом, по-видимому, инициирование происходит в результате термического распада мономера на радикалы. Скорость термического инициирования значительно меньше скорости, инициирования в присутствии, инициатора.

В качестве инициаторов полимеризации используют сравнительно нестойкие химические вещества (главным образом переписного характера), способные распадаться с образованием свободных радикалов. Так, например, часто применяемая в качестве инициатора полимеризации перекись бензоила разлагается с образованием свободных радикалов, имеющих неспаренный электрон:

Образовавшийся свободный радикал взаимодействует с непредельным мономером; этом разрывается двойная связь и

образуется новый свободный радикал с неспаренным электрбном;

При каждом присоединении один электрон двойной связи образует пару с электроном свободного радикала (ковалент-ную связь), а второй электрон остается неспаренным (свободным) и может снова присоединиться к двойной связи молекулы мономера. Таким образом к растущей цепи в течение короткого промежутка времени присоединяется множество молекул мономера, в результате чего образуется макрорадикал.

При столкновении такого макрорадикала с другим свободным радикалом или с молекулой растворителя происходит обрыв реакционной цепи:

Образовавшаяся макромолекула полимера теряет способность участвовать в дальнейшей реакции.

Остаток инициатора входит в состав полимера в виде концевой группы цепи.

Из приведенной схемы видно, что инициатор целиком расходуется на образование макромолекулы полимера.

Если реакция полимеризации ведется в присутствии катализаторов (например, таких, как хлористый алюминий, трехфтористый бор и т. п.), то образование активных центров происходит путем присоединения катализатора к непредельному мономеру; при этом получается неустойчивый комплексный ион. Такой комплексный ион (как и свободный радикал) присоединяет молекулы мономера с образованием макроиона. В отличие

от радикальной полимеризации обрыв реакционной цепи протекает с отщеплением катализатора, который поэтому не расходуется на образование макромолекулы полимера.

Цепная полимеризация протекает с большой скоростью, и выделить промежуточные продукты реакции не удается.

Полимеризация под влиянием ионных катализаторов получила название ионной каталитической полимеризации в отличие от радикальной полимеризации, протекающей под действием свободных радикалов.

Скорость полимеризации зависит от температуры, давления, количества инициатора (а в случае ионной полимеризации - от химической природы катализатора).

Молекулярный вес полимера как при радикальной, так и при ионной полимеризации зависит от соотношения скоростей реакций роста цепи и ее обрыва. Чем больше скорость роста депи и меньше скорость ее обрыва, тем длиннее цепь образующейся макромолекулы и тем больше молекулярный вес получаемого полимера.

Сравнительно недавно открыта новая реакция - реакция теломеризации. Сущность ее заключается в радикальной полимеризации непредельных соединений в присутствии предельных галоидпроизводных углеводородов или других насыщенных соединений (телогенов), способных обрывать реакционную цепь, присоединяясь к макромолекуле полимера с двух её концов.

Если обозначить насыщенное соединение (телоген) через то реакцию теломеризации можно изобразить схемой:

В результате реакции теломеризацйи образуются сравнительно низкомолекулярные соединения.

Значение реакции теломеризации заключается а том, что с ее помощью можно, исходя из простейшего сырья, достаточно легко получать различные высшие бифункциональные соединения (гликоле, дикарбоновые кислоты, аминокислоты, оксикислоты и др.), получение которых другими путями обычно связано с большими трудностями.

Примёром практического применения реакции теломеризации служит разработанный в Советском Союзе способ получения -аминоэнантовой кислоты - исходного вещества для производства полиамидного волокна - энанта (стр. 349).

Сначала проводят теломеризацию этилена в присутствии четыреххлористого углерода при

В качестве инициатора реакции применяют, например, перекись бензоила.

Затем из полученной смеси тетрахлоралканов выделяют с помощью ректификации -тетрахлоргептан и получают из него -хлррэнантовую кислоту, которую действием аммиака переводят в -аминоэнантовую кислоту:

Ступенчатая полимеризация протекает с постепенным (ступенчатым) ростом молекулярного веса. При ступенчатой полимеризации присоединекие каждой следующей молекулы мономера происходит с образованием промежуточных соединений, которые могут быть выделены.

Механизм реакции ступенчатой полимеризации олефинов заключается в перемещении атома водорода и образовании промежуточных соединений с двойной связью на конце растущей цепи, например:

К ступенчатой полимеризации относится и полимеризация циклов, например полимеризация лактамов -аминокислот. Активаторами полимеризации циклов являются вода, некоторые органические кислоты, металлический натрий и др.

Например, при действии воды в качестве активатора на капролактам (стр. 199) вначале образуется аминокислота

Образовавшийся продукт присоединения линейной структуры снова взаимодействует с новой молекулой капролактама:

Реакция проводится при повышенных температуре и давлении.

Поликонденсация. Для получения полимеров широкр применяется также реакция поликонденсации. Она значительно отличается по механизму от реакции полимеризации. При полимеризации превращение мономера в полимер происходит без выделения каких-либо других химических соединений. Реакция поликонденсации состоит во взаимодействии функциональных групп мономеров и сопровождается выделением какого-либо вещества, например воды, аммиака, хлористого водорода. Реакция поликонденсации носит ступенчатый характер: рост цепи происходит постепенно. Сначала реагируют друг с другом две молекулы исходного вещества, затем образовавшееся соединение взаимодействует с третьей молекулой исходного вещества, с четвертой и т. д.

Все промежуточные продукты реакции, образующиеся в результате постепенного присоединения новых молекул мономера, вполне устойчивы, их можно выделить. Они сохраняют свою реакционную способность, определяющуюся наличием у них непрореагировавших функциональных групп.

Полимеры могут образовываться лишь в том случае, если реагирующие молекулы имеют не менее двух функциональных групп. Соединения с тремя и больше функциональными группами могут образовывать пространственные полимеры.

Реакцию поликонденсации часто подразделяют на гомополиконденсацию и гетерополиконденсацию.

Гомополиконденсацией называется реакция поликонденсации, в которой участвуют однородные молекулы, например поликонденсация -аминоэнантовой кислоты:

Гетерополиконденсацией называется поликонденсация с участием двух или нескольких разнородных соединений, молекулы которых имеют две или более одинаковые функциональные группы, например поликонденсация диаминов с дикарбоновыми кислотами:

Реакция поликонденсации проводится в присутствии ионных катализаторов (кислот или оснований).

Полимераналогичные превращения. Получение полимеров путем полимераналогичных превращений основано на химических реакциях функциональных групп в макромолекулах полимеров. Функциональные группы в полимерных соединениях обладают такой же реакционной способностью, как и соответствующие функциональные группы в низкомолекулярных соединениях.

К полимераналогичным превращениям прибегают в случае отсутствия соответствующих исходных мономеров или в случае невозможности синтеза полимера доступными методами. Этим путем получают, например, поливиниловый спирт, который невозможно получить из мономерного винилового спирта ввиду его неустойчивости и быстрой изомеризации в ацетальдегид:

Поливиниловый спирт получают путем гидролиза, полимерных сложных виниловых эфиров, например поливинил ацетата:

Механохимический метод. Привитые и блоксополимеры могут быть получены не только химическим, но и механическим путем. Например, когда два разных каучука вальцуют (перетирают между валками) в бескислородной среде, происходит разрыв молекул взятых каучуков с образованием высокомолекулярных свободных радикалов. Такие остатки макромолекулы могут присоединить остаток или молекулу другого каучука. Если остаток

или молекулярная цепочка одного каучука образует участок в главной цепи молекулы второго каучука, то получаются блок-сополимеры, если он образует боковые, цепи, - получакся привитые сополимеры.

Общие сведения о высокомолекулярных соединениях

Тема 11. Технология высокомолекулярных соединений

Контрольные вопросы к теме Х

«Технология ОО и НХ синтеза»

1. Перечислите основные промышленные синтезы на основе синтез-газа и оксида углерода (II).

2. Какими свойствами обладает метанол?

3. За счет чего при синтезе метанола из синтез-газа достигается необходимая селективность процесса?

4. Какие технологические схемы используются в производстве мета­нола?

5. Перечислите важнейшие области использования метанола.

6. Из каких видов сырья может быть получен в промышленных масштабах этанол?

7. Объясните преимущества метода прямой гидратации этилена пе­ред методом сернокислотной гидратации в производстве синтети­ческого этанола.

8. Какие катализаторы используются при производстве этанола пря­мой гидратацией этилена в паровой фазе?

9. Что такое гидролизное производство? Почему оно является мало­отходным?

10. Из каких стадий состоит гидролизное производство этанола и чем катализируется каждая стадия?

11. Какие соединения относят к высшим синтетическим жирным кис­лотам (ВЖК) и спиртам (ВЖС)?

12. Укажите основные промышленные методы производства ВЖК и ВЖС.

13. Что общего в химизме получения ВЖК и ВЖС окислением алканов?

14. Каким образом в производстве ВЖС прерывают процесс окисления, не допуская деструкции молекулы алкана?

15. Что такое синтетические моющие средства и какова их связь с ВЖС, ВЖК?

Пластмассы, каучуки, химические волокна и полимерные композиционные материалы как основные виды полимерных материалов. Доля полимерных материалов в валовой химической продукции индустриально развитых стран. Способы осуществления реакций полимеризации в газовой фазе, в растворе, в суспензии, в эмульсии и блочная полимеризация. Преимущества и недостатки этих способов. Промышленное получение полиэтилена, полипропилена, полистирола, поливинилхлорида, а так же сополимеров на их основе. Сравнение различных технологических схем получения ПЭ (низкой и высокой плотности). Поликонденсационные процессы и их технологическое оформление. Феноло-формальдегидные и мочевино-альдегидные, наволачные и резольные смолы. Кремнийорганические полимеры. Полиуретаны. Основные свойства и области их применения. Химические волокна: искусственные на основе целлюлозы и синтетические. Основные приемы формирования волокон из растворов и расплавов. Свойства и области применения. Производство синтетических каучуков. Каучуки специального назначения. Переработка каучука в резину. Экологические аспекты производства полимерных материалов и изделий на их основе.

Вся окружающая нас живая и неживая природа построена из мо­лекул, которые в свою очередь состоят из атомов. Атомы, соединяясь между собой в различных соотношениях, образуют молекулы, которые отличаются друг от друга размерами, строением, химическим составом и свойствами.



Вещества, построенные из небольшого числа атомов, называются низкомолекулярными. Их молекулярный вес не превы­шает нескольких сотен единиц. Низкомолекулярными веществами являются соли, кислоты, щелочи, спирты и другие соединения.

В то же время многие вещества состоят из гигантских молекул, в состав которых входят тысячи, десятки и сотни тысяч атомов. Такие молекулы называют макромолекулами; их молекулярный вес достигает сотен и даже тысяч единиц. Например, молекулярный вес молекул, входящих в состав натурального каучука, составляет 136 000-340 000.

Соединения, построенные из макромолекул, называют высоко­молекулярными или полимерами.

Полимеры по происхождению подразделяют на природные и син­тетические.

К природным, т. е. естественным, полимерам относятся целлюлоза, входящая в состав древесины, хлопка и других растений; белки, входящие в состав живых организмов; натуральный каучук и др.

Синтетические полимеры получают искусственно, путем химического синтеза; они входят в состав пластических масс, синтетических каучуков, химических волокон, лаков и др.

Состав и свойства полимеров. Молекулы полимеров представляют собой длинные цепи, в которых чередуются одинаковые звенья. Если обозначить эти звенья буквой А, то молекулу полимера можно представить так:

В синтетических полимерах эти звенья являются остатками молекул исходных соединений, состоящих всего из нескольких атомов. Эти исходные соединения называются мономерами. Например, этилен СН 2 СН 2 - мономер для получения высокомолекулярного соединения, называемого полиэтиленом. При образовании полимера у молекул этилена двойная связь между, атомами углерода раскрывается, и за счет образующихся свободных валентностей углерода большое число получившихся из мономера звеньев соединяется друг с другом. Схематически это можно представить следующим образом:

На схеме показано только три звена в составе полимера, факти­чески количество их в полиэтилене от 1000 до 10 000, а молекулярный вес такого полимера колеблется от 28 000 до 280 000.

Из приведенной схемы видно, что как в мономере, так и в полимере на один атом углерода приходятся два атома водорода, т. е. элементарный со­став получаемого полимера одинаков с мономером.

С изменением числа связанных между собой молекул мономера про­исходит изменение свойств получаемых полимеров. Так, полиэтилен по мере увеличения молекулярного веса ста­новится более вязким, затем пастообразным и, наконец, твердым. Свойства полимеров зависят также от химическо­го состава мономеров, формы цепей мо­лекул и их строения (структуры поли­мера).

В макромолекуле линейной структуры элементарные звенья образуют нитевидную молекулу, т. е. каждое звено связано только с двумя соседними звеньями (рис. а ). Ните­видные (линейные) макромолекулы мо­гут быть расположены в полимере парал­лельно друг другу (рис. б ) или пе­реплетаться без химической связи от­дельных макромолекул (рис. в ). Они могут быть изогнутыми, свернутыми в клубок (рис. г, д) и т. д. Макромоле­кулы линейной структуры характерны для полиэтилена, полипропилена, цел­люлозы, полиэфиров, полиамидов и многих других высокомолекулярных соединений, широко используемых для получения волокон, пленок, пластмасс, резины. Эти полимерные материалы, как правило, прочны, эластичны, способны растворяться и плавиться при нагревании.

Макромолекулы разветвленной структуры имеют боковые ответвления от основной цепи (рис.е ). Полимеры с разветвленной структурой молекул растворяются и плавятся труднее, чем линейные.

Макромолекулы с сетчатой структурой построены следующим образом: длинные цепи молекул связаны друг с другом короткими цепями в трех измерениях, что на рисунке изобразить трудно. Обычно такую структуру полимерных молекул изображают в виде соединенных между собой линейно построенных больших мо­лекул (рис ж ). При этом всегда имеется в виду, что линейные мо­лекулы химически связаны с молекулами, расположенными над пло­скостью и за плоскостью бумаги. Такую структуру молекул назы­вают также пространственной или трехмерной. Чем больше число «мостиков» в такой макромолекуле, тем менее эластичен полимер и у него в значительной степени проявляются свойства твер­дого тела.

Структура цепей полимерных молекул может быть различной. В одних случаях образуются полимерные молекулы, у которых эле­ментарные звенья имеют различное пространственное расположение боковых групп, в других - строго регулярное пространственное расположение. Полимеры со строго регулярной структурой молекул называются изотактическими. Такого типа полимеры об­ладают высокой твердостью и теплостойкостью.

Молекулы полимеров могут состоять не из одинаковых звеньев. Они могут быть получены из разных мономеров, например А и Б. Тогда макромолекула может быть изображена так:

Такие высокомолекулярные соединения называются сополиме­рами. Они совмещают в себе характерные свойства полимеров, полученных из каждого компонента в отдельности.

Таким образом, удается придавать полимерам некоторые специ­фические свойства, например, получать каучуки с повышенной бензо-и маслостойкостью, химической стойкостью и т. д.

Представляют интерес так называемые привитые сополи­меры. Цепи их молекул построены по следующей схеме:

Такой полимер можно сравнить с плодовым деревом, к которому привит другой сорт плодового дерева. В результате такой «прививки» получают плоды, сочетающие в себе наиболее ценные качества обоих сортов. В привитом сополимере один полимер привит к «стволу» другого полимера. Полученный «гибрид» обладает свойствами исходных веществ. Таким образом, удается получать полимеры, сочетающие например, высокие электроизоляционные свойства с огнестойкостью и устойчивостью к бензину и маслам.

Макромолекулы могут быть построены из «блоков» сравнительно невысокого молекулярного веса, полученных из различных мономе­ров. Схема такого блок-сополимера имеет вид:

Блок-сополимеры также сочетают в себе свойства исходных поли­меров.

До сих пор элементарные звенья в макромолекуле обозначали ус­ловно А и Б. Видно, что в основе органи­ческих полимеров лежит углерод, атомы которого соединились между собой, образуя «скелет» молекулы, обрамленный атомами водорода. Вместо атомов водорода могут быть группы атомов, в которых наряду с атомами углерода могут присутствовать атомы других элементов.

Если скелет молекул полимеров построен из атомов углерода, их называют карбоцепными. Существуют молекулы, в скеле­те которых атомы углерода периодически чередуются с атомами других элементов, например:

Такие полимеры называют гетероцепными.

Поведение полимеров при нагревании зависит от структуры моле­кул. Линейные и разветвленные полимеры при нагревании размягча­ются, при последующем охлаждении переходят в твердое состояние. Такие полимеры называются термопластичными. Полиме­ры, молекулы которых имеют пространственную структуру, не пла­вятся при нагревании: их называют термореактивными.

Температура перехода полимера из твердого состояния в эластич­ное (или наоборот) называется температурой стеклова­ния, температура перехода в текучее состояние - температурой текучести.

Полимеры могут быть или полностью аморфными веществами - аморфные полимеры, или веществами, содержащими кри­сталлические и аморфные области, - кристаллические по­лимеры. По видам деформаций, которые возникают в полимерах под влиянием внешних условий при комнатной температуре, их под­разделяют на твердые полимеры, эластичные по­лимеры, или эластомеры, и текучие полимеры.

Таким образом, изменяя величину получаемой макромолекулы, ее молекулярный вес и форму, составляя макромолекулу из различ­ных исходных мономеров, прививая к одной макромолекуле цепочку полимера из звеньев, образованных другим мономером, можно в ши­рокой степени изменять физические и химические свойства полиме­ров, получать их с заранее обусловленными свойствами, изменять их физическое состояние, делать жидкими, твердыми, пластичными и эластичными.

Полимеры обладают малой плотностью (самые легкие пластические массы в 800 раз легче стали), высокой механической прочностью (превышает прочность дерева, стекла, керамики), высокими термо-, звуко- и электроизоляционными свойствами, высокой химической стой­костью, прекрасными оптическими свойствами, они способны поглощать и гасить вибрации, образовывать чрезвычайно тонкие пленки и волокна, они легко поддаются обработке и переработке в изделия. Ценные свойства полимеров обусловили их широкие использование в различных отраслях народного хозяйства: в машиностроении, строи­тельстве, автомобильной, авиационной, атомной, космической и дру­гих отраслях техники, для изготовления тканей, искусственной кожи, предметов домашнего обихода, в медицине и т. д.

Производство полимерных материалов у нас в стране развивается очень быстрыми темпами, превышающими темпы роста всей промыш­ленности и других отраслей химической промышленности.

Полимеры могут быть получены методами полимеризации и поликонденсации.

Полимеризация. Метод полимеризации заключается в том, что молекулы мономеров под воздействием нагревания, катализаторов, γ-лучей, света, инициаторов соединяются между собой в молекулы больших размеров. При этом образуются макромолекулы линейной, разветвленной, сетчатой структуры, молекулы сополимеров, привитых сополимеров.

Скорость полимеризации и молекулярный вес полимера зависят от температуры, давления, активности катализатора и т. д.

Существуют следующие способы полимеризации: в массе (блоч­ный способ), в эмульсиях, в растворе и так называемая суспензионная, полимеризация.

Полимеризация в массе происходит в аппарате (автоклаве),
куда подается исходный мономер с катализатором или инициатором - веществом, которое вступает в реакцию с мономером и ускоряет по­лимеризацию. В начале полимеризации реагирующую массу подог­ревают, затем подогрев прекращают, так как полимеризация сопровождается выделением тепла. Для поддержания определенной температуры в аппарате в процессе полимеризации иногда прибегают к охлаждению реагирующей массы. По окончании полимеризации из аппарата извлекают сплошную массу, полимера в виде блока. Процесс полимеризации может быть как периодическим, так и непрерывным.
При полимеризации в массе трудно обеспечить одинаковую температуру во всей реагирующей массе, поэтому получаемый полимер состоит из макромолекул, имеющих различную степень полимеризации. Этим методом получают полистирол, полимеры метакриловой кислоты, бутадиеновый каучук и др.

Эмульсионный способ полимеризации за­ключается в том, что мономер смешивается с инициатором и эмульгатором и превращается при помощи мешалок в мельчайшие капельки взвешенные в другой жидкости, чаще всего в воде. (Эмульгаторы - вещества, препятствующие слиянию капель жидкости.) Полученные эмульсии нагреваются до температуры, при которой происходит полимеризация мономера. При этом тепло, выделяемое в процессе полимеризации, отводится легко и образующийся полимер более одноро­ден, чем полученный блочным методом. Недостаток способа заключает­ся в трудности отделения эмульгатора от полимера. Этим способом получают сополимеры бутадиена, винилацетата, акрилонитрила и др.

Полимеризация в растворе осуществляется в раст­ворителе, смешивающемся с мономером и растворяющем образующий­ся полимер. Из полученного раствора полимер выделяют испарением растворителя или осаждением. Полимеризацию проводят также в раст­ворителе, растворяющем мономер, но не растворяющем полимер. В данном случае полимер выпадает в осадок, который отфильтровы­вают. По этому способу получают поливинилацетат, полибутилакрилат и др.

Суспензионный способ предусматривает измельчение (диспергирование) мономера в виде капель в плохорастворяющей среде, обычно в воде. Полимеризация протекает в каждой капле моно­мера. Образующийся полимер в виде твердых частиц, не растворяю­щихся в воде, осаждается и отделяется от жидкости фильтрованием.

Поликонденсация. Метод заключается в том, что соединение между собой молекул мономеров происходит при реакции между ними, иду­щей с выделением побочных продуктов. Например, обозначим молекулу одного из реагирующих веществ через а-А-а, а вторую б-Б-б. Схема реакции между ними может быть представ­лена следующим образом:

Из реагирующих молекул образовалась молекула вещества а-А-Б-б и при этом выделилось вещество а-б. Молекула вещества а-А-Б-б может дальше вступать в реакцию с мономерами. Благодаря присоединению новых молекул мономера происходит рост полимерной цепи. При этом присоединение каждой новой молекулы сопровождается выделением вещества а-б.

В результате по химическому составу полимерные молекулы не­сколько отличаются от исходных мономеров.

В процессе поликонденсации получаются полимеры, имеющие ли­нейную, а также сетчатую структуру.

Процесс поликонденсации экзотермический, и поэтому, исходя из принципа Ле-Шателье, для сдвига равновесия слева направо не­обходимо проводить процесс при низкой температуре. Однако для уве­личения скорости процесса необходимо повысить температуру. Поэто­му для увеличения скорости поликонденсации вначале процесс про­водят при повышенной температуре, а затем ее постепенно снижают для сдвига равновесия реакции и тем самым получают продукт с более высоким молекулярным весом.

Поликонденсацию осуществляют как в присутствии катализатора, так и без него. Ее проводят в расплаве, растворе и на границе разде­ла двух фаз.

Поликонденсация в расплаве осуществляется при высокой температуре (220-280° С) в реакторе в атмосфере инертного газа. Таким образом обеспечивают высокую скорость процесса и уда­ление низкомолекулярных продуктов.

При поликонденсации в растворе мономеры раст­ворены в растворителе - реакция протекает с небольшой скоростью, не обеспечивается удаление низкомолекулярных продуктов. Этот способ не используется в промышленности.

Поликонденсация на границе раздела фаз заключается в том, что имеются две несмешивающиеся жидкости, в каждой из которых растворены исходные мономеры. Реакция поликон­денсации мгновенно протекает на границе раздела фаз с образованием пленки полимеров. Таким образом, продукты реакции выводятся из сферы реакции, что способствует протеканию реакции с высокой ско­ростью. При удалении пленки поверхность раздела фаз освобождает­ся и реакция продолжается.