Как посчитать длину окружности зная радиус. Как найти длину окружности: через диаметр и радиус

Окружностью называют кривую линию, которая ограничивает собой круг. В геометрии фигуры плоские, поэтому определение относится к двухмерному изображению. Предполагается, что все точки этой кривой удалены от центра круга на равное расстояние.

У окружности есть несколько характеристик, на основе которых производят расчеты, связанные с этой геометрической фигурой. В их число входит: диаметр, радиус, площадь и длина окружности. Эти характеристики взаимосвязаны, то есть для их вычисления достаточно информации хотя бы об одной из составляющих. Например, зная только радиус геометрической фигуры по формуле можно найти длину окружности, диаметр, и ее площадь.

  • Радиус окружности – это отрезок внутри окружности, соединённый с ее центром.
  • Диаметр – это отрезок внутри окружности, соединяющий ее точки и проходящий через центр. По сути, диаметр – это два радиуса. Именно так выглядит формула для его вычисления: D=2r.
  • Есть еще одна составляющая окружности – хорда. Эта прямая, которая соединяет две точки окружности, но не всегда проходит через центр. Так вот ту хорду, которая через него проходит, тоже называют диаметром.

Как узнать длину окружности? Сейчас выясним.

Длина окружности: формула

Для обозначения этой характеристики выбрана латинская буква p. Еще Архимед доказал, что отношение длины окружности к ее диаметру является одним и тем же числом для всех окружностей: это число π, которое приблизительно равно 3,14159. Формула для вычисления π выглядит так: π = p/d. Согласно этой формуле, величина p равна πd, то есть длина окружности: p= πd. Поскольку d (диаметр) равен двум радиусам, то эту же формулу длины окружности можно записать как p=2πr.Рассмотрим применение формулы на примере простых задач:

Задача 1

У основания царь-колокола диаметр равен 6,6 метров. Какова длина окружности основания колокола?

  1. Итак, формула для вычисления окружности - p= πd
  2. Подставляем имеющееся значение в формулу: p=3,14*6,6= 20,724

Ответ: длина окружности основания колокола 20,7 метра.

Задача 2

Искусственный спутник Земли вращается на расстоянии 320 км от планеты. Радиус Земли – 6370 км. Какова длина круговой орбиты спутника?

  1. 1.Вычислим радиус круговой орбиты спутника Земли: 6370+320=6690 (км)
  2. 2.Вычислим длину круговой орбиты спутника по формуле: P=2πr
  3. 3.P=2*3,14*6690=42013,2

Ответ: длина круговой орбиты спутника Земли 42013,2 км.

Способы измерения длины окружности

Вычисление длины окружности на практике используется не часто. Причиной тому приблизительное значение числа π. В быту для поиска длины круга используют специальный прибор – курвиметр. На окружности отмечают произвольную точку отсчета и ведут от нее прибор строго по линии, пока опять не дойдут до этой точки.

Как найти длину окружности? Нужно просто держать в голове незамысловатые формуля для вычислений.

Очень часто при решении школьных заданий по или физике возникает вопрос - как найти длину окружности, зная диаметр? На самом деле никаких сложностей в решении этой проблемы нет, нужно только чётко представлять себе, какие формулы , понятия и определения требуются для этого.

Вконтакте

Основные понятия и определения

  1. Радиус - это линия, соединяющая центр окружности и её произвольную точку . Он обозначается латинской буквой r.
  2. Хордой называется линия, соединяющая две произвольные точки лежащие на окружности .
  3. Диаметр - это линия, соединяющая два пункта окружности и проходящая через её центр . Он обозначается латинской буквой d.
  4. - это линия, состоящая из всех точек, находящихся на равном расстоянии от одной избранной точки, именуемой её центром. Её длину будем обозначать латинской буквой l.

Площадь круга - это вся территория, заключённая внутри окружности . Она измеряется в квадратных единицах и обозначается латинской буквой s.

Пользуясь нашими определениями, приходим к выводу, что диаметр круга равен его самой большой хорде.

Внимание! Из определения, что такое радиус круга можно узнать, что такое диаметр круга. Это два радиуса отложенные в противоположных направлениях!

Диаметр окружности.

Нахождение длины окружности и её площади

Если нам дан радиус окружности, то диаметр окружности описывает формула d = 2*r . Таким образом, для ответа на вопрос, как найти диаметр круга, зная его радиус, достаточно последний умножить на два .

Формула длины окружности, выраженная через её радиус, имеет вид l = 2*П*r .

Внимание! Латинской буквой П (Пи) обозначается отношение длины окружности к её диаметру, и это есть непериодическая десятичная дробь. В школьной математике она считается заранее известной табличной величиной, равной 3,14!

Теперь перепишем предыдущую формулу, чтобы найти длину окружности через её диаметр, помня, в чём состоит его разница по отношению к радиусу. Получится: l = 2*П*r = 2*r*П = П*d.

Из курса математики известно, что формула, описывающая площадь окружности, имеет вид: s = П*r^2.

Теперь перепишем предыдущую формулу, чтобы найти площадь окружности через её диаметр. Получим,

s = П*r^2 = П*d^2/4.

Одним из самых сложных заданий в данной теме является определение площади круга через длину окружности и наоборот. Воспользуемся тем, что s = П*r^2 и l = 2*П*r. Отсюда получим r = l/(2*П). Подставим полученное выражение для радиуса в формулу для площади, получится: s = l^2/(4П) . Абсолютно аналогичным способом определяется и длина окружности через площадь круга.

Определение длины радиуса и диаметра

Важно! Прежде всего узнаем, как измерить диаметр. Это очень просто — проводим любой радиус, продлеваем его в противоположную сторону до пересечения с дугой. Циркулем отмеряем полученное расстояние и с помощью любого метрического инструмента узнаем искомое!

Ответим на вопрос, как узнать диаметр окружности, зная её длину. Для этого выразим его из формулы l = П*d. Получим d = l/П.

Мы уже знаем как из длины окружности можно найти её диаметр, точно также найдём и радиус.

l = 2*П*r, отсюда r = l/2*П. Вообще, чтобы узнать радиус, его нужно выражать через диаметр и наоборот.

Пусть теперь требуется определить диаметр, зная площадь окружности. Используем то, что s = П*d^2/4. Выразим отсюда d. Получится d^2 = 4*s/П . Для определения самого диаметра потребуется извлечь корень квадратный из правой части . Получится d = 2*sqrt(s/П).

Решение типовых заданий

  1. Узнаем, как найти диаметр, если дана длина окружности. Пусть она равняется 778,72 километра. Требуется найти d. d = 778,72/3,14 = 248 километров. Вспомним, что такое диаметр и сразу определим радиус, для этого определённое выше значение d разделим пополам. Получится r = 248/2 = 124 километра.
  2. Рассмотрим, как найти длину данной окружности, зная её радиус. Пусть r имеет значение 8 дм 7 см. Переведём это все в сантиметры, тогда r будет равняться 87 сантиметров. Воспользуемся формулой, как найти неизвестную длину круга. Тогда наше искомое будет равняться l = 2*3,14*87 = 546,36 см . Переведём наше полученное значение в целые числа метрических величин l = 546,36 см = 5 м 4 дм 6 см 3,6 мм.
  3. Пусть нам требуется определить площадь данной окружности по формуле через её известный диаметр. Пусть d = 815 метров. Вспомним формулу, как найти площадь окружности. Подставим сюда данные нам значения, получим s = 3,14*815^2/4 = 521416,625 кв. м.
  4. Теперь узнаем, как найти площадь круга, зная длину его радиуса. Пусть радиус равняется 38 см. Используем известную нам формулу. Подставим сюда данное нам по условию значение. Получится следующее: s = 3,14*38^2 = 4534,16 кв. см.
  5. Последним заданием определим площадь круга по известной длине окружности. Пусть l = 47 метров. s = 47^2/(4П) = 2209/12,56 = 175,87 кв. м.

Длина окружности

Инструкция

Вспомните, что впервые математически вычислил это соотношение Архимед. Он правильные 96-тиугольники внутри окружности и вокруг нее. Периметр вписанного многоугольника принял за минимально возможную длину окружности, периметр описанной фигуры – за максимальный размер. По Архимеду соотношение длины окружности и диаметра равно 3,1419. Значительно позже это число «удлинил» до восьми знаков китайский математик Цзу Чунчжи. Его вычисления 900 лет оставались наиболее точными. Только в XVIII веке было посчитано сто знаков после запятой. А с 1706 года эта бесконечная десятичная дробь благодаря Уильяму Джонсу приобрела имя. Он обозначил ее первой буквой греческих слов периметр (периферия). Сегодня компьютер легко вычисляет знаков числа Пи: 3,141592653589793238462643…

Для расчетов число Пи сократите до 3,14. Получится, что для любой окружности ее длина, деленная на диаметр равна этому числу: L:d=3,14.

Выразите из этого утверждения формулу для нахождения диаметра. Получится, чтобы найти диаметр окружности надо длину окружности поделить на число Пи. Это выглядит так: d = L:3,14. Это универсальный способ найти диаметр, когда у окружности известна ее длина.

Итак, известна длина окружности, допустим, 15,7 см, разделите эту цифру на 3,14. Диаметр будет равен 5 см. Запишите это так: d = 15,7: 3,14 = 5 см.

Найдите диаметр по длине окружности, используя специальные таблицы для вычисления длины окружности . Эти таблицы включают в разные справочники. Например, они есть в «Четырехзначные математические таблицы» В.М. Брадиса.

Полезный совет

Запомните первые восемь цифр числа Пи с помощью стихотворения:
Нужно только постараться,
И запомнить всё как есть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.

Источники:

  • Число «Пи» рассчитано с рекордной точностью
  • диаметр и длина окружности
  • Как найти длину окружности?

Круг - это плоская геометрическая фигура, все точки которой находятся на одинаковом и отличном от нуля удалении от выбранной точки, которую называют центром окружности. Прямую, соединяющую любые две точки круга и проходящую через центр, называют его диаметром . Суммарная длина всех границ двухмерной фигуры, которую обычно называют периметром, у круга чаще обозначается как «длина окружности». Зная длину окружности можно вычислить и ее диаметр.

Инструкция

Используйте для нахождения диаметра одно из основных свойств окружности, которое заключается в том, что соотношение длины ее периметра к диаметру одинаково для абсолютно всех окружностей. Конечно, постоянство не осталось не отмеченным математиками, и эта пропорция давно уже получила собственное - это число Пи (π - первая греческих слов «окружность » и «периметр»). Числовое этой определяется длиной окружности, у которой диаметр равен единице.

Делите известную длину окружности на число Пи, чтобы вычислить ее диаметр. Так как это число является « », то не имеет конечного значения - это дробь. Округляйте число Пи в соответствии с точностью результата, которую вам необходимо получить.

Видео по теме

Совет 4: Как найти отношение длины окружности к длине диаметра

Удивительное свойство окружности открыл нам древнегреческий ученый Архимед. Оно заключается в том, что отношение ее длины к длине диаметра одинаково для любой окружности . В своем труде «Об измерении круга» он вычислил его и обозначил числом «Пи». Оно иррационально, то есть его значение не может быть точно выражено. Для используется его величина, равная 3,14. Вы можете сами проверить утверждение Архимеда, сделав простые вычисления.

Вам понадобится

  • - циркуль;
  • - линейка;
  • - карандаш;
  • - нитка.

Инструкция

Начертите на бумаге циркулем окружность произвольного диаметра. Проведите с помощью линейки и карандаша через ее центр отрезок, соединяющий две , находящиеся на линии окружности . Линейкой измерьте длину получившегося отрезка. Допустим, окружности в данном случае 7 сантиметрам.

Возьмите нитку и расположите ее по длине окружности . Измерьте получившуюся длину нитки. Пусть она будет равна 22 сантиметрам. Найдите отношение длины окружности к длине ее диаметра - 22 см: 7 см = 3,1428.... Округлите полученное число (3,14). Получилось знакомое число «Пи».

Доказать это свойство окружности вы можете, используя чашку или стакан. Измерьте их диаметр линейкой. Обмотайте верх посуды ниткой, замерьте получившуюся длину. Поделив длину окружности чашки на длину ее диаметра, вы также получите число «Пи», убедившись в этом свойстве окружности , открытом Архимедом.

Используя это свойство, вы можете вычислить длину любой окружности по длине ее диаметра или по формулам:С = 2*п*R или С = D*п, где С - окружности , D - длина ее диаметра, R - длина ее радиуса.Для нахождения (плоскости, ограниченной линиями окружности ) используйте формулу S = π*R², если известен его радиус, либо формулу S = π*D²/4, если известен его диаметр.

Обратите внимание

А вы знаете, что четырнадцатого марта уже более двадцати лет отмечается День «Пи»? Это неофициальный праздник математиков, посвященный этому интересному числу, с которым в настоящее время связано множество формул, математических и физических аксиом. Придумал этот праздник американец Ларри Шоу, который обратил внимание, что в этот день (3.14 в системе записи дат в США) родился знаменитый ученый Эйнштейн.

Источники:

  • Архимед

Иногда около выпуклого многоугольника можно начертить таким образом, чтобы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику надо называть описанной. Ее центр не обязательно должен находиться внутри периметра вписанной фигуры, но пользуясь свойствами описанной окружности , найти эту точку, как правило, не очень трудно.

Вам понадобится

  • Линейка, карандаш, транспортир или угольник, циркуль.

Инструкция

Если многоугольник, около которого нужно описать окружность, начерчен на бумаге, для нахождения центр а круга достаточно линейки, карандаша и транспортира либо угольника. Измерьте длину любой из сторон фигуры, определите ее середину и поставьте в этом месте чертежа вспомогательную точку. С помощью угольника или транспортира проведите внутри многоугольника перпендикулярный этой стороне отрезок до пересечения с противоположной стороной.

Проделайте эту же операцию с любой другой стороной многоугольника. Пересечение двух построенных отрезков и будет искомой точкой. Это вытекает из основного свойства описанной окружности - ее центр в выпуклом многоугольнике с любым сторон всегда лежит в точке пересечения серединных перпендикуляров, проведенных к этим .

Для правильных многоугольников центр а вписанной окружности может быть намного проще. Например, если это квадрат, то начертите две диагонали - их пересечение и будет центр ом вписанной окружности . В многоугольнике с любым четным числом сторон достаточно соединить вспомогательными две пары лежащих друг напротив друга углов - центр описанной окружности должен совпадать с точкой их пересечения. В прямоугольном треугольнике для решения задачи просто определите середину самой длинной стороны фигуры - гипотенузы.

Если из условий неизвестно, можно ли в принципе описанную окружность для данного многоугольника, после определения предполагаемой точки центр а любым из описанных способов вы можете это выяснить. Отложите на циркуле расстояние между найденной точкой и любой из , установите в предполагаемый центр окружности и начертите круг - каждая вершина должна лежать на этой окружности . Если это не так, значит, не выполняется одно из свойств и описать окружность около данного многоугольника .

Определение диаметра может пригодиться не только для решения геометрических задач, но и помочь на практике. Например, зная диаметр горлышка банки, вы точно не ошибетесь в выборе крышки для нее. То же утверждение справедливо и для более габаритных окружностей.

Инструкция

Итак, введите обозначения величин. Пусть d – диаметр колодца, L – длина окружности, п – число Пи, значение которого приблизительно равно 3,14, R – радиус окружности. Длина окружности (L) известна. Предположим, что она равна 628 сантиметрам.

Далее для нахождения диаметра (d) воспользуйтесь формулой длины окружности: L=2пR, где R – неизвестная величина, L=628 см, а п=3,14. Теперь воспользуйтесь правилом нахождения неизвестного множителя: «Чтобы найти множитель, нужно произведение разделить на известный множитель». Получается: R=L/2п. Подставьте значения к формуле: R=628/2x3,14. Получается: R=628/6,28, R=100 см.

После того как радиус окружности найден (R=100 см), воспользуйтесь следующей формулой: диаметр окружности (d) равен двум радиусам окружности (2R). Получается: d=2R.

Теперь, чтобы найти диаметр, подставьте в формулу d=2R значения и вычислите результат. Так как радиус (R) известен, получается: d=2x100, d=200 см.

Источники:

  • как по длине окружности определить диаметр

Длина окружности и диаметр являются взаимосвязанными геометрическими величинами. Это означает, что первую из них можно перевести во вторую без каких-либо дополнительных данных. Математической константой, через которую они связаны между собой, является число π.

Инструкция

Если окружность представлена в виде изображения на бумаге, а ее диаметр требуется определить приблизительно, измерьте его непосредственно. Если ее центр показан на чертеже, проведите через него линию. Если же центр не показан, найдите его при помощи циркуля. Для этого используйте угольник с углами в 90 и . Приложите его 90-градусным углом к окружности таким образом, чтобы ее касались оба катета, и обведите. Приложив затем к получившемуся прямому углу 45-градусный угол угольника, начертите . Она пройдет через центр окружности. Затем аналогичным образом начертите в другом месте окружности второй прямой угол и его биссектрису. Они пересекутся в центре. Это позволит измерить диаметр.

Для измерения диаметра предпочтительно использовать линейку, изготовленную из как можно более тонкого листового материала, либо портновский метр. При наличии только толстой линейки измерьте диаметр окружности при помощи циркуля, а затем, не изменяя его раствора, перенесите его на миллиметровую бумагу.

Также при отсутствии в условиях задачи числовых данных и при наличии только чертежа можно измерить длину окружности при помощи курвиметра, а диаметр затем рассчитать. Чтобы воспользоваться курвиметром, вначале вращением его колесика установите стрелку точно на нулевое деление. Затем отметьте на окружности точку и прижмите курвиметр к листу таким образом, чтобы штрих над колесиком указывал на эту точку. Проведите колесиком по линии окружности, пока штрих снова не окажется над этой точкой. Прочитайте показания. Они будут в , ограниченного ломаной линией. Если вписать в окружность правильный n-угольник со стороной b, то периметр такой фигуры Р равен произведению стороны b на число сторон n: Р=b*n. Сторона b может быть определена по формуле: b=2R*Sin (π/n), где R - радиус окружности, в которую вписали n-угольник.

При увеличении числа сторон периметр вписанного многоугольника будет все больше приближаться к L. Р= b*n=2n*R*Sin (π/n)=n*D*Sin (π/n). Зависимость между длиной окружности L и ее диаметром D постоянна. Отношение L/D=n*Sin (π/n) при стремлении числа сторон вписанного многоугольника к бесконечности стремится к числу π, постоянной величине, называемой «число пи» и выраженной бесконечной десятичной дробью. Для расчетов без применения вычислительной техники принимается значение π=3,14. Длина окружности и ее диаметр связаны формулой: L= πD. Для вычисления диаметра

Измерение окружности

О том, что наша планета имеет форму шара, ученым, занимающимся исследованиями в области геологии, было известно достаточно давно. Именно поэтому первые измерения величины окружности земной поверхности касались самой длинной параллели Земли - экватора. Эту величину, полагали ученые, можно считать правильной для любого другого способа измерения. Например, считалось, что если измерить окружность планеты по самому длинному меридиану , полученная цифра будет точно такой же.

Такое мнение существовало вплоть до XVIII века. Однако ученые ведущего научного учреждения того времени - Французской академии - придерживались мнения о том, что эта гипотеза неверна, и форма, которую имеет планета, не совсем правильна. Поэтому, по их мнению, длины окружности по самому длинному меридиану и по самой длинной параллели будут различаться.

В доказательство в 1735 и 1736 годах были предприняты две научные экспедиции, которые доказали истинность этого предположения. Впоследствии была установлена и величина различия между этими двумя - она составила 21,4 километра.

Длина окружности

В настоящее время длина окружности планеты Земля неоднократно измерена уже не посредством экстраполяции длины того или иного отрезка земной поверхности на ее полную величину, как это делалось раньше, а с применением современных высокоточных технологий. Благодаря этому удалось установить точную длину окружности по самому длинному меридиану и самой длинной параллели, а также уточнить величину различия между этими параметрами.

Так, на сегодняшний день в научном сообществе в качестве официальной величины окружности планеты Земля по экватору, то есть наиболее длинной параллели, принято приводить цифру, составляющую 40075,70 километра. При этом аналогичный параметр, измеренный по самому длинному меридиану, то есть длина окружности, проходящей через земные полюсы, составляет 40008,55 километра.

Таким образом, разница между длинами окружностей составляет 67,15 километра, и экватор является самой длинной окружностью нашей планеты. Кроме того, различие означает, что один градус географического меридиана несколько короче, чем один градус географической параллели.

Таким образом, длину окружности (C ) можно вычислить, умножив константу π на диаметр (D ), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

C = πD = 2πR

где C - длина окружности, π - константа, D - диаметр окружности , R - радиус окружности.

Так как окружность является границей круга , то длину окружности можно также назвать длиной круга или периметром круга.

Задачи на длину окружности

Задача 1. Найти длину окружности, если её диаметр равен 5 см.

Так как длина окружности равна π умноженное на диаметр, то длина окружности с диаметром 5 см будет равна:

C ≈ 3,14 · 5 = 15,7 (см)

Задача 2. Найти длину окружности, радиус которой равен 3,5 м.

Сначала найдём диаметр окружности, умножив длину радиуса на 2:

D = 3,5 · 2 = 7 (м)

теперь найдём длину окружности, умножив π на диаметр:

C ≈ 3,14 · 7 = 21,98 (м)

Задача 3. Найти радиус окружности, длина которой равна 7,85 м.

Чтобы найти радиус окружности по её длине, надо длину окружности разделить на 2π

Площадь круга

Площадь круга равна произведению числа π на квадрат радиуса. Формула нахождения площади круга :

S = πr 2

где S - площадь круга, а r - радиус круга.

Так как диаметр круга равен удвоенному радиусу, то радиус равен диаметру, разделённому на 2:

Задачи на площадь круга

Задача 1. Найти площадь круга, если его радиус равен 2 см.

Так как площадь круга равна π умноженное на радиус в квадрате, то площадь круга с радиусом 2 см будет равна:

S ≈ 3,14 · 2 2 = 3,14 · 4 = 12,56 (см 2)

Задача 2. Найти площадь круга, если его диаметр равен 7 см.

Сначала найдём радиус круга, разделив его диаметр на 2:

7: 2 = 3,5 (см)

теперь вычислим площадь круга по формуле:

S = πr 2 ≈ 3,14 · 3,5 2 = 3,14 · 12,25 = 38,465 (см 2)

Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

S = π D 2 ≈ 3,14 7 2 = 3,14 49 = 153,86 = 38,465 (см 2)
4 4 4 4

Задача 3. Найти радиус круга, если его площадь равна 12,56 м 2 .

Чтобы найти радиус круга по его площади, надо площадь круга разделить π , а затем из полученного результата извлечь квадратный корень:

r = √S : π

следовательно радиус будет равен:

r ≈ √12,56: 3,14 = √4 = 2 (м)

Число π

Длину окружности предметов, окружающих нас, можно измерить с помощью сантиметровой ленты или верёвки (нитки), длину которой потом можно померить отдельно. Но в некоторых случаях померить длину окружности трудно или практически невозможно, например, внутреннюю окружность бутылки или просто длину окружности начерченной на бумаге. В таких случаях можно вычислить длину окружности, если известна длина её диаметра или радиуса.

Чтобы понять, как это можно сделать, возьмём несколько круглых предметов, у которых можно измерить и длину окружности и диаметр. Вычислим отношение длины к диаметру, в итоге получим следующий ряд чисел:

Из этого можно сделать вывод, что отношение длины окружности к её диаметру это постоянная величина для каждой отдельной окружности и для всех окружностей в целом. Это отношение и обозначается буквой π .

Используя эти знания, можно по радиусу или диаметру окружности находить её длину. Например, для вычисления длины окружности с радиусом 3 см нужно умножить радиус на 2 (так мы получим диаметр), а полученный диаметр умножить на π . В итоге, с помощью числа π мы узнали, что длина окружности с радиусом 3 см равна 18,84 см.

Часто звучит, как часть плоскости, которая ограничена окружностью. Окружность круга является плоской замкнутой кривой. Все точки, расположенные на кривой, удалены от центра круга на одинаковое расстояние. В круге его длина и периметр одинаковы. Соотношение длины любой окружности и ее диаметра постоянное и обозначается числом π = 3,1415 .

Определение периметра круга

Периметр круга радиуса r равен удвоенному произведению радиуса r на число π(~3.1415)

Формула периметра круга

Периметр круга радиуса \(r\) :

\[ \LARGE{P} = 2 \cdot \pi \cdot r \]

\[ \LARGE{P} = \pi \cdot d \]

\(P \) – периметр (длина окружности).

\(r \) – радиус.

\(d \) – диаметр.

Окружностью будем называть такую геометрическую фигуру, которая будет состоять из всех таких точек, которые находятся на одинаковом расстоянии от какой-либо заданной точки.

Центром окружности будем называть точку, которая задается в рамках определения 1.

Радиусом окружности будем называть расстояние от центра этой окружности до любой ее точки.

В декартовой системе координат \(xOy \) мы также можем ввести уравнение любой окружности. Обозначим центр окружности точкой \(X \) , которая будет иметь координаты \((x_0,y_0) \) . Пусть радиус этой окружности равняется \(τ \) . Возьмем произвольную точку \(Y \) , координаты которой обозначим через \((x,y) \) (рис. 2).

По формуле расстояния между двумя точками в заданной нами системе координат, получим:

\(|XY|=\sqrt{(x-x_0)^2+(y-y_0)^2} \)

С другой стороны, \(|XY| \) - это расстояние от любой точки окружности до выбранного нами центра. То есть, по определению 3, получим, что \(|XY|=τ \) , следовательно

\(\sqrt{(x-x_0)^2+(y-y_0)^2}=τ \)

\((x-x_0)^2+(y-y_0)^2=τ^2 \) (1)

Таким образом, мы и получаем, что уравнение (1) является уравнением окружности в декартовой системе координат.

Длина окружности (периметр круга)

Будем выводить длину произвольной окружности \(C \) с помощью её радиуса, равного \(τ \) .

Будем рассматривать две произвольные окружности. Обозначим их длины через \(C \) и \(C" \) , у которых радиусы равняются \(τ \) и \(τ" \) . Будем вписывать в эти окружности правильные \(n \) -угольники, периметры которых равняются \(ρ \) и \(ρ" \) , длины сторон которых равняются \(α \) и \(α" \) , соответственно. Как мы знаем, сторона вписанного в окружность правильного \(n \) – угольника равняется

\(α=2τsin\frac{180^0}{n} \)

Тогда, будем получать, что

\(ρ=nα=2nτ\frac{sin180^0}{n} \)

\(ρ"=nα"=2nτ"\frac{sin180^0}{n} \)

\(\frac{ρ}{ρ"}=\frac{2nτsin\frac{180^0}{n}}{2nτ"\frac{sin180^0}{n}}=\frac{2τ}{2τ"} \)

Получаем, что отношение \(\frac{ρ}{ρ"}=\frac{2τ}{2τ"} \) будет верным независимо от значения числа сторон вписанных правильных многоугольников. То есть

\(\lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{2τ}{2τ"} \)

С другой стороны, если бесконечно увеличивать число сторон вписанных правильных многоугольников (то есть \(n→∞ \) ), будем получать равенство:

\(lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{C}{C"} \)

Из последних двух равенств получим, что

\(\frac{C}{C"}=\frac{2τ}{2τ"} \)

\(\frac{C}{2τ}=\frac{C"}{2τ"} \)

Видим, что отношение длины окружности к его удвоенному радиусу всегда одно и тоже число, независимо от выбора окружности и ее параметров, то есть

\(\frac{C}{2τ}=const \)

Эту постоянную принять называть числом «пи» и обозначать \(π \) . Приближенно, это число будет равняться \(3,14 \) (точного значения этого числа нет, так как оно является иррациональным числом). Таким образом

\(\frac{C}{2τ}=π \)

Окончательно, получим, что длина окружности (периметр круга) определяется формулой

\(C=2πτ \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!