Что такое наследственность. Понятие о наследственности и ее роль в развитии личности человека

свойство организмов повторять в ряду поколений сходные признаки и свойства - типы обмена веществ, психологические особенности, типы индивидуального развитияопределенных условиях внешней среды) и т. п. Наследственность - неотъемлемое свойство живой материи. Вместе с изменчивостью наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы. Наследственность осуществляется на основе передачи наследственных факторов, ответственных за формирование признаков и свойств организма, т. е. на базе наследования. (См. Эволюция, Наследование)

Отличное определение

Неполное определение ↓

НАСЛЕДСТВЕННОСТЬ

присущая всем живым организмам необходимость происходить только в строгой преемственности от себе подобных форм. Жизнь, раз затеплившись, в буквальном смысле вечно сохраняет себя на основе Н., передаваясь бесконечному и бесчисл. потомству. Однако потомство никогда точно не повторяет своих родителей, а в силу изменчивости, идущей бок о бок с Н., получает новые признаки. Hек-рые новые признаки, полученные потомством, становятся новыми приобретениями самой H. Следовательно, благодаря Н. сохраняется и необычное разнообразие жизненных форм, возникших и возникающих на основе наследств. изменчивости. Поступат. движение в развитии органич. мира может быть понято лишь на основе представлений о преемственности, о непрерывной протяженности все развивающейся и меняющей свои формы жизни. Жизнь угасает в бесчисл. множестве отд. особей, успевших, однако, оставить потомков при своем размножении. Эти потомки также погибнут, но снова успевши произвести еще б?льшее потомство. И так извечно и всегда вперед. Известно, что в химич. составе любого живого существа нет ни одного элемента, не встречающегося в неорганич. природе. Но сочетания этих элементов в структуре живых организмов столь высокомолекулярны и сложны, что возникать заново в природе теперь они уже не способны. Во всей своей сложности они могут себя лишь повторять, копируя готовые образцы со своих предшественников. Их же предшественники – это те жизненные формы, к-рые создавались природой в течение историч. хода всей эволюции и, совершенствуясь на основе изменчивости, смогли выдержать беспощадное действие естественного отбора. Каждый новый организм – это результат Н., проявляющейся в нем как способность воссоздавать в результате развития признаки своих предков. Отсюда и возникла гл. загадка науки о Н. – как идет передача признаков предков к их потомкам, свойств и особенностей родителей к их детям? Ответ на этот вопрос заключен в осн. свойстве самой жизни. Если существ. признаком всех живых существ является постоянный обмен веществ с внешней средой, то с этой т. зр. и Н. в существе своем представляет лишь особую форму ассимиляции. Благодаря этой ассимиляции любой организм способен сохранять, восстанавливать и, главное, воспроизводить свое основное высокоорганизованное белковое строение, для данного организма специфичное и уникальное. Подобное же наследств. воспроизведение имеет место и в развитии многоклеточного организма, когда в клеточных поколениях одной-единственной яйцеклетки миллионы и миллиарды раз копируется осн. наследств. структура клетки-родоначальницы. И эта осн. структура присутствует в любых живых клетках многоклеточного организма, несмотря на то, что клетки различных его тканей могут быть столь непохожи друг на друга. Это и позволило Дарвину дать такое четкое, хотя и недостаточное, определение: "Наследственность нужно рассматривать просто как форму роста, подобную делению низкоорганизованного одноклеточного организма" (Соч., т. 4, М.–Л., 1951, с. 758). Значение развития органич. материи в ее вечно поступательном движении может быть осознано только на основе понимания всей глубины процесса ассимиляции. Это не только способность организма (клетки) постоянно восстанавливать свою высокоорганизованную белковую структуру, для него строго специфичную, но и способность размножать эту структуру, передавая ее последующим клеточным поколениям и последующим поколениям особей – потомкам. Любое живое существо (клетка) строит само себя и размножается за счет материала, поступающего в него извне, т.е. за счет поступающей в него, им перерабатываемой и, наконец, им ассимилируемой, т.е. "себе уподобляемой", пищи. При этом надо иметь в виду, что ассимиляция (+ диссимиляция) – это обмен веществ, а не условий. У классиков марксизма-ленинизма находит предельно ясное толкование развитие любого процесса и, в частности, биологич. развитие, как направляемое не условиями, в к-рых он протекает, а движимое в основном борьбой собственных, внутренних, свойственных именно этому процессу, противоречий. Энгельс говорил: "...теория развития показывает, как, начиная с простой клетки, каждый шаг вперед до наисложнейшего растения, с одной стороны, и до человека – с другой, совершается через постоянную борьбу наследственности и приспособления" ("Диалектика природы", 1955, с. 166). От самых истоков научного познания явлений Н. предпринимались попытки обосновать представление о материальных носителях Н. Раньше в этом отношении большое значение приписывалось крови, так что даже до наших дней сохранились в рус. речи такие выражения, как "кровное родство", "кровосмешение", "полукровка" и др. Дарвин, создавая свою "временную теорию пангенезиса", в крови же помещал гипотетич. частицы Н. – "геммулы", в к-рых можно видеть предвидение будущих генов – дискретных носителей Н. как целого. Однако со времени открытия клетки (Шванн, 1839) как той единицы, из размножения и дифференцирования к-рой вырастают все одноклеточные и многоклеточные организмы, наследственную преемственность стали совершенно правильно связывать с преемственностью клеток, возникающих только от себе подобных клеток. И теперь едва ли кто сомневается, что "...как растения, так и животные, включая человека, – вырастают каждый из одной клетки по закону клеточного деления..." (там же, с. 156). Последние десятилетия 19 в. принесли важнейшие свидетельства значения клетки в явлениях Н. и развития. Громадный фактич. материал говорил об особой роли ядра. Так, рус. ботаник Чистяков (1874) описал "непрямое" деление клеточного ядра у растений и основные элементы ядра – хромосомы. Вскоре (1878) киевский гистолог Перемежко у нас и Флемминг за рубежом открыли митоз (особый тип деления неполовых клеток) и хромосомы также и у животных организмов. Благодаря этим фактам было получено важнейшее доказательство единства происхождения растений и животных и сформулировано затем эволюционное обобщение о законе постоянства числа и формы хромосом для каждого вида растений и животных. Целый ряд открытий был связан с установлением ведущей роли клеточного ядра в явлениях полового размножения. Так, еще в 1875 О. Гертвиг доказал, что сущность оплодотворения состоит в слиянии ядер женской и мужской половых клеток, что было подтверждено и на растениях (Горожанкин, 1880). Ван Бенеден (1883) открыл у животных особое, т.н. редукционное, деление при образовании половых клеток (т. н. мейоз). В результате этого деления число хромосом в половых клетках всегда вдвое меньше, нем в остальных, т.н. соматич., клетках тела. При оплодотворении, т.е. при слиянии женской и мужской половых клеток, соматич. двойное число хромосом опять восстанавливается. Мейоз был установлен и у растений (Беляев и Страсбургер). Укажем еще на открытие С. Г. Навашиным (1898) двойного оплодотворения у высших покрытосеменных растений и получение в эксперименте И. И. Герасимовым первых полиплоидных форм. Перечисленные факты легли в основу т.н. ядерной теории Н., предложенной еще в 1884 О. Гертвигом и Страсбургером. Но факты и обобщения, добытые наукой о клетке, оставались в поле зрения сравнительно небольшого числа биологов. Крупнейший сдвиг в науке о Н. наступил в начале 20 в. В 1900 трое ученых из разных стран "переоткрыли" законы Менделя и нашли работу самого Г. Менделя, напечатанную еще в 1866 и оставшуюся незамеченной современниками. Мендель провел точные опыты по скрещиванию различающихся растений гороха и по анализу их гибридного потомства. Прослеживая наследование отд. пар альтернативных признаков (красный или белый цветок, желтое или зеленое семя, высокий или низкий рост и т.д.), он установил правила единообразия гибридного потомства и доминирования в нем одного из признаков: правило расщепления (3:1) в потомстве гибридов по каждой паре признаков; правило независимого наследования признаков (отношение 9:3:3:1), принадлежащих к разным альтернативным парам. Заслуга Менделя в том, что он теоретически осмыслил и объяснил все полученные им факты с т. зр. дискретности в Н., т.е. зависимости проявления каждого признака от своей собств. пары наследств. факторов (в будущем названных генами), получаемых по одному со стороны материнского и отцовского родительских организмов. Представление о дискретном строении вещества наследственности было оформлено в теорию гена. Развитие учения о гене шло теми же путями и претерпевало те же превращения, как и учение об атоме. В начале 20 в. ген был постулирован как гипотетич. единица, изменяемая и познаваемая только в результате мутационного процесса. В дальнейшем гены все более ощутимо материализовались, а в 30-х гг. их места уже довольно точно определялись в гигантских хромосомах двукрылых насекомых. В наст. время, гл. обр. благодаря развитию генетики микроорганизмов, понятие о гене превратилось в реальность. Ген теперь представляется как сложная функциональная единица (цистрон), состоящая из отд. участков, способных давать мутационные изменения (мутоны) и участвовать в рекомбинациях генетич. материала (реконы). Еще в 10-х гг. 20 в. было составлено представление о генах как о единицах, независимо определяющих "мозаичное" развитие и строение организмов. На самом же деле гены, расположенные как отдельности по длине хромосом, действуют в целостном комплексе всех структурных элементов Н. Уже в 1902 поведение наследств. факторов в скрещиваниях было сопоставлено (Сеттон и, независимо, Бовери) с поведением особых и непременных элементов клеточного ядра – хромосом, чем было сделано первое обобщение, положившее основу т.н. хромосомной теории Н. Материальная основа простых менделевских расщеплений находится в материнских и отцовских хромосомах, к-рые сначала объединяются в гибридах, а затем, согласно правилам простой вероятности, распределяются и сочетаются в потомстве этих гибридов. Противоречивое развитие генетики повело к ограничению применимости правил Менделя, до этого подтвержденных на множестве растит. и животных (вплоть до самого человека) видов. Кроме параллелизма в поведении наследств. факторов и хромосом, объясняющего материальную основу менделевских закономерностей, замечателен такой же параллелизм поведения хромосом (в частности, т.н. половых) при наследовании пола и сцепленных с ним признаков. Зримо на тех же гигантских хромосомах полностью подтвердились представления о внутри и межхромосомных перестройках (нехватки, инверсии и транслокации), ранее постулированные генетиками лишь на основе особенностей наследования различных признаков. Поучительно поведение хромосом при конъюгации бактерий, передающих тем большее количество признаков, чем дольше идет конъюгация и чем длиннее участок хромосомы, переданный от одной особи к другой. Примеры подобного параллелизма можно множить бесконечно. Созданная совместным трудом генетиков и цитологов хромосомная теория Н. оказалась плодотворнейшим обобщением. Она по праву дала совр. учению о Н. имя "цитогенетики". Это крупнейшее теоретическое достижение занимает в биологии такое же место, как молекулярная теория в химии и теория атомных структур в физике. В продолжении работ по уточнению "местонахождения вещества наследственности" в последние годы принимают участие уже не только биологи, но и физики, и химики. Их объединенная работа, идущая уже на уровне совр. молекулярной биологии, подошла с начала 60-х гг. 20 в. к величайшим открытиям в биологии. Теперь предметом самого пристального внимания оказались не только белковые компоненты хромосом, но и непременные их спутники – нуклеиновые (ядерные) кислоты. Это сложные высокополимерные соединения, в состав к-рых входят азотистые (два пуриновых и два пиримидиновых) основания, сахар и остаток молекулы фосфорной кислоты. Несмотря на то, что нуклеиновые кислоты гораздо проще по своей структуре, чем белки, они, как и белки, представляют собой беспредельно варьирующие полимеры. Одна из них, а именно дезоксирибонуклеиновая кислота (ДНК), образующая вместе с белками самый состав хромосом, теперь заслуженно признается осн. структурой, ответственной за явления Н. и ассимиляции. ДНК программирует синтез специфических белков в клетке. Кроме того, весь код наследств. информации сосредоточен в ДНК, вместе с ней размножается и вместе с ней передается в хромосомах следующим поколениям клеток, а через половые клетки к следующим поколениям организмов – особей. Итак, Н. и биосинтез специфических для каждого организма белков, т.е. важнейшие проявления жизни, идут в клетке при непременном участии нуклеиновых кислот в этих синтетических, ассимиляционных процессах. Однако само явление размножения (репродукции) хромосом осуществляется, в частности, в цитоплазматическом синтезе предшественников ДНК. Их же укладывание в единую длинную полимерную цепь – генетич. основу строения хромосомы – не может происходить без действия специальных белковых ферментов (полимераза). Исследования последних лет показали, что нуклеиновые кислоты оказались действительно молекулярной основой организации всех форм жизни, и клеточных и неклеточных – от человека, животных, растений, любых микроорганизмов и до вирусов. Попарнорасположенные основания образуют двойную спиральную нить ДНК. В каждой из нитей четыре основания располагаются линейно и их последовательные тройки создают неисчерпаемые возможности комбинаций, составляя т.н. триплетный код. Оказалось, что эта линейность представляется единственным расположением, при к-ром возможно дальнейшее размножение нитей ДНК, их ауторедупликация. Полностью подтвердилось то, что было постулировано генетиками еще пятьдесят лет назад (а предсказано значительно раньше) и формулировалось как "линейное расположение генов в хромосоме". Установленное на множестве растительных и животных видов, относящихся к клеточным формам, это явление линейного расположения оказалось универсальным для всех, и в т.ч. для неклеточных, форм жизни. Добавим только, что все события, связанные с передачей Н., совершаются в клетке и ядерные элементы – хромосомы непосредственно соприкасаются и взаимодействуют с цитоплазмой. Известны и случаи т.н. "цитоплазматической" и "пластидной" Н., хотя число подобных примеров несопоставимо мало по сравнению с Н. "хромосомной". Блестящее развитие молекулярной генетики наших дней является подтверждением и прямым продолжением генерального направления ей предшествовавшей науки о Н., в основу к-рой была положена хромосомная теория Н. Полностью оказались подтвержденными представления Н. К. Кольцова (1928) о том, что хромосомы не делятся, а ассимилируют возле себя свое подобие, после чего новая и старая хромосомы расходятся. Верным оказалось и его учение о генных мутациях как об ошибках в ассимиляции "наследственной молекулы". Оправдались и слова Э. Вильсона, сказанные еще в 1896: "наследственность это передача последовательным поколениям сходных форм обмена веществ". Лит.: Морган Т. Г., Структурные основы Н., пер. [с англ. ], М.–П., ; Кольцов Н. К., Организация клетки, М.–Л., 1936; Вильсон Э., Клетка и ее роль в развитии и Н., пер. с англ., т. 1–2, М.–Л., 1936–40; Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Робертис Е. де, Новинский В., Саэс Ф., Общая цитология, пер. с англ., М., 1962; Дубинин Н. П., Молекулярная генетика и действие излучений на Н., М., 1963; Эфроимсон В. П., Введение в медицинскую генетику, М., 1964; Жакоб Ф. и Вольман Э., Пол и генетика бактерий, пер. с англ., М., 1962; Лобашев M. E., Генетика, Л., 1963; Сэджер Р. и Райн Ф., Цитологич. и химич. основы Н., пер. с англ., М.. 1964. В. Сахаров. Москва.

англ. heredity) -свойство живых систем воспроизводить свою организацию или, иначе говоря, воссоздавать себе подобных в ряду поколений. Современный этап изучения Н. характеризуется раскрытием молекулярной структуры генетического материала и выявлением важных особенностей его функциональной организации. Установлено, что хранение, воспроизведение и передача наследственной информации обеспечиваются посредством дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот.

Совокупность генов - генотип - образует целостную, исключительно слаженно и эффективно работающую систему, постоянно совершенствующуюся в процессе эволюции. Под большим или меньшим контролем генотипа находятся все признаки организма - анатомо-морфологические, биохимические, физиологические, вплоть до параметров высшей нервной деятельности у животных и человека (см. Генетика поведения, Психогенетика). Однако становление признаков и их индивидуальное выражение зависят в пределах возможностей, заданных генотипом, от конкретных условий, которые складываются для каждой особи в процессе индивидуального развития.

НАСЛЕДСТВЕННОСТЬ

преемственная связь живых элементов, обеспечивающая повторяемость в ряду поколений сходных типов обмена веществ и индивидуального развития. Человеческая наследственность определяет анатомо-физиологическую структуру человеческого организма, присущие ему формы обмена веществ, стадии его созревания, физические признаки, пол, цвет кожи, некоторые индивидуально-психические особенности и др. Наследственность обеспечивается самовоспроизведением материальных единиц наследственности - генов, локализованных в специфических структурах ядра клетки - хромосомах.

Наследственность

Биологическая передача генетических характеристик потомству от родителей. Термин часто используется по контрасту с влиянием внешней среды, хотя наибольший интерес психологов вызывает механизм взаимодействия между наследственностью и окружающей средой.

Наследственность

Специфика. Хранение, воспроизведение и передача наследственной информации происходит посредством дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот, индивидуальная совокупность которых образовывает генотип. Под его контролем находятся морфологические, биохимические, физиологические признаки организма. Но проявление этих признаков в индивиде зависит от конкретных условий индивидуального развития.

НАСЛЕДСТВЕННОСТЬ

Наиболее широкое значение: биологическая передача генетических характеристик от родителя к потомству. Изучение наследственности основывается на нескольких фундаментальных положениях: (а) биологических принципах генетики и генетической передачи; (б) воздействие среды, условия, при которых организм развивается и живет; (в) сложный способ, которым эти два класса факторов взаимодействуют друг с другом. Таким образом, фактический набор проявляющихся физических, поведенческих черт (фенотип) представляет собой сложный результат кумулятивных взаимодействий генетического материала, данного при оплодотворении (генотип), различных факторов среды, влияющих на развивающийся организм.

Наследственный – наиболее распространенная форма прилагательного, хотя многие авторы употребляют другие термины, более или менее взаимозаменяемые. Например, генетический, биологический, врожденный, унаследованный и природный. Когда эти термины употребляются для определения характеристики или черты, в них подразумевается, что характеристика или черта является, в некоторой мере, следствием генетических факторов. Однако все эти условия должны использоваться осторожно, так как ни в одном из них не содержится лексический компонент, который бы обозначал относительный вклад наследственного компонента в рассматриваемую характеристику. Описывать цвет глаз как "наследственный" значит иметь в виду одно, а описывать интеллект как "наследственный" значит совершенно другое. Дополнительно об этой проблеме см. статью дискуссия о наследственности-среде. Следует различать все формы прилагательных от конгенитальный, который означает просто представленный при рождении.

наследственность

преемственная связь живых организмов, обеспечивающая повторяемость в ряду поколений сходных типов обмена веществ и индивидуального развития. Человеческая н. определяет анатомо-физиологическую структуру человеческого организма, присущие ему формы обмена веществ, стадии его созревания, физические признаки, пол, цвет кожи, некоторые индивидуально-психические особенности и др. Н. обеспечивается самовоспроизведением материальных единиц н. – генов, локализованных в специфических структурах ядра клетки – хромосомах.

В каждом человеке заложено стремление продолжить свой род и произвести здоровое потомство. Определенное сходство между родителями и детьми обусловлено наследственностью. Помимо очевидных внешних признаков принадлежности к одной семье, генетически передается и программа индивидуального развития в разных условиях.

Наследственность – что это такое?

Рассматриваемый термин определяется, как способность живого организма сохранять и обеспечивать преемственность своих отличительных признаков и характера развития в последующих поколениях. Понять, что такое наследственность человека, легко на примере любой семьи. Черты лица, телосложение, внешность в целом и характер детей всегда будто позаимствованы у одного из родителей, бабушки или дедушки.

Генетика человека

Что такое наследственность, особенности и закономерности этой способности изучает специальная наука. Человеческая генетика является одним из ее разделов. Условно она классифицируется на 2 типа. Основные виды генетики:

  1. Антропологическая – изучает изменчивость и наследственность нормальных признаков организма. Данный раздел науки связан с эволюционной теорией.
  2. Медицинская – исследует особенности проявления и развития патологических признаков, зависимость возникновения заболеваний от условий окружающей среды и генетической предрасположенности.

Виды наследственности и их характеристика

Информация о специфических признаках организма содержится в генах. Биологическая наследственность дифференцируется по их типу. Гены присутствуют в органоидах клетки, расположенных в цитоплазматическом пространстве – плазмидах, митохондриях, кинетосомах и других структурах, и в хромосомах ядра. На основании этого выделяют следующие виды наследственности:

  • внеядерная или цитоплазматическая;
  • ядерная или хромосомная.

Цитоплазматическая наследственность

Характерной чертой описываемого типа воспроизведения специфических признаков является их передача по материнской линии. Хромосомная наследственность обусловлена преимущественно информацией из генов сперматозоидов, а внеядерная – яйцеклетки. В ней содержится больше цитоплазмы и органелл, отвечающих за передачу индивидуальных особенностей. Эта форма предрасположенности провоцирует развитие хронических врожденных болезней – , сахарного диабета, синдрома туннельного зрения и других.


Указанный вид передачи генетической информации является определяющим. Часто только его имеют в виду, объясняя, что такое человеческая наследственность. В хромосомах клетки содержится максимальное количество данных о свойствах организма и его специфических признаках. Также в них заложена программа развития в определенных внешних условиях среды. Ядерная наследственность – это передача генов, заложенных в молекулах ДНК, которые входят в состав хромосом. Она обеспечивает постоянную преемственность информации из поколения в поколение.

Признаки наследственности человека

Если у одного из партнеров темно-карие глаза, высока вероятность аналогичного оттенка радужки у ребенка независимо от ее цвета у второго родителя. Это объясняется тем, что признаки наследственности существуют 2-х типов – доминантные и рецессивные. В первом случае индивидуальные характеристики являются преобладающими. Они подавляют рецессивные гены. Второй вид признаков наследственности может проявиться только в гомозиготном состоянии. Такой вариант возникает, если в ядре клетки комплектуется пара хромосом с идентичными генами.

Иногда у ребенка наблюдается сразу несколько рецессивных признаков, даже если у обоих родителей они доминантные. Например, у смуглого отца и матери с темными волосами рождается светлокожий малыш с белокурыми локонами. Такие случаи наглядно демонстрируют, что такое наследственность – не просто преемственность генетической информации (от родителей детям), а сохранение всех признаков определенного рода в пределах семьи, включая предшествующие поколения. Цвет глаз, волос и другие особенности могут передаваться даже от прабабушек и прадедушек.

Влияние наследственности

Генетика пока продолжает изучать зависимость характеристик организма от его врожденных свойств. Роль наследственности в развитии и состоянии здоровья человека не всегда определяющая. Ученые выделяют 2 типа генетических признаков:

  1. Жестко детерминированные – формируются еще до рождения, включают особенности внешнего вида, группу крови, и другие качества.
  2. Относительно детерминированные – сильно подвержены влиянию внешней среды, склонны к изменчивости.

Если речь идет о физических показателях, генетика и здоровье имеют выраженную взаимосвязь. Наличие мутаций в хромосомах и серьезных хронических заболеваний у ближайших родственников обуславливают общее состояние человеческого организма. Внешние признаки полностью зависят от наследственности. Касательно интеллектуального развития и особенностей характера влияние генов считается относительным. На такие качества сильнее действует внешняя окружающая среда, чем врожденная предрасположенность. В данном случае она играет незначительную роль.

Наследственность и здоровье

Каждая будущая мать знает о влиянии генетических особенностей на физическое развитие ребенка. Сразу после оплодотворения яйцеклетки начинает формироваться новый организм, и наследственность играет определяющую роль в возникновении у него специфических признаков. Генофонд отвечает не только за наличие серьезных врожденных болезней, но и менее опасных проблем – предрасположенности к кариесу, выпадению волос, подверженности вирусным патологиям и других. По этой причине на осмотре у любого врача специалист сначала собирает подробный семейный анамнез.

Можно ли влиять на наследственность?

Для ответа на поставленный вопрос можно сравнить физические показатели нескольких предыдущих и последних поколений. Современная молодежь значительно выше ростом, имеет более крепкое телосложение, хорошие зубы и высокую предполагаемую продолжительность жизни. Даже такой упрощенный анализ показывает, что можно влиять на наследственность. Изменить генетические особенности в плане интеллектуального развития, черт характера и темперамента еще легче. Это достигается благодаря улучшению окружающих условий, корректному воспитанию и правильной атмосфере в семье.

Прогрессивные ученые уже давно проводят опыты, позволяющие оценить влияние медицинских вмешательств на генофонд. В этой сфере достигнуты впечатляющие результаты, подтверждающие, что можно еще на этапе исключить возникновение генных мутаций, предотвратить развитие серьезных заболеваний и умственных нарушений у плода. Пока исследования проводятся исключительно на животных. Для начала опытов с участием людей есть несколько морально-этических препятствий:

  1. Понимая, что такое наследственность, военные организации могут использовать разработанную технологию для воспроизводства профессиональных солдат с усовершенствованными физическими способностями и высокими показателями здоровья.
  2. Не каждая семья сможет себе позволить выполнить процедуру по самой полноценной яйцеклетки максимально качественным сперматозоидом. В результате красивые, талантливые и здоровые дети будут рождаться только у состоятельных людей.
  3. Вмешательство в процессы естественного отбора практически равноценны евгенике. Большинство специалистов в области генетики считают ее преступлением против человечества.

Человек получает половину генетического кода от каждого из родителей, то есть две составные каждого гена. Каждый ген представлен в аналогичной хромосоме и размещен в определенном месте, называемом локусом. Тем не менее следует подчеркнуть, что существуют гены, отвечающие за одну и ту же наследственную информацию, но имеющие различные формы - они называются аллелями . Например, ген, определяющий цвет глаз, имеет несколько аллелей, определяющих цвет радужной оболочки: голубой или коричневый.


Иногда информация, заключенная в аллель одного гена, перекрывается аллелью другого гена - такой ген называется доминантным , а перекрывающийся - рецессивным .

Но не все гены обязательно должны проявляться: присутствие доминантных генов всего в одной хромосоме в гомологичной паре достаточно для того, чтобы они проявили свои свойства; рецессивные гены проявляют свои свойства только тогда, когда гены с аналогичными свойствами присутствуют у обеих хромосом в гомологичной паре. Например, аллель, отвечающая за коричневый цвет радужной оболочки глаз, присутствует в доминантном гене, и его свойства проявятся, если он находится хотя бы в одной хромосоме, а ген с аллелью, несущей информацию о голубом цвете радужной оболочки, является рецессивным и проявится, только если в обоих генах гомологичных хромосом представлена такая аллель.

Гены содержат информацию, необходимую для синтеза белков, а те, в свою очередь, строятся благодаря особой комбинации аминокислот. Все изменчивые компоненты, а их тысячи, формируются на основе двадцати аминокислот, информация о кодах которых содержится в генах. Хотя на первый взгляд это кажется сложным, в действительности механизм создания генетического кода прост: он основывается на последовательности азотистых оснований, составляющих фрагменты ДНК и относящихся к различным генам.

Четыре типа азотистых оснований образуют подобие алфавита, буквы которого читаются по три: каждый триплет или кодон содержит закодированную аминокислоту, а последовательность триплетов является набором полипептидной цепи. Такой генетический код идентичен и универсален для всех живых существ.

Гены - функциональные единицы хромосом, отвечают за передачу потомству всей необходимой для развития новых организмов информации, отвечающей за наследственность, передающейся от поколения к поколению и обеспечивающей непрерывность существования видов и в то же время отвечающей за то, что каждый индивид имеет свойственные только ему исключительные, уникальные особенности.

Все клетки человеческого организма насчитывают, за исключением гамет - яйцеклетки и сперматозоида, которые состоят из 23 хромосом. Мы говорим о 23 парах гомологичных хромосом, которые также называют подобными или эквивалентными. 22 пары гомологичных хромосом называют аутосомами, они одинаковые у мужских и женских организмов. Хромосомы же, образующие последнюю пару, которая называется половыми
хромосомами, отличаются: в женских организмах эта пара состоит из двух одинаковых Х-хромосом, а в мужских - из X- и Y-хромосом. Передача анатомических и физиологических характеристик от родителей к детям, а также передача по наследству патологий, как и обычных черт, происходит по четким законам расположения генов и в зависимости от того, являются ли они доминантными или рецессивными.


АУТОСОМНАЯ ДОМИНАНТНАЯ НАСЛЕДСТВЕННОСТЬ

АУТОСОМНАЯ РЕЦЕССИВНАЯ НАСЛЕДСТВЕННОСТЬ

Признаки проявляются Признаки у детей не проявляются

При доминантной аутосомной наследственности проявление определенной черты или заболевания зависит от присутствия доминантного гена в хромосоме или аутосоме. Чтобы такой ген проявился, достаточно, чтобы он был хотя бы у кого-то из родителей, поскольку рецессивный ген перекрывается доминантным. И наоборот, при аутосомной рецессивной наследственности проявление определенной черты или заболевания зависит от присутствия рецессивного гена в обеих хромосомах, составляющих пару: чтобы проявиться, он должен присутствовать как в материнских, так и в отцовских генах.




Признаки не проявляются Признаки проявляются Признаки не проявляются Признаки проявляются

При наследственности, связанной с Y-хромосомой, признак или болезнь проявляется исключительно у мужчины, поскольку эта половая хромосома отсутствует в хромосомном наборе женщины.


ДОМИНАНТНАЯ НАСЛЕДСТВЕННОСТЬ, СВЯЗАННАЯ С Х-ХРОМОСОМОЙ


Признаки проявляются Признаки не проявляются


Геномом называют совокупность всех генов организма. Благодаря титаническим усилиям ученых стало возможно расшифровать геном человека после анализа 3,5 млн пар азотистых оснований, содержащихся в 46 хромосомах. Обработка позволила идентифицировать около 35 000 генов, ответственных за кодировку белков, что составляет ограниченную часть хромосомной ДНК; остальные гены отвечают за недостаточно изученные механизмы, такие как синтез некоторых азотистых оснований. Например, в клетке задействованы определенные гены, в то время как другие бездействуют; это наблюдается в самых различных клетках организма, и хотя клетки содержат одинаковый генетический набор, они выполняют различные функции и отличаются по строению. Несомненно, уже многое известно о геноме человека, но за что отвечают остальные гены, часто называемые некодирующей ДНК, до сих пор остается загадкой.

6 314

— это свойство всех живых организмов повторять из поколения в поколение свои признаки — внешнюю схожесть, тип обмена веществ, особенности развития и другие, характерные для каждого биологического вида. обеспечивается передачей генетической информации, носителями которой являются гены.
Основные качества наследственности — консервативность и устойчивость, с одной стороны, и способность претерпевать изменения, передающиеся по наследству – с другой. Первое свойство обеспечивает постоянство видовых признаков; второе свойство даёт возможность биологическим видам, изменяясь, приспосабливаться к условиям среды, эволюционировать.

Безусловно, мы отличаемся от своих родителей, но именно наследственность определяет границы этой изменчивости организма, т. е. набор тех возможных индивидуальных вариантов, которые допускает данный генотип. же закрепляет изменения генетического материала, что создаёт предпосылки для эволюции организмов.
Организм всегда развивается при взаимодействии наследственных генетических факторов и условий существования.

Определяет конституцию человека, т.е. особенности строения и функционирования, которые обеспечивают характер реакции организма на внешние и внутренние раздражители. Конституция не меняется на протяжении всей жизни, это генетический потенциал человека, который реализуется под влиянием среды.

Конституция отражает особенности не только тип телосложения, но и особенности метаболизма, психической деятельности, функционирования нервной, иммунной и гормональной систем, адаптационных, компенсаторных возможностей и патологических реакций человека.
Генетическая составляющая лежит также в основе наших психологических особенностей, потребностей, личных предпочтений и жизненных установок, интересов, желаний, эмоций, воли, поведения, способности любить и ненавидеть, сексуального потенциала, проблем с алкоголизмом, курением и.т.д.

Поэтому в зависимости от унаследованной конституции каждый человек предрасположен к определённым заболеваниям. Если внутренние факторы наследственно изменены, то возникает патологический процесс.
Таким образом, болезнь развивается под влиянием внешних и внутренних факторов.
Наследственные факторы могут стать непосредственной причиной болезни или участвовать в механизме развития заболевания. Даже процесс протекания болезни во многом определяются генетической конституцией. Генетика во многом определяет смертность, особенно в относительно молодом возрасте (от 20 до 60 лет).

Все болезни в зависимости от значимости наследственных и внешних факторов можно подразделить на 3 группы: наследственные болезни, болезни с наследственной предрасположенностью, ненаследственные болезни.
Не будем останавливаться на чисто наследственных болезнях, в основе которых лежат мутации и не зависят от внешних факторов. Это такие болезни как болезнь Дауна, гемофилия, фенилкетонурия, муковисцидоз , и т.д. Причем болезнь может проявиться в любом возрасте в соответствии с временными закономерностями данной мутации.

Болезни с наследственной предрасположенностью – это такие, которые развиваются при определённой генетической конституции под влиянием факторов внешней среды. Например, диабет возникает у лиц с предрасположенностью к нему при условии избыточного употребления сахара. Для каждого из этого рода заболеваний существует проявляющий болезнь внешний фактор. К таким болезням относятся подагра, атеросклероз, гипертоническая болезнь, экзема, псориаз, язвенная болезнь и др. Они возникают именно под влиянием внешних факторов у лиц с наследственной предрасположенностью.
Существуют так называемые генетические маркеры болезней. Например, у лиц с группой крови 0(1) системы АВ0 чаще встречается язвенная болезнь двенадцатиперстной кишки, т.к. эти системы обуславливают снижение защитных свойств слизистой оболочки.

Есть также болезни, которые не имеют связи с наследственностью. Здесь главную роль играет среда. Это травмы, инфекционные болезни и т.д.

и протекание болезни.
Протекание и исход любой болезни во многом определяться генетической конституцией организма.
Состояние иммунной, эндокринной и других систем организма генетически закреплены, и неблагоприятный наследственный фон может быть провоцирующим или отягощающим моментом в развитии любой патологии.
Одна и та же болезнь у разных людей протекает по-разному, т.к. каждый организм генетически уникален.
Считают, что 45-50% всех зачатий не заканчивается беременностью из-за наследственных нарушений. Это также относится к невынашиванию беременности и выкидышам.
Многие болезни с наследственной предрасположенностью являются неблагоприятным фоном, утяжеляющим течение ненаследственных болезней.
Генные мутации могут выражаться не только во внешних проявлениях, но и в снижении сопротивляемости организма сопутствующим заболеваниям, обусловливая хронизацию последних.
Наследственная конституция может существенно изменять эффективность проводимых лечебных мероприятий. Это могут быть наследственно обусловленные патологические реакции на лекарственные препараты, разная скорость их выведения и изменение метаболизма.
Даже при ненаследственных болезнях генетические факторы оказывают огромное влияние. Например, при сниженной способности организма выдерживать агрессивное и повреждающее влияние окружающей среды. У таких лиц выздоровление затягивается, и болезнь часто переходит в хроническую. Влияние наследственности в процессе хронизации ненаследственных болезней осуществляется через нарушения биохимических реакций, гормонального статуса, снижение иммунного ответа и т.д.
Почти все пациенты часто не понимают, откуда взялась их болезнь, если они до этого никогда не болели или ещё: почему их дети часто простуживаются.
Всё дело в том, что никто из нас не рождается идеальным, существует индивидуальная генетическая конституция. А свою болезнь люди списывают на что угодно, но никогда не обращают внимание на наследственность .

Наши родители, помимо внешней схожести передают нам определенные дефекты в организме. Только вот реализуются эти дефекты в разном возрасте. Например, это может быть несовершенный, т.е. не совсем правильно сформированный орган, который изначально плохо справляется со своей работой. Врачи это хорошо знают и при опросе пациента спрашивают, на кого из родителей он больше похож и чем родители болели.
Дело в том, что у каждого человека есть свои «слабые звенья» в организме, которые передали нам предки в наследство и сформировались под влиянием различных жизненных трудностей.

Наши болезни – реализация наследственности.
Большинство наших болезней не связано со стрессами и условиями жизни.
Они лишь являются реализацией со временем наследственных предрасположенностей. А внешние влияния (неправильный образ жизни, влияние экологии и социальных условий) — это только провоцирующие факторы в снижении уровня здоровья.

Представьте себе тыкву и помидор, т.е. и в том и в другом случае — овощи, но разной структуры. Положим их рядом при одинаковых температурных условиях, условиях влажности, атмосферного давления, освещенности. Что же случится с ними через месяц? Помидор завянет, сгниёт и сморщится, а защищённая плотной кожурой тыква, то есть с хорошей «наследственностью» останется без изменений. В этом и заключается значение наследственности.

Что же делать с тем, что все мы генетически несовершенны? Во-первых, зная свои «слабые звенья» максимально щадить их. Во-вторых, необходимо компенсировать слабые органы путем повышения общего уровня здоровья.