Классификация белков простые белки альбумины глобулины гистоны. Что такое быстрые и медленные белки? Изомеразы катализируют взаимопревращения изомеров

В зависимости от химического состава белки де­лятся на две группы: простые и сложные. Простые белки со­стоят только из аминокислот. В сложные белки, помимо ами­нокислот, входит небелковый компонент, называемый простетической группой. В свою очередь внутри каждой из этих групп белки подразделяются на подгруппы. Простые белки условно классифицируют в соответствии с их растворимос­тью в различных веществах, а сложные белки делят на осно­ве химической природы небелковой части молекулы.

Простые белки

К простым белкам относятся альбумины, глобулины, про-ламины, глютелины, протамины, гистоны, протеиноиды.

Альбумины. Белки этой подгруппы имеют небольшую мо­лекулярную массу (15 000-70 000 Да); ихфтносят к кислым белкам из-за большого содержания глутаминовой кислоты. Альбумины сильно гидратированы, они хорошо растворяют­ся в воде; из водных растворов осаждаются при насыщении нейтральными солями, например сульфатом аммония. Аль­бумины обладают высокой адсорбционной способностью. Так, альбумины плазмы крови благодаря неспецифической адсорб­ции различных веществ выполняют физиологически важную транспортную функцию.

Альбумины широко распространены в природе. В плаз­ме крови человека, куриных яйцах они составляют до 50 % всех белков. Богаты альбуминами молоко и молочные про­дукты.

Глобулины, Эти белки крупнее, чем альбумины; их моле­кулярная масса превышает 100 000 Да. Глобулины растворя­ются в слабых растворах.различных солей (в воде нераствори­мы). При 50-процентном насыщении раствора сульфатом аммония выпадают в осадок. Глобулины являются слабокис­лыми и нейтральными белками. Они составляют большую часть белков семян, особенно бобовых и масличных культур. Мно­го глобулинов в крови и других биологических жидкостях. К этой подгруппе относятся: белок крови - фибриноген, а также белок семян гороха - легумин, фасоли - фазеолин, коноп­ли - эдестин.

Альбумины и глобулины представляют собой очень раз­нообразные группы белков, выполняющих различные функ­ции в живых организмах.

Проломаны. Белки, хорошо растворимые в 70-процентном этаноле. Проламины нерастворимы в воде и солевых растворах. В своем составе содержат много пролина и глутаминовой кисло­ты. Проламины есть в злаках, где они выполняют роль запасных зеществ. Каждый из них имеет специфическое название по тому источнику, из которого они были выделены: глиадин - белок т^еницы и ржи, гордеин - ячменя, зеин - кукурузы.

Глютелины. Это белки растений, нерастворимые в воде, растворах солей, этиловом спирте. Они хорошо растворяются з слабых щелочах (0,2-2 %). Глютелины содержат больше ар­гинина и меньше пролина, чем Проламины. Комплекс щело-черастворимых белков семян пшеницы называется глютени-ном, риса - оризенином.

Фракционный состав белков зерна обусловливает техно­логические свойства пшеничной, ржаной, кукурузной, ов-:яной муки и разных круп. Белки пшеницы хорошо набухают и образуют связную эластичную массу - клейковину, основ­ную часть которой составляют глиадин и глютенин. Менее эластичная, хотя и связная масса получается из белков ячме­ня. Белковые вещества кукурузы, овса, риса, гречихи слабо набухают и не способны образовывать вязкое тесто.

Протамины. Это низкомолекулярные белки (молекуляр­ная масса до 12 000 Да), содержащие до 80 % основных ами­нокислот, главным образом аргинина. Следовательно, Прота­мины обладают резко выраженными основными свойствами, растворимы в слабых кислотах. Молекулы этих белков пред­ставляют собой поливалентный катион и легко реагируют с отрицательно заряженными веществами, например нуклеи­новыми кислотами.

Протамины широко распространены в природе, особенно их много в половых клетках рыб, млекопитающих и человека. Протамины образуют прочный комплекс с молекулами ДНК и таким образом защищают их от неблагоприятных воздействий.

Гистоны. Белки с низкой молекулярной массой (12 000- 24 000 Да) и резко выраженными основными свойствами. Растворимы в слабых кислотах. Гистоны присутствуют главным образом в ядрах клеток растений и животных. Основные их функции - структурная и регуляторная. Гистоны имеют большой положительный заряд, что позволяет им электростатически взаимодействовать с ДНК и стабилизировать ее структуру. Регуляторная функция гистонов заключается в их способности блокировать передачу генетической информа­ции от ДНК к РНК.

Протеиноиды. Малорастворимые фибриллярные белки опор­ных тканей (костей, хрящей, связок, сухожилий, волос и т. д.). Для них характерно высокое содержание серы. К протеиноидам относятся: фиброин - белок шелка; кератины - белки волос, рогов, копыт; коллагены - белки соединительных тканей.

Сложные белки

Сложные белки можно рассматривать как молекулярные комплексы двух веществ. Небелковая часть (простетическая группа) прочно соединяется с белком ковалентными или нековалентными связями, поэтому такие комплексы функ­ционируют как единое целое.

Липопротеины. Простетическая группа в этих белках пред­ставлена липидами (свободные жирные кислоты, триглице-рины, фосфолипиды, холестериды). Липопротеины широко распространены в природе. Они содержатся во всех клеточ­ных мембранах, плазме крови, мозге, молоке, яйцах и т. п.

Свободные Липопротеины (не входящие в биомембра­ны) выполняют транспортную функцию. Благодаря наличию полярных гидрофильных групп они растворимы в водной среде и способны переносить поступающие в кровь липиды к раз­личным органам и тканям организма.

Фосфопротеины. У этих белков остаток ортофосфорной кислоты соединен эфирной связью с гидроксильной груп­пой серина или треонина. К фосфопротеинам относятся мно­гие белки, играющие важную роль в питании растущего орга­низма, в частности, белок молока - казеиноген, яичного желтка - вителлин, икры рыб - ихтулин. Значительное их количество содержится в мозге. Фосфопротеины выполняют множество функций в живых организмах. Присоединение фос­фора к белку (фосфорилирование) меняет активность послед­него. Фосфорилирование и дефосфорилирование белков ре­гулирует их функционирование в клетке.

Гликопротеины. Простетические группы гл и коп роте и нов представлены углеводами и их производными. Углеводный компонент сообщает молекуле белка новые свойства, в том числе высокую специфичность. В отличие от протеинов для гликопротеинов характерна терм о стабильность: они выдер­живают и низкие и высокие температуры без изменения фи­зико-химических свойств. Гликопротеины с трудом перева­риваются протеолитическими ферментами.

Углеводсодержащие белки находятся во всех организмах. Они играют важную биологическую роль: осуществляют та­кие функции, как транспорт различных веществ, свертывае­мость крови, поддержание иммунитета (защита организма от инфицирующих бактерий и вирусов) и др. Представителями гликопротеинов являются муцины, которые обусловливают высокую вязкость слюны, что облегчает прохождение пищи по пищеводу. Муцины защищают слизистую оболочку желуд­ка и кишечника от воздействия собственных ферментов и плохо измельченной пищи.

Хромопротеины. Это сложные белки, у которых небелко­вую часть представляют различные окрашенные соединения, откуда и произошло их название (от греч. сНгота - краска). Среди хромопротеинов различают гемопротеины (содержа­щие в качестве простетической группы железо), порфирины (содержащие магний), флавопротеины (содержащие произ­водные изоалаксазина). Хромопротеины выполняют ряд уни­кальных функций, участвуя в важнейших процессах жизне­деятельности: фотосинтезе, дыхании, транспорте кислорода и оксида углерода, окислительно-восстановительных реакци­ях, с вето во с приятии и др. К простетическим группам хро­мопротеинов относятся порфириновое кольцо, флавиновые нуклеотины и т. д. К хромо протеи нам принадлежат хлорофилл, гемоглобин, многие ферменты - каталаза, пероксидаза, де-гидрогеназа и др.

Нуклеопротеины. Белки, связанные с нуклеиновыми кис­лотами. Они входят в состав любой клетки и играют важную биологическую роль, участвуя в образовании структурных кле­точных элементов и передаче наследственной информации.

6. БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ

Белки - важнейшие компоненты питания. Спо­собность белка выполнять функцию питания характеризует его биологическую ценность. Эффективность потребления белковых веществ человеком определяется двумя основными факторами: сбалансированностью содержания незаменимых аминокислот в белке и его усвояемостью. Если не удовлет­воряется потребность в одной из незаменимых аминокис­лот, то ограничивается использование других, и, следова­тельно, снижается ценность белка в целом. Незаменимая аминокислота, которая находится в белке в минимальном количестве, называется лимитирующей аминокислотой, так как она в наибольшей степени уменьшает биологическую ценность данного белка.

Обогащение пищевых белковых продуктов недостающи­ми аминокислотами применяется в рационе питания челове­ка в исключительных случаях. Однако при содержании жи­вотных добавление синтетических аминокислот к кормам является обычным делом. Подобным образом во всем мире готовят кормовые смеси для домашних птиц, свиней, коров. Обогащение кормов основными лимитирующими кислота­ми - метионином и лизином позволяет более экономно рас­ходовать кормовые смеси. Известно, что добавки этих амино­кислот улучшают утилизацию белка животными примерно на 20 %.

Обычно биологическая ценность белка выражается в от­носительных величинах. Она представляет собой отношение исследуемого параметра данного белка к подобному же па-рамегру «идеального» белка. В качестве последнего исполь­зуют казеин молока, белок яиц, смесь мышечных белков, которые легко перевариваются и содержат незаменимые ами­нокислоты в соотношениях, близких к эталонным. Биологи­ческая ценность данного белка в сравнении с эталонными показывает, насколько он способен удовлетворять потреб­ности организма в аминокислотах. Для оценки какого-либо белка или пищевого продукта необходимы данные о содер­жании в нем отдельных аминокислот, т. е. аминокислотный состав.

Значительная часть растительных белков по своему ами­нокислотному составу и биологической ценности близка к животным. Однако белки семян большинства сортов зерно­вых дефицитны по двум (рис, овес), а чаще по трем и четы­рем (пшеница, кукуруза и др.) незаменимым аминокисло­там. Основной лимитирующей аминокислотой белка зерновых культур является лизин. Лимитирующие аминокислоты бел­ков зерновых различны у семян разных культур: у пшеницы, риса и ржи - треонин, у кукурузы - триптофан и т. д. Белки, бобовых культур отличаются лучшей сбалансированностью

У животных белков дефицит незаменимых аминокислот выражен слабо. Некоторым из них (белки молока, мяса, суб­продуктов) свойственен недостаток серосодержащих амино­кислот. В целом для животных белков более характерно избы­точное по сравнению с потребностями организма содержание ряда незаменимых аминокислот.

В питании большей части населения земного шара отме­чается определенный дефицит трех незаменимых аминокис­лот: лизина, триптофана и метионина. Различный аминокис­лотный состав растительных и животных белков позволяет повысить их биологическую ценность при потреблении необ­ходимого количества разнообразной белковой пищи. Только такое питание можно назвать полноценным.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ:

1.Что такое белки и каковы их функции в организме?

2.Перечислите свойства белков.

3.Каково структурное и функциональное значение гидрофоб­
ных, кислых и основных, сульфидрильных групп в белках?

4.Белки подвергли сжиганию, после чего в минерализате об­
наружили железо. Какие белки содержит этот элемент?

5.Какие классификации аминокислот вам известны?

6.Что такое незаменимые аминокислоты и в каких продуктах
они содержатся?

7.В смеси аминокислот после гидролиза казеина с помощью
соответствуюших реактивов обнаружено наличие гидрофиль­
ных групп. Какие аминокислоты содержат их? Напишите их
формулы.

8.К водному раствору аминокислот добавлен универсальный
индикатор. Определена кислая реакция. Каким аминокисло­
там свойственны кислые реакции? Напишите их формулы.

9.С помощью соответствующих реактивов в растворе белка об­
наружена сера. Какие аминокислоты се содержат? Напишите
их формулы.

10.Расскажите о классификации белков. От чего зависит биологическая ценность белков?


ГЛАВА ХИМИЯ НУКЛЕИНОВЫХ

Кислот

Общая характеристика

Нуклеиновые кислоты были открыты в 1868 году швейцарским химиком Ф. Мишером. Ученый выделил эти ве­щества из ядер клеток и назвал их нуклеином (от лат, гшс1еиз - ядро). Однако более подробное изучение этих соединений было проведено лишь в конце 40-х годов нашего столетия. Боль­шой вклад в расшифровку состава и роли нуклеиновых кис­лот внесли химики П. Левин, Э. Чаргафф, Дж. Уотсон, Ф. Крик, Б. В. Кедровский, А. М. Белозерский, А. С. Спирин и другие.

Нуклеиновые кислоты - это класс полимеров, ответ­ственных за хранение и передачу генетической информации, а также ее реализацию в процессе синтеза клеточных белков. Они универсальные компоненты всех живых организмов. Нук­леиновые кислоты представляют собой вещества белого цве­та, в свободном состоянии плохо растворимые в воде, но хорошо - в виде солей и щелочных металлов.

Эти соединения обладают высокой молекулярной мас­сой (миллионы Да), содержат около 35 % азота и 10 % фос­фора, отличаются резко выраженными кислотными свойства­ми (за счет фосфорной кислоты) и при физиологическом значении рН несут высокий отрицательный заряд, вследствие чего подвижны в электрическом поле.


Похожая информация.


Белки в зависимости от химического строения делят на простые и сложные. Простые белки при гидролизе распадаются только на аминокислоты. При гидролизе сложных белков наряду с аминокислотами образуется вещество небелковой природы – простетическая группа. Классификация простых белков основана на их растворимости.

Альбумины – водорастворимые белки с высокой гидрофильностью, выпадают в осадок при 100%-ом насыщении сульфатом аммония. Это группа схожих белков плазмы крови с молекулярной массой около 40-70 кДа, содержат много глутаминовой кислоты и поэтому имеют кислые свойства и высокий отрицательный заряд при физиологических рН. Легко адсорбируют полярные и неполярные молекулы, являются, белком-транспортером в крови для многих веществ, в первую очередь для билирубина и длинноцепочечных жирных кислот. К этим белкам относятся белок куриного яйца, белки зародыша семян злаковых и бобовых культур. Альбумины содержат все незаменимые аминокислоты.

Глобулины – растворяются в солевых растворах, чаще всего для извлечения глобулинов используют 2 –10%-ый раствор хлорида натрия. Они осаждаются 50%-ым раствором сульфата аммония. Это группа разнообразных белков плазмы крови с молекулярной массой 100-150 и более кДа, слабокислые или нейтральные . Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, Белки семян бобовых и масличных культур в основном представлены глобулинами; легумин – гороха и чечевицы, фазеолин – фасоли; глицин – соевых бобов. Они составляют почти половину белков крови человека, определяют иммунные свойства организма (иммуноглобулины), свертываемость крови (протромбин, фибриноген), участвуют в переносе железа к тканям и других процессах.

Многие альбумины и глобулины обладают ферментативным действием.

Проламины . Эта группа белков характерна исключительно для семян злаков. Характерной особенностью проламинов является растворимость в 60–80% водном растворе этанола, в то время как все остальные простые белки в этих условиях обычно выпадают в осадок. Эти белки содержат значительные количества пролина и глютаминовой кислот . Лизина они не содержат или содержат его в следовых количествах. Хорошо изучены проламины пшеницы – глиадины, ячменя – гордеин, кукурузы – зеин. Проламины – это комплексы белков различающиеся по составу и молекулярной массе.

Глутелины находятся, как правило, с проламинами. Эти белки тоже содержат значительные количества глютаминовой кислот , а значит относятся к кислым белкам. Растворяются они в щелочах (чаще 0,2%-ым NaOH). Глутелины не однородные белки, а смеси разных белков со сходными свойствами. Наиболее исследованы глутелин пшеницы, орезенин риса.

Глутенин и глиадин пшеницы образуют комплекс, который называют клейковиной. Клейковина муки влияет на структурно-механические свойства теста, а следовательно на качество хлеба.

Протамины – самые низкомолекулярные белки. Встречаются эти белки в молоках рыб. На 2/3 эти белки состоят из аргинина, поэтому имеют основной характер. Протамины не содержат серы.

Гистоны также являются белками основного характера. В их состав входят лизин и аргинин, содержание которых, однако, не превышает 20–30%.Гистоны – содержаться в хромосомах клеточных ядер, они участвуют в стабилизации пространственной структуры ДНК. Из растворов их осаждают аммиаком.

Структура простых белков представлена только полипептидной цепью (альбумин, инсулин). Однако необходимо понимать, что многие простые белки (например, альбумин) не существуют в "чистом" виде, они всегда связаны с какими-либо небелковыми веществами. Их относят к простым белкам только по той причине, что связи с небелковой группой слабые и при выделении in vitro они оказываются свободным от других молекул - простым белком.

Альбумины

В природе альбумины входят в состав не только плазмы крови (сывороточные альбумины), но и яичного белка (овальбумин), молока (лактальбумин), являются запасными белками семян высших растений.

Глобулины

Группа разнообразных белков плазмы крови с молекулярной массой до 100 кДа, слабокислые или нейтральные . Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, что используется в клинической диагностике в "осадочных" пробах (тимоловая , Вельтмана). Несмотря на то, что их обычно относят к простым, многие глобулины содержат углеводные или иные небелковые компоненты.

При электрофорезе глобулины сыворотки крови разделяются, как минимум, на 4 фракции – α 1 -глобулины , α 2 -глобулины , β-глобулины и γ-глобулины .

Картина электрофореграммы (вверху) белков сыворотки крови
и полученной на ее основе протеинограммы (внизу)

Так как глобулины включают в себя разнообразные белки, то их функции разнообразны:

Часть α-глобулинов обладает антипротеазной активностью, что защищает белки крови и межклеточного матрикса от преждевременного разрушения, например, α 1 -антитрипсин , α 1 -антихимотрипсин , α 2 -макроглобулин .

Некоторые глобулины способны к связыванию определенных веществ: трансферрин (переносит ионы железа), церулоплазмин (содержит ионы меди), гаптоглобин (переносчик гемоглобина), гемопексин (транспорт гема).

γ-Глобулины являются антителами и обеспечивают иммунную защиту организма.

Гистоны

Гистоны – внутриядерные белки массой около 24 кДа. Обладают выраженными основными свойствами, поэтому при физиологических значениях рН заряжены положительно и связываются с дезоксирибо-нуклеиновой кислотой (ДНК), образуя дезоксирибо-нуклеопротеины . Существуют 5 типов гистонов – очень богатый лизином (29%) гистон Н1, другие гистоны Н2а, H2b, НЗ, Н4 богаты лизином и аргинином (в сумме до 25%).

Радикалы аминокислот в составе гистонов могут быть метилированы, ацетилированы или фосфорилированы. Это изменяет суммарный заряд и другие свойства белков.

Можно выделить две функции гистонов:

1. Регуляция активности генома, а именно – они препятствуют транскрипции.

2. Структурная – стабилизируют пространственную структуру ДНК.

Гистоны в комплексе с ДНК образуют нуклеосомы – октаэдрические структуры, составленные из гистонов Н2а, H2b, НЗ, Н4. Гистон H1 связан с молекулой ДНК, не позволяя ей "соскользнуть" с гистонового октамера. ДНК обвивает нуклеосому 2,5 раза, после чего обвивает следующую нуклеосому. Благодаря такой укладке достигается уменьшение размеров ДНК в 7 раз.

Благодаря гистонам и формированию более сложных структур размеры ДНК, в конечном итоге, уменьшаются в тысячи раз: на самом деле длина ДНК достигает 6-9 см (10 –1) , а размеры хромосом – всего несколько микрометров (10 –6).

Протамины

Это белки массой от 4 кДа до 12 кДа, имеются в ядрах сперматозоидов многих организмов, в сперме рыб (молóках) они составляют основную массу белка. Протамины являются заменителями гистонов и служат для организации хроматина в спермиях. По сравнению с гистонами протамины отличаются резко увеличенным содержанием аргинина (до 80%). Также, в отличие от гистонов, протамины обладают только структурной функцией, регулирующей функции у них нет, хроматин в сперматозоидах неактивен.

Коллаген

Коллаген – фибриллярный белок с уникальной структурой, составляет основу межклеточного вещества соединительной ткани сухожилий, кости, хряща, кожи, но имеется, конечно, и в других тканях.

Полипептидная цепь коллагена включает 1000 аминокислот и носит название α-цепь. Насчитывается около 30 вариантов α-цепи коллагена, но все они обладают одним общим признаком – в большей или меньшей степени включают повторяющийся триплет [Гли-Х-Y ], где X и Y – любые, кроме глицина, аминокислоты. В положении X чаще находится пролин или, гораздо реже, 3-оксипролин , в положении Y встречается пролин и 4-оксипролин . Также в положении Y часто находится аланин , лизин и 5-оксилизин . На другие аминокислоты приходится около трети от всего количества аминокислот.

Жесткая циклическая структура пролина и оксипролина не позволяет образовать правозакрученную α-спираль , но образует т.н. "пролиновый излом". Благодаря такому излому формируется левозакрученная спираль, где на один виток приходится 3 аминокислотных остатка.

При синтезе коллагена первостепенное значение имеет гидроксилирование лизина и пролина , включенных в состав первичной цепи, осуществляемое при участии аскорбиновой кислоты . Также коллаген обычно содержит моносахаридные (галактоза) и дисахаридные (глюкоза-галактоза) молекулы, связанные с ОН-группами некоторых остатков оксилизина.

Этапы синтеза молекулы коллагена

Синтезированная молекула коллагена построена из 3 полипептидных цепей, сплетенных между собой в плотный жгут – тропоколлаген (длина 300 нм, диаметр 1,6 нм). Полипептидные цепи прочно связаны между собой через ε-аминогруппы остатков лизина. Тропоколлаген формирует крупные коллагеновые фибриллы диаметром 10-300 нм. Поперечная исчерченность фибриллы обусловлена смещением молекул тропоколлагена друг относительно друга на 1/4 их длины.

Фибриллы коллагена очень прочны, они прочнее стальной проволоки равного сечения. В коже фибриллы образуют нерегулярно сплетенную и очень густую сеть. Например, выделанная кожа представляет собой почти чистый коллаген.

Гидроксилирование пролина осуществляет железо -содержащий фермент пролилгидроксилаза для которого необходим витамин С (аскорбиновая кислота). Аскорбиновая кислота предохраняет от инактивации пролилгидроксилазу, поддерживая восстановленное состояние атома железа в ферменте. Коллаген, синтезированный в отсутствии аскорбиновой кислоты, оказывается недостаточно гидроксилированным и не может образовывать нормальные по структуре волокна, что приводит к поражению кожи и ломкости сосудов, и проявляется как цинга .

Гидроксилирование лизина осуществляет фермент лизилгидроксилаза. Она чувствительна к влиянию гомогентизиновой кислоты (метаболит тирозина), при накоплении которой (заболевания алкаптонурия ) нарушается синтез коллагена, и развиваются артрозы.

Время полужизни коллагена исчисляется неделями и месяцами. Ключевую роль в его обмене играет коллагеназа , расщепляющая тропоколлаген на 1/4 расстояния с С-конца между глицином и лейцином.

По мере старения организма в тропоколлагене образуется все большее число поперечных связей, что делает фибриллы коллагена в соединительной ткани более жесткими и хрупкими. Это ведет к повышенной ломкости кости и снижению прозрачности роговицы глаза в старческом возрасте.

В результате распада коллагена образуется гидроксипролин . При поражении соединительной ткани (болезнь Пейджета, гиперпаратиреоидизм) экскреция гидроксипролина возрастает и имеет диагностическое значение .

Эластин

По строению в общих чертах эластин схож с коллагеном. Находится в связках, эластичном слое сосудов. Структурной единицей является тропоэластин с молекулярной массой 72 кДа и длиной 800 аминокислотных остатков. В нем гораздо больше лизина, валина, аланина и меньше гидроксипролина. Отсутствие пролина обусловливает наличие спиральных эластичных участков.

Характерной особенностью эластина является наличие своеобразной структуры – десмозина , который своими 4-мя группами объединяет белковые цепи в системы, способные растягиваться во всех направлениях.

α-Аминогруппы и α-карбоксильные группы десмозина включаются в пептидные связи одной или нескольких белковых цепей.

Существуют несколько подходов к классификации белков: по форме белковой молекулы, по составу белка, по функциям. Рассмотрим их.

Классификация по форме белковых молекул

По форме белковых молекул различают фибриллярные белки и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси и скреплены друг с другом поперечными сшивками (рис. 18,б). Эти белки отличаются высокой механической прочностью, нерастворимы в воде. Они выполняют главным образом структурные функции: входят в состав сухожилий и связок (коллаген, эластин), образуют волокна шелка и паутины (фиброин), волосы, ногти, перья (кератин).

В глобулярных белках одна или несколько полипептидных цепей свернуты в плотную компактную структуру – клубок (рис. 18,а). Эти белки, как правило, хорошо растворимы в воде. Их функции многообразны. Благодаря им осуществляются многие биологические процессы, о чем подробнее будет изложено ниже.

Рис. 18. Форма белковых молекул:

а – глобулярный белок, б – фибриллярный белок

Классификация по составу белковой молекулы

Белки по составу можно разделить на две группы: простые и сложные белки. Простые белки состоят только из аминокислотных остатков и не содержат других химических составляющих. Сложные белки, помимо полипептидных цепей, содержат другие химические компоненты.

К простым белкам относятся РНКаза и многие другие ферменты. Фибриллярные белки коллаген, кератин, эластин по своему составу являются простыми. Запасные белки растений, содержащиеся в семенах злаков, – глютелины , и гистоны – белки, формирующие структуру хроматина, принадлежат также к простым белкам.

Среди сложных белков различают металлопротеины, хромопротеины, фосфопротеины, гликопротеины, липопротеины и др. Рассмотрим эти группы белков подробнее.

Металлопротеины

К металлопротеинам относят белки, в составе которых имеются ионы металлов. В их молекулах встречаются такие металлы, как медь, железо, цинк, молибден, марганец и др. Некоторые ферменты по своей природе являются металлопротеинами.

Хромопротеины

В составе хромопротеинов в качестве простетической группы присутствуют окрашенные соединения. Типичными хромопротеинами являются зрительный белок родопсин, принимающий участие в процессе восприятие света, и белок крови гемоглобин (Hb), четвертичная структура которого рассмотрена в предыдущем параграфе. В состав гемоглобина входит гем , представляющий собой плоскую молекулу, в центре которой расположен ион Fe 2+ (рис. 19). При взаимодействии гемоглобина с кислородом образуется оксигемоглобин . В альвеолах легких гемоглобин насыщается кислородом. В тканях, где содержание кислорода незначительно, оксигемоглобин распадается с выделением кислорода, который используется клетками:

.

Гемоглобин может образовывать соединение с оксидом углерода (II), которое называется карбоксигемоглобином :

.

Карбоксигемоглобин не способен присоединять кислород. Вот почему происходит отравление угарным газом.

Гемоглобин и другие гем-содержащие белки (миоглобин, цитохромы) называют еще гемопротеинами из-за наличия в их составе гема (рис. 19).

Рис. 19. Гем

Фосфопротеины

Фосфопротеины в своем составе содержат остатки фосфорной кислоты, связанные с гидроксильной группой аминокислотных остатков сложноэфирной связью (рис. 20).

Рис. 20. Фосфопротеин

К фосфопротеинам относится белок молока казеин. В его состав входят не только остатки фосфорной кислоты, но и ионы кальция. Фосфор и кальций необходимы растущему организму в больших количествах, в частности, для формирования скелета. Кроме казеина, в клетках много и других фосфопротеинов. Фосфопротеины могут подвергаться дефосфорилированию, т.е. терять фосфатную группу:

фосфопротеин + Н 2 протеин + Н 3 РО 4

Дефосфорилированные белки могут при определенных условиях быть снова фосфорилированы. От наличия фосфатной группы в их молекуле зависит их биологическая активность. Одни белки проявляют свою биологическую функцию в фосфорилированном виде, другие – в дефосфорилированном. Посредством фосфорилирования – дефосфорилирования регулируются многие биологические процессы.

Липопротеины

К липопротеинам относятся белки, содержащие ковалентно связанные липиды. Эти белки встречаются в составе клеточных мембран. Липидный (гидрофобный) компонент удерживает белок в мембране (рис. 21).

Рис. 21. Липопротеины в клеточной мембране

К липопротеинам относят также белки крови, участвующие в транспорте липидов и не образующие с ними ковалентную связь.

Гликопротеины

Гликопротеины содержат в качестве простетической группы ковалентно связанный углеводный компонент. Гликопротеины разделяют на истинные гликопротеины и протеогликаны . Углеводные группировки истинных гликопротеинов содержат обычно до 15 – 20 моносахаридных компонентов, у протеогликанов они построены из очень большого числа моносахаридных остатков (рис. 22).

Рис. 22. Гликопротеины

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани и т.д. Многие ферменты и транспортные белки являются гликопротеинами.

Классификация по функциям

По выполняемым функциям белки можно разделить на структурные, питательные и запасные белки, сократительные, транспортные, каталитические, защитные, рецепторные, регуляторные и др.

Структурные белки

К структурным белкам относятся коллаген, эластин, кератин, фиброин. Белки принимают участие в формировании клеточных мембран, в частности, могут образовывать в них каналы или выполнять другие функции (рис. 23).

Рис. 23. Клеточная мембрана.

Питательные и запасные белки

Питательным белком является казеин, основная функция которого заключается в обеспечении растущего организма аминокислотами, фосфором и кальцием. К запасным белкам относятся яичный белок, белки семян растений. Эти белки потребляются во время развития зародышей. В организме человека и животных белки в запас не откладываются, они должны систематически поступать с пищей, в противном случае может развиться дистрофия.

Сократительные белки

Сократительные белки обеспечивают работу мышц, движение жгутиков и ресничек у простейших, изменение формы клеток, перемещение органелл внутри клетки. Такими белками являются миозин и актин. Эти белки присутствуют не только в мышечных клетках, их можно обнаружить в клетках практически любой ткани животных.

Транспортные белки

Гемоглобин, рассмотренный в начале параграфа, является классическим примером транспортного белка. В крови присутствуют и другие белки, обеспечивающие транспорт липидов, гормонов и иных веществ. В клеточных мембранах находятся белки, способные переносить через мембрану глюкозу, аминокислоты, ионы и некоторые другие вещества. На рис. 24 схематически показана работа переносчика глюкозы.

Рис. 24. Транспорт глюкозы через клеточную мембрану

Белки-ферменты

Каталитические белки, или ферменты, представляют собой самую многообразную группу белков. Почти все химические реакции, протекающие в организме, протекают при участии ферментов. К настоящему времени открыто несколько тысяч ферментов. Более подробно они будут рассмотрены в следующих параграфах.

Защитные белки

К этой группе относятся белки, защищающие организм от вторжения других организмов или предохраняющие его от повреждений. Иммуноглобулины, или антитела, способны распознавать проникшие в организм бактерии, вирусы или чужеродные белки, связываться с ними и способствовать их обезвреживанию.

Другие компоненты крови, тромбин и фибриноген, играют важную роль в процессе свертывания крови. Они предохраняют организм от потери крови при повреждении сосудов. Под действием тромбина от молекул фибриногена отщепляются фрагменты полипептидной цепи, в результате этого образуется фибрин :

фибриноген фибрин.

Образовавшиеся молекулы фибрина агрегируют, формируя длинные нерастворимые цепи. Сгусток крови вначале является рыхлым, затем он стабилизируется за счет межцепочечных сшивок. Всего в процессе свертывания крови участвует около 20 белков. Нарушения в структуре их генов является причиной такого заболевания, как гемофилия – сниженная свертываемость крови.

Рецепторные белки

Клеточная мембрана является препятствием для многих молекул, в том числе и для молекул, предназначенных для передачи сигнала внутрь клеток. Тем не менее клетка способна получать сигналы извне благодаря наличию на ее поверхности специальных рецепторов, многие из которых являются белками. Сигнальная молекула, например, гормон, взаимодействуя с рецептором, образует гормон-рецепторный комплекс, сигнал от которого передается далее, как правило, на белковый посредник. Последний запускает серию химических реакций, результатом которых является биологический ответ клетки на воздействие внешнего сигнала (рис. 25).

Рис.25. Передача внешних сигналов в клетку

Регуляторные белки

Белки, участвующие в управлении биологическими процессами, относят к регуляторным белкам. К ним принадлежат некоторые гормоны . Инсулин и глюкагон регулируют уровень глюкозы в крови. Гормон роста, определяющий размеры тела, и паратиреоидный гормон, регулирующий обмен фосфатов и ионов кальция, являются регуляторными белками. К этому классу белков принадлежат и другие протеины, участвующие в регуляции обмена веществ.

Интересно знать! В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

Структура простых белков представлена только полипептидной цепью (альбумин, инсулин). Однако необходимо понимать, что многие простые белки (например, альбумин) не существуют в "чистом" виде, они всегда связаны с какими-либо небелковыми веществами. Их относят к простым белкам только по той причине, что связи с небелковой группой слабые .

Альбумины Альбумины – это группа схожих белков плазмы крови с молекулярной массой около 40 кДа, содержат много глутаминовой кислоты и поэтому имеют кислые свойства и высокий отрицательный заряд при физиологических рН. Легко адсорбируют полярные и неполярные молекулы, являются, белком-транспортером в крови для многих веществ, в первую очередь для билирубина и длинноцепочечных жирных кислот.

Глобулины Группа разнообразных белков плазмы крови с молекулярной массой до 100 кДа, слабокислые илинейтральные . Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, что используется в клинической диагностике в "осадочных" пробах (тимоловая ,Вельтмана ). Часто содержат углеводные компоненты.

При электрофорезе глобулины сыворотки крови разделяются, как минимум, на 4 фракции – α1-глобулины,α2-глобулины, β-глобулины и γ-глобулины.

Гистоны – внутриядерные белки массой около 24

кДа. Обладают выраженными основными

свойствами, поэтому при физиологических

значениях рН заряжены положительно и

связываются с дезоксирибонуклеиновой

кислотой (ДНК),

образуя дезоксирибонуклеопротеины .

Существуют 5 типов гистонов – очень богатый

лизином (29%) гистон Н1, другие гистоны Н2а,

H2b, НЗ, Н4 богаты лизином и аргинином (в сумме

Радикалы аминокислот в составе гистонов могут

быть метилированы, ацетилированы или

фосфорилированы. Это изменяет суммарный

заряд и другие свойства белков.

Можно выделить две функции гистонов:

1. Регуляция активности генома , а именно – они препятствуют транскрипции.

2. Структурная – стабилизируют пространственную структуру ДНК.

Гистоны в комплексе с ДНК образуют нуклеосомы – октаэдрические структуры, составленные из

гистонов Н2а, H2b, НЗ, Н4. Между нуклеосомами располагается гистон H1, также связанный с

молекулой ДНК. ДНК обвивает нуклеосому 2,5 раза и переходит к гистону H1, после чего обвивает

следующую нуклеосому. Благодаря такой структуре достигается уменьшение размеров ДНК в 7 раз.

образом, гистоны участвуют в плотной упаковке ДНК при формировании хромосом. Например,

благодаря гистонам в конечном итоге размеры ДНК уменьшаются в тысячи раз: длина ДНК достигает

6-9 см (10-1), а размеры хромосом – всего несколько микрометров (10-6).

Протамины

Это белки массой от 4 кДа до 12 кДа, у ряда организмов (рыбы) они являются заменителями гистонов,

есть в спермиях. Отличаются резко увеличенным содержанием аргинина (до 80%). Протамины

присутствуют в клетках, не способных к делению. Их функция как у гистонов – структурная .

13. Характеристика и особенности строения классов сложных белков: