Оборотная система водяного охлаждения закрытой теплообменной аппаратуры. Охлаждение воды в оборотных системах водоснабжения Охлаждение воды в оборотных системах водоснабжения

Для получения требуемой температуры отработавшую оборотную воду непосредственно или после предварительной очистки от загрязнений перед новым ее использованием при необходимости охлаждают в специальных сооружениях: прудах-охладителях, брызгальных бассейнах и градирнях (башенных или вентиляторных). Таким образом, назначение охладителя состоит в том, чтобы отнимать от воды тепло, полученное ею от охлаждаемого продукта, производственного агрегата или машины, и тем самым возвращать воде начальную ее температуру, с которой можно повторно использовать воду для той же или другой цели. Место охладителя в системе оборотного водоснабжения показано на схеме рис. 2.[ ...]

В пруде-охладителе вода от места впуска движется к водозабору широким потоком, проходя определенный путь, на котором и происходит охлаждение воды в результате испарения части воды и непосредственной передачи тепла воздуху с водной поверхности, омываемой им. Пруды-охладители оборотной воды имеются на некоторых заводах и на многих тепловых электрических станциях. В настоящее время пруды-охладители оборотной воды эксплуатируют примерно на 500 мощных тепловых электростанциях; их строят и на новых современных электростанциях.[ ...]

Брызгальный бассейн представляет собой открытый железобетонный или бетонный резервуар из двух и более секций, над которым через сопла (называемые также брызгалами или насадками) разбрызгивается охлаждаемая вода. При падении капель вода охлаждается, частично испаряясь и соприкасаясь с воздухом (конвекцией). Брызгальные бассейны остались лишь на некоторых заводах, на которых по условиям производства имеется необходимость хранения аварийного запаса воды; строительство их на новых промышленных предприятиях в настоящее время - явление сравнительно редкое по ряду причин.[ ...]

Таким образом, оборотная вода в том или ином охладителе охлаждается посредством передачи тепла атмосферному воздуху, причем часть тепла передается в результате поверхностного испарения воды - превращением части воды в пар и переносом этого пара путем диффузии в воздух, другая часть - вследствие разницы между температурами воды и воздуха, т. е. теплоотдачей соприкосновением (теплопроводностью и конвекцией). Весьма небольшое количество тепла отнимается от воды еще излучением, что в тепловом балансе обычно не учитывают. Одновременно имеется приток тепла к охлаждаемой воде от солнечной радиации, который так мал, что в тепловом балансе градирен и брыз-гальных бассейнов им пренебрегают.[ ...]

Механизм процесса испарения воды и теплоотдачи с поверхности соприкосновения ее с воздухом (Зи может быть представлен следующим образом. Согласно кинетической теории газов, молекулы воды находятся в беспорядочном тепловом движении, так как скорости их неодинаковые. Те молекулы, которые обладают наибольшей скоростью (точнее, наибольшей кинетической энергией), вырываются в пространство, расположенное над поверхностью воды. При столкновении с молекулами воздуха эти молекулы воды изменяют величину и направление своего движения, вследствие чего часть из них отражается обратно к поверхности воды, от которой вновь они могут отразиться или поглотиться водой. Часть же вырвавшихся или отраженных от поверхности воды молекул удаляется от поверхности воды, проникает в воздух в результате диффузии и конвекции и уже безвозвратно теряется водой, образуя пары воды и воздуха. Эта потеря части молекул воды и составляет сущность процесса испарения, сопровождающегося переносом вещества (массы) или так называемым массообменом. Но поскольку испарение связано с затратой тепла на изменение агрегатного состояния, то оно вызывает поток тепла фи только от воды к воздуху, т. е. охлаждение воды.[ ...]

Это происходит до тех пор, пока направленный от воздуха к воде поток тепла (2С не становится равным потерям тепла водой от испарения [ ...]

Теплоотдача от воды воздуху в охладителях зависит от температуры охлаждаемой воды и метеорологических условий; она тем больше, чем больше разность между температурами воздуха в и воды t, чем меньше относительная влажность воздуха при данной его температуре и чем больше количество воздуха, вступающего в теплообмен с водой в единицу времени. Поступа ющий в охладитель воды атмосферный воздух выходит из не нагретым и с повышенной относительной влажностью.[ ...]

Теоретическим пределом охлаждения воды воздухом я ется та температура воды, при которой приток тепла от духа (?р путем соприкосновения [ ...]

Работу охладителя воды можно характеризовать к венными и качественными показателями.[ ...]

Гидравлическую нагрузку охладителя выража вом воды (м3/ч), приходящимся на 1 мг активной (р щади охладителя в плане.

В системах оборотного водоснабжения происходит повторное (многократное) использование части воды. При этом техническая вода нагревается. Перед повторным использованием температура воды должна быть снижена в соответствии с требованиями техно­логии. Снижение температуры технической воды достигается в спе­циальных охлаждающих устройствах (охладителях).

По способу отвода теплоты охладители подразделяются на испарительные и поверхностные (радиаторные). В испарительном охладителе отвод теплоты достигается в результате испа­рения при непосредственном контакте с воздухом, в поверхностном - вода движется в трубках, омываемых с внешней стороны воздухом.

Выбор типа охладителя производится на основе технико-эконо­мического сравнения по минимуму приведенных затрат с учетом, показателей работы всей заводской системы технического водо­снабжения. При сопоставлении вариантов учитываются гидрологи­ческие и метеорологические условия применительно к району строи­тельства системы водоснабжения.

Испарительные охладители могут быть представлены: прудами-охладителями (водохранилища-охладители), брызгальными бассей­нами и градирнями башенного или вентиляторного типов.

Пруды и водохранилища-охладители обладают рядом несомнен­ных достоинств. Они обеспечивают более низкие температуры охлаждения воды в течение года; являются регуляторами поверх­ностного стока; просты в эксплуатации и могут обеспечить водой оборотное водоснабжение любого крупного завода. Однако созда­ние водохранилищ-охладителей сопряжено со значительными капи­тальными затратами как на основное сооружение, так и на строи­тельство очистных сооружений.

Брызгальные бассейны требуют сравнительно небольших капиталовложений и применяются при небольших расходах техниче­ской воды (до 300м 3 /ч). Обладают плохой охлаждающей способ­ностью и допускают большие потери воды.

Башенные градирни используются в системах оборотного водо­снабжения с расходами воды до 100-10 3 м 3 /ч. Благодаря организо­ванному движению воздуха обеспечивается устойчивое охлаждение и более низкая температура воды, чем в брызгальном бассейне. К недостаткам нужно отнести высокие капитальные затраты.

Вентиляторные градирни обеспечивают наиболее глубокое и ста­бильное охлаждение технической воды. Затраты на строительство оказываются меньше, чем у башенных. Большой расход электро­энергии и возможность образования туманов и обледенения суще­ственно влияют на выбор варианта водоснабжения с вентиляторными градирнями. Их применение оказывается экономически обоснованным, когда требуется низкая и стабильная температура охлаждаемой воды (холодильные и компрессорные станции, произ­водственные технологии в районах с жарким климатом).



Некоторые характеристики испарительных охладителей приве­дены в табл. 2.7.

Табл. 2.7. Характеристика испарительных охладителей

Применение радиаторных охладителей позволяет сократить до минимума потери воды в системе оборотного водоснабжения. Вода в «сухих» градирнях не засоряется пылью окружающего воздуха и солями (минерализация воды), как это имеет место в градирнях «мокрого» типа. «Сухие» градирни имеют больший объем по сравне­нию с «мокрыми», так как интенсивность теплообмена в них ниже. Их применение может быть оправдано невозможностью восполне­ния потерь воды в системах охлаждения.

Охлаждение воды в испарительных охладителях всегда сопро­вождается ее потерями вследствие испарения (снижение темпера­туры воды на 6 °С в системах испарительного охлаждения сопряжено с потерями воды до 1 %). Потери воды подсчитываются по формуле

DV = DV исп + DV ун

где DV исп - доля испарившейся воды, DV ун - доля уноса с воз­духом за пределы охладителя от циркуляционного расхода (табл. 2.8).



Табл. Величина уноса воды DV ун

Значение DV исп определяется по формуле

DV исп = kDT,

где k - коэффициент, учитывающий долю теплоотдачи испарением от общего коэффициента теплоотдачи (испарение и конвекция), % (табл. 2.9); DT - абсолютная величина перепада температур, °С.

Табл. 2.9. Значение коэффициента k

В результате испарения в охладителе части воды повышается концентрация минеральных солей, растворенных в оборотной воде. При этом соли временной жесткости MgCO 3 и СаСО 3 (главным образом СаСО 3) выпадают на поверхности устройства, что ухуд­шает его эксплуатационные показатели и резко снижает коэффи­циент теплопередачи. Для предотвращения этого явления произво­дится непрерывная продувка системы оборотного водоснабжения, т. е. удаление из нее части циркулирующей воды и восполнение свежей водой из природного источника водоснабжения. Продувку осуществляют водой из глубинных слоев охладителя. Тогда урав­нение солевого баланса имеет вид

С д (DV исп + DV ун + DV прод) = С ц (DV ун + DV прод), (2.3)

где С д, С ц - концентрация солей жесткости в добавочной и цирку­лирующей воде соответственно, мг-экв/л; DV исп, DV ун - потери воды с испарением и уносом, %; DV прод - объемная доля удаляе­мой воды по отношению к циркулирующей, %.

Если принять для циркуляционной системы С ц на уровне макси­мально допустимой (СНиП II - 31-74), то выражение (2.3) можно переписать в виде

С д (DV исп + DV ун + DV прод) = С у max (DV ун + DV прод),---------

Из равенства (2.4) находят значение DV прод, выраженное в про­центах. Однако нужно помнить, что регулирование солевого балан­са системы оборотного водоснабжения путем непрерывной продувки эффективно лишь в случае, когда С д <<С ц ma х. Во всех остальных ситуациях применяют способы снижения жесткости воды путем реагентной обработки, табл.2.10.

Табл. Способы реагентного умягчения технической воды

Наряду с выпадением солей жесткости в системах оборотного водоснабжения могут откладываться продукты кислородной кор­розии, механические взвеси, биологические организмы, содержа­щиеся в природной воде. Для борьбы с биологическим обрастанием применяют обработку циркуляционной воды хлором. Хлорирование ведется периодически по 30 мин с интервалами в З...12ч дозами 1,5...7,5 мг/л (в зависимости от качества воды). При обрастании системы водорослями воду обрабатывают медным купоросом 2...3 раза в месяц по 1...2 ч дозами 4...6 мг/л. При бактериальном обрастании наряду с обработкой медным купоросом делают хлори­рование воды дозами 2 мг/л при продолжительности хлорирования 30...40 мин.

При оборотном водоснабжении промышленного объекта охлаждающее устройство (охладитель) должно обеспечить охлаждение циркуляционной воды до температур, отвечающих оптимальным технико-экономическим показателям работы объекта.

Понижение температуры воды в охладителях происходит за счет передачи ее тепла воздуху. По способу передачи тепла охладители, применяемые в системах оборотного водоснабжения, разделяются на испарительные и поверхностные (радиаторные).

В испарительных охладителях охлаждение воды происходит в результате ее испарения при непосредственном контакте с воздухом (испарение 1 % воды снижает ее температуру на 6°). В радиаторных охладителях охлаждаемая вода не имеет непосредственного контакта с воздухом. Вода проходит внутри трубок радиаторов, через стенки которых происходит передача ее тепла воздуху.

Так как теплоемкость и влагоемкость воздуха относительно невелики, для охлаждения воды требуется интенсивный воздухообмен. Например, для понижения температуры воды с 40 до 30° С при температуре воздуха 25° С на 1 м3 охлаждаемой воды к испарительному охладителю должно быть подведено около 1000 м3 воздуха, а к радиаторному охладителю, в котором воздух только нагревается, но не увлажняется,- около 5000 м3 воздуха.

Испарительные охладители по способу подвода к ним воздуха разделяются на открытые, башенные и вентиляторные. К открытым охладителям относятся водохранилища-охладители (или пруды-охладители), брызгальные бассейны, открытые градирни.

В них движение воздуха относительно поверхности охлаждаемой воды обусловливается ветром и естественной конвекцией. В башенных охладителях - башенных 1радирнях - движение воздуха вызывается естественной тягой, создаваемой высокой вытяжной башней.

В вентиляторных охладителях - вентиляторных градирнях - осуществляется принудительная подача воздуха с помощью нагнетательных или отсасывающих вентиляторов.

Радиаторные охладители, которые называют также «сухими градирнями», по способу подвода к ним воздуха могут быть башенными или вентиляторными.

Для охлаждения циркуляционной воды до достаточно низких температур требуется большая площадь контакта ее с воздухом - порядка 30 м2 на 1 м3/ч охлаждаемой воды. Соответственно этой рекомендации следует принимать площадь зеркала воды водохранилищ-охладителей.

В градирнях необходимая площадь контакта создается путем распределения воды над оросительными устройствами, по которым она стекает под действием силы тяжести в виде тонких пленок или капель, разбивающихся при попадании на рейки на мельчайшие брызги.

В брызгальных бассейнах для создания необходимой площади контакта с воздухом вода разбрызгивается специальными соплами на мельчайшие капли, суммарная поверхность которых должна быть достаточной для испарительного охлаждения.

Для охлаждения отработавшей воды применяют различные типы водоохладительных сооружений (охладителей), которые по способу охлаждения воды в них разделяются на испарительные и поверхностные.

В испарительных охладителях охлаждение воды происходит в результате ее частичного испарения и передачи тепла атмосферному воздуху при непосредственном контакте поверхности воды с ним. В поверхностных охла-дителях охлаждаемая вода не соприкасается с воздухом, а передача тепла от воды к воздуху происходит через стенки радиаторов, внутри которых протекает вода.

К испарительным охладителям относятся открытые водоемы (пруды-охладители, водохранилища, реки, озера), брызгальные бассейны и градирни (открытые, башенные и вентиляторные). К поверхностным охладителям относятся радиаторные (сухие) градирни, набираемые, как правило, из аппаратов воздушного охлаждения (АВО) .

Работа охладителя характеризуется удельной гидравлической, тепловой нагрузкой, шириной и высотой зоны охлаждения.

Удельная гидравлическая нагрузка выражается отношением расхода воды к единице активной площади охладителя. Тепловая нагрузка - это количество тепла, отдаваемое водой воздуху на единицу площади охладителя.

Шириной зоны охлаждения или перепадом температуры называется разность между температурой воды, поступающей на охладитель и температурой охлажденной воды.

Высотой зоны охлаждения называется разность между температурой охлажденной воды и температурой по влажному термометру, являющейся теоретическим пределом охлаждения.

Охладители на открытых водоемах. В охладителях этого типа охлаждение воды происходит главным образом за счет поверхностного охлаждения, поэтому эффективность охлаждения определяется площадью поверхности зеркала воды. В результате неравномерного движения потока воды в водоеме в охлаждении воды участвует не вся поверхность зеркала водоема, а лишь часть ее, так называемая «активная зона». Отношение активной площади водоема к действительной называется коэффициентом использования площади водоема. Этот коэффициент зависит от формы водоема, расположения водосброса, водозабора и др. и значение его может быть в пределах от 0,4 до 0,9. Наиболее высокое значение коэффициента имеет место в водоемах с правильной вытянутой формой.

Тепловой расчет пруда охладителя проводят по номограмме Теплоэлектропроекта, построенной для естественных температур воды до 30° С, скорости ветра от 0 до 4 м/с, удельной площади активной зоны до 2 м 2 /м 3 в сутки и перепада температур воды в пруде от 0 до 15 °С.

По номограмме по заданным значениям удельной площади активной зоны пруда f уд, нормально естественной температуре воды t е, скорости ветра W 200 и перепаду температур t определяют перегрев воды, а затем температуру охлажденной воды (у водозабора): t 1 = t е +  град.

Брызгальный бассейн представляет собой открытый резервуар, состоящий из одной или нескольких секций, оборудованных водораспределительными трубами и соплами (насадки), при помощи которых охлаждаемая вода разбрызгивается над этим резервуаром.

Нагретая отработавшая вода подается под напором 50 - 100 кПа (5-10 м вод. ст.) к брызгалам. Охлаждение воды в брызгальных бассейнах происходит при ее разбрызгивании за счет испарения и соприкосновения капель воды с воздухом.

В качестве разбрызгивающих устройств применяют преимущественно эвольвентные и тангенциальные сопла, в редких случаях - винтовые сопла МОТЭП.

Градирни. По способу подвода воздуха к градирням они разделяются на открытые, башенные и вентиляторные, а в зависимости от типа оросительного устройства - на брызгальные, капельные, пленочные и комбинированные.

В градирнях с брызгальным оросительным устройством вода, подаваемая на охлаждение, распределяется на оросителе по системе лотков, в днище которых имеются отверстия, через которые вода тонкими струйками падает на разбрызгивающие тарелочки – розетки. Образующиеся при этом капли воды падают на оросительное устройство. При прохождении через оросительное устройство вода соприкасается с поднимающимся вверх воздухом, охлаждается и стекает в резервуар.

Ороситель капельного типа состоит из расположенных друг над другом горизонтальными рядами деревянных реек (рис. 3.15.6, а ). Вода, стекая с верхнего яруса реек на нижний, разбивается на капли, в результате чего создается большая площадь соприкосновения с воздухом. В градирнях с оросителем пленочного типа (рис. 3.15.6, б ), состоящим из большого числа параллельных друг другу щитов, расположенных вертикально или под малым углом к вертикали, вода, стекая по этим щитам, образует пленку толщиной 0,3- 0,5 мм. Воздух соприкасается с поверхностью пленки воды и охлаждает ее.

Также применяются капельно-пленочные (комбинированные) оросители.

Рис.3.15.6. Оросители башенных градирен Рис. 3.15.7. Многосекционная вентиляторная градирня типа Союзводоканалпроекта:

1 -диффузор; 2 - вентилятор; 3 -конфузор; 4 -привод вентилятора; 5 - водоуловитель; 6 - водораспределитель; 7 - пакетный ороситель; 8 - обшивка; 9 - делительная стена; 10 - стенки железобетонные сборного каркаса; 11 - резервуар охлажденной воды

Открытые градирни (брызгальные и капельные) применяют при небольших расходах воды (50 -300 м 3 /ч).

Средняя плотность орошения для капельных и брызгальных градирен принимается 1,5 - 3 м 3 /ч на 1 м 2 , для пленочных 3 - 8 м 3 /ч на 1 м 2 и для комбинированных 2,5 - 6 м 3 /ч на 1 м 2 . Теплотехнические расчеты башенных градирен для конкретных метеорологических условий производят по номограммам.

Вентиляторные градирни обеспечивают более глубокое охлаждение оборотной воды, чем башенные, поскольку необходимый для охлаждения воды свежий атмосферный воздух подается в них вентиляторами. Вентиляторные градирни по сравнению с башенными позволяют достичь более глубокого охлаждения оборотной воды при плотности орошения до 15-16 м 3 /ч на 1 м 2 .

В зависимости от расположения вентилятора различают нагнетательные и отсасывающие градирни. Наибольшее распространение получили отсасывающие, секционные градирни (рис. 3.15.7) Союзводканалпроекта с вытяжным вентилятором и противоточным движением воздуха. Вытяжные вентиляторы таких градирен применяют следующих типов: осевые № 8 и № 12, ВГ-25, 1ВГ-47, 1ВГ-50, 1ВГ-70 и 1ВГ-104 «Нема» производительностью от 15 до 1300 тыс. м 3 /ч воздуха и вентиляторов «Нема» 2700 тыс. м 3 /ч.

Поверочные расчеты вентиляционных градирен в зависимости от района расположения производятся по графикам, приведенным в каталогах.

Оборотные системы охлаждающего водоснабжения металлургических заводов по переработке цветных металлов, в частности алюминия, отличаются значительной неравномерностью водоподачи, которая обусловлена большим разнообразием типоразмеров отливаемых слитков, значительными колебаниями числа одновременно подключенных теплообменных аппаратов, а также посменным режимом работы литейного цеха. На одном из таких заводов для охлаждения расплавленного алюминия используются теплообменные аппараты открытого типа, которые представляют собой дырчатые корпуса, образующие контур будущего слитка. Вода подается на охлаждаемый металл через отверстия корпуса и сливается самотеком в резервуар нагретой воды. Нагретая вода охлаждается на градирне и подается в литейный цех (рис. 5). В процессе кристаллизации слитков температура охлаждающей воды должна колебаться в пределах 17--25 °С, отклонения давления от требуемого значения не должны превышать ± 0,25 атм (± 24,5 кПа) при любом требуемом расходе .

В настоящее время подача холодной воды регулируется вручную, с помощью электрозадвижек, а также изменением числа одновременно работающий насосов. Такой способ регулирования, как показано в , приводит к возникновению избыточных напоров в трубах, перерасходу электроэнергии, непроизводительным потерям воды. Подача горячей воды регулируется так, чтобы избежать срабатывания холодного и горячего резервуаров. Производительность насосов горячей воды можно регулировать или дросселированием напорной линии, или периодическим включением--отключением агрегатов.

Рис. 5. Оборотное водоснабжение литейного цеха. Функциональная схема автоматизации: 1, 2 -- резервуары горячей и холодной воды; 3 -- градирня; 4, 5, 8, 9 -- насосы; 6, 7 -- регулируемые электропри-воды насосов; 10--напорный трубопровод охлаждающей воды 11 - трубопровод нагретой самотечной воды; 12 - литейные машины; 13 - датчик уровня; 14 - датчик давления; 15 - индикатор уровня; 16 - индикатор давления; 17, 18 - электронные регуляторы; 19, 20 - переключатели режимов (ручной - автоматический); 21, 22 - ручные задатчики

Чтобы продлить срок службы электрозадвижек, персонал пользуется ими только при критичных значениях уровней и давлений воды. Поэтому имеют место значительные колебания уровней горячей и холодной воды. Чтобы избежать аварии, давление охлаждающей воды в трубопроводе намеренно завышается.

При увеличении подачи охлаждающей воды в литейный цех до момента возврата нагретой самотечной воды в резервуар проходит какое-то время, за которое вода протекает через наклонный трубопровод длиной 125 метров. Время возврата горячей воды при этом является функцией расхода охлаждающей воды. Запаздывание водопритока, носящее нелинейный характер, может быть причиной срабатывания резервуара горячей воды и срыва насосов.

С целью оптимизации режима работы описанной водооборотной станции, с учетом указанных характерных особенностей сегодняшней ее эксплуатации, была разработана упрощенная модель водооборотного цикла. Была составлена программа, по которой ЭВМ, при заданных конструктивных параметрах системы водоснабжения (геодезические перепады высот, размеры резервуаров, гидравлические характеристики трубопроводов и т. п.), а также при заданном графике потребления литейным цехом охлаждающей воды, вычисляла колебания расходов и уровней воды в разных точках сети. Подсчитывалась также мощность, потребляемая насосами горячей и холодной воды при разных способах регулирования водоподачи:

дросселированием напорной линии;

плавным изменением частоты вращения рабочего колеса насоса;

периодическим включением - отключением насосов по уровню воды в приемном резервуаре;

саморегулированием, вызванным изменением статического перепада высот за счет изменения уровня воды в резервуаре.

Выходные данные модели были представлены в виде функциональных зависимостей:

Qp = f1(t), Qг = f2(t), Нх = f3(t), Нг = f4(t),

где Qp, Qг -- расходы охлаждающей горячей воды, м3/c; Нх, Нг -- уровни холодной и горячей воды в резервуарах, м.

При составлении модели были приняты следующие допущения:

приведение в соответствие водопотребления и водоподачи, а также отработка заданного уровня в резервуаре происходят мгновенно; это допущение возможно, так как скорости изменения водопотребления (максимальная составляет 4800 м3/ч-ч) намного меньше, дам скорости протекания механических и гидравлических переходных процессов в трубах, резервуарах, насосах;

подача подпиточной воды в холодный резервуар производится так, что потери поды в каждый момент времени полностью компенсируются;

КПД системы «насос--двигатель» при регулировании расхода воды изменением частоты вращения рабочего колеса нacooa остается неизменным.

При расчете расходов и уровней воды определялись:

1. По реальному суточному графику водопотребления текущее значение расхода охлаждающей воды

Qp = QI + ((QI+1 - QI) / (60DI+1)) t.

где QI, DI -- массивы чисел, описывающие график водопотребления; t--текущее время.

2. Время возврата нагретой самотечной воды

где L --длина самотечного трубопровода.

3. Скорость потока по формуле Шези

где R -- гидравлический радиус; I -- гидравлический уклон; с--коэффициент Шези.

4. Скорость потока, выраженная через его сечение,

Решая совместно уравнения пп. 3 и 4, получим (для круглого сечения)

где r -- радиус трубы. Отсюда v находится методом последовательного приближения при известном Q.

5. Расход горячей воды

а) при поддержании постоянным уровня холодной воды

б) три поддержании постоянным уровня горячей воды Qг = Qс, где Qc -- расход нагретой воды на выходе самотечного трубопровода;

в) при использовании свойств саморегулирования производительности за счет изменения уровня воды

где Нф -- фиктивное давление, развиваемое насосом при нулевой подаче;

Нст = Нгр- Нд. г + Нг

Статический перепад высот; Нгр-- уровень сопел градирни; Нд. г -- уровень дна горячего резервуара; Нг -- уровень горячей воды в резервуаре;

г) при регулировании водоподачи периодическим включением -- отключением насоса

Qг = Qн при Нг Нв. к,

Qг = 0 при Нг Нн. к,

где Hв.к, Нн. к-- верхнее и нижнее критичные значения уровня горячей воды; Qн -- номинальная производительность насоса.

6. Мощность, потребляемая насосами

а) при регулировании водоподачи дросселированием напорной линии

где - плотность воды, кг/м3; Q -- текущее значение расхода, м3/ч; -- общий КПД системы «насос--двигатель»;

б) три регулировании водоподачи изменением частоты вращения рабочего колеса насоса

где Нв -- уровень воды в резервуаре; Нп, Нд -- геодезические высоты потребителя воды и дна резервуара.

7. Численным интегрированием текущие значения объемов (V м3) и уровней (H м) горячей и холодной воды в резервуарах

Vt = Vt-1 - t(Qвых.I - Qвх.I),

где Qвых.I -- суммарный расход воды, забираемой из резервуара; Qвх.I --cуммарный расход воды, подаваемой в резервуар; S -- площадь резервуара, изменяющаяся по высоте.

Таким образом, задавая характер потребления воды и режим управления насосами горячей ступени, получаем значения расходов горячей и холодной воды в интересующих нас точках сети, уровней воды в резервуарах в функции времени, а также потребленную электроэнергию при том или ином режиме.

Как и следовало ожидать, наименьшее потребление электроэнергии имеет место три плавном регулировании водоподачи изменением скорости вращения насосов, наибольшее -- при регулировании водоподачи дросселированием напорной линии.

Использование свойств саморегулирования насоса за счет изменения статического перепада высот в данной водооборотной системе невозможно: резервуар горячей воды при таком регулировании срабатывается за 10--15 минут.

Задавая режим работы насосов таким, при котором давление холодной воды на входе в литейный цех и уровень воды в одном из резервуаров остаются постоянными, имеем следующие результаты.

По зависимости Qc = f(t) (рис. 6) видим, что максимальное время запаздывания притока нагретой воды -- 85 с, минимальное -- 45 с. И то и другое намного меньше времени срабатывания резервуара при отсутствии притока и максимальном отборе воды (11 минут).

Задавая характер возрастания водопритока на входе в самотечный трубопровод таким, при котором вся вода достигает конца трубы в течение 20--30 с, не получаем каких-либо аварийный ситуаций; уровень воды а нерегулируемом резервуаре колеблется в пределах ±0,5 м, что допустимо. Целесообразнее регулировать уровень, воды в горячем резервуаре, так кaк колебания в нем сильнее. К тому же при высоких уровнях горячая вода уходит через перелив в ливневую канализацию и теряется безвозвратно.

Рис. 6.

Можно сказать, что значительный запас резервуаров горячей и холодной воды ino емкости дозволяет приманить в данной циркуляционной системе схему регулирования, состоящую из двух нe связанных между собой контуров:

контура управления подачей холодной воды по давлением на входе в литейный цех;

контура управления подачей горячей воды по уровню в приемном резервуаре.

Возможный вариант схемы автоматического регулирования станции оборотного водоснабжения, состоящей из контура управления давлением (I) и уровнем (II), представлен на рис. 5. Регулируемый электропривод изменяет частоту вращения насосов в зависимости от сигнала, снимаемого или с датчика давления (уровня), или c ручного задатчика Н.