В наземно воздушной среде. Условия наземной жизни

На планете Земля можно выделить несколько основных сред жизни:

водную

наземно-воздушную

почвенную

живой организм.

Водная среда жизни.

У организмов, обитающих в воде, имеются приспособления определяемые физическими свойствами воды (плотностью, теплопроводностью, способностью рас-творять соли).

За счет выталкивающей силы воды многие мелкие обитатели водной среды находятся во взвешенном состоянии и не способны противостоять течениям. Совокупность таких мелких водных обитателей по-лучила название планктон. В состав планктона входят микроскопиче-ские водоросли, мелкие рачки, икра и личинки рыб, медузы и многие другие виды.

Планктон

Планктонные организмы переносятся течениями не в силах противостоять им. Наличие в воде планктона делает возмож-ным фильтрационный тип питания, т. е. отцеживание, при помощи разных приспособлений, взвешенных в воде мелких организмов и пищевых частиц. Оно развито и у плавающих, и у сидячих донных жи-тных, таких, как морские лилии, мидии, устрицы и другие. Сидячий Раз жизни был бы невозможен у водных обитателей, если бы не было планктона, а он, в свою очередь, возможен только в среде с достаточной плотностью.

Плотность воды затрудняет активное передвижение в ней, поэтому быстро плавающие животные, такие, как рыбы, дельфины, кальмары, должны иметь сильную мускулатуру и обтекаемую форму тела.

Акула-мако

В связи с высокой плотностью воды давление с глубиной сильно растет. Глубоководные обитатели способны переносить давление, которое в ты-сячи раз выше, чем на поверхности суши.

Свет проникает в воду лишь на небольшую глубину, поэтому расти-тельные организмы могут существовать только в верхних горизонтах водной толщи. Даже в самых чистых морях фотосинтез возможен лишь до глубин в 100—200 м. На больших глубинах растений нет, а глубоко-водные животные обитают в полном мраке.

Температурный режим в водоемах более мягок, чем на суше. Из-за высокой теплоемкости воды колебания температуры в ней сглажены, и водные обитатели не сталкиваются с необходимостью приспосаб-ливаться к сильным морозам или сорокаградусной жаре. Только в горя-чих источниках температура воды может приближаться к точке кипе-ния.

Одна из сложностей жизни водных обитателей — ограниченное ко-личество кислорода. Его растворимость не очень велика и к тому же сильно уменьшается при загрязнении или нагревании воды. Поэтому в водоемах иногда бывают заморы — массовая гибель обитателей из-за не-хватки кислорода, которая наступает по разным причинам.

Замор рыбы

Солевой состав среды также очень важен для водных организмов. Морские виды не могут жить в пресных водах, а пресноводные — в мо-рях из-за нарушения работы клеток.

Наземно-воздушная среда жизни.

Эта среда отличается другим набором особенностей. Она в целом более сложна и разнообразна, чем водная. В ней много кислорода, много света, более резкие изменения тем-пературы во времени и в пространстве, значительно слабее перепады дав-ления и часто возникает дефицит влаги. Хотя многие виды могут летать, а мелкие насекомые, пауки, микроорганизмы, семена и споры растений переносятся воздушными течениями, питание и размножение организмов происходит на поверхности земли или растений. В такой малоплотной среде, как воздух, организмам необходима опора. Поэтому у наземных растений развиты механические ткани, а у наземных живот-ных сильнее, чем у водных, выражен внутренний или наружный скелет. Низкая плотность воздуха облегчает передвижение в нем. Активный и пассивный полет освоили около двух третей обитателей суши. Большинство из них — насекомые и птицы.

Черный коршун

Бабочка Калиго

Воздух — плохой проводник тепла. Этим облегчается возможность сохранения тепла, вырабатываемого внутри организмов, и поддержании постоянной температуры у теплокровных животных. Само развитие теплокровности стало возможным в наземной среде. Предки современны водных млекопитающих — китов, дельфинов моржей, тюленей — когда-то жили на суше.

У наземных обитателей очень разнообразны приспособления, связанные с обеспечением себя водой, особенно в засушливых условиях. У рас-тений это мощная корневая система, во-донепроницаемый слой на поверхности листьев и стеблей, способность к регуляции испарения во-ды через устьица. У животных это также различ-ные особенности строения тела и покровов, но, кроме того, поддержанию водного баланса способствует и соответст-вующее поведение. Они могут, например, совершать миграции к водопо-ям или активно избегать особо иссушающих условий. Некоторые животные могут жить всю жизнь вообще на сухом корме, как, напри-мер, тушканчики или всем известная платяная моль. В этом случае вода, необходимая организму, возникает за счет окисления составных частей пищи.

Корень верблюжьей колючки

В жизни наземных организмов большую роль играют и многие дру-гие экологические факторы, например состав воздуха, ветры, рельеф земной поверхности. Особо важны погода и климат. Обитатели наземно-воздушной среды должны быть приспособлены к климату той части Зем-ли, где они живут, и переносить изменчивость погодных условий.

Почва как среда жизни.

Почва представляет собой тонкий слой поверхности суши, переработанный деятельностью живых существ. Твердые частицы пронизаны в почве порами и полостями, заполненны-ми частично водой, а частично воздухом, поэтому почву способны насе-лять и мелкие водные организмы. Объем мелких полостей в почве — очень важная ее характеристика. В рыхлых почвах он может составлять до 70% , а в плотной — около 20%. В этих порах и полостях или на поверхности твердых частиц обитает огромное множество микроско-пических существ: бактерий, грибов, простейших, круглых червей, чле-нистоногих. Более крупные животные прокладывают в почве ходы сами.

Обитатели почвы

Вся почва пронизана корнями растений. Глубина почвы определяется глубиной проникновения корней и деятельностью роющих животных. Она составляет не более 1,5—2 м.

Воздух в почвенных полостях всегда насыщен водяными парами, состав его обогащен углекислым газом и обеднен кислородом. Этим условия жизни в почве напоминают водную среду. С другой стороны, соотношение воды и воздуха в почвах постоянно меняется в зависимости от погодных условий. Температурные колебания очень резки у поверх-ности, но быстро сглаживаются с глубиной.

Главная особенность почвенной среды — постоянное поступление ор-ганического вещества в основном за счет отмирающих корней растений и опадающей листвы. Это ценный источник энергии для бакте-рий, грибов и многих животных, поэтому почва — самая насыщенная жизнью среда. Ее скрытый от глаз мир очень богат и разнообразен.

Живые организмы как среда жизни.

Широкий лентец

Наземно-воздушная среда обитания является значительно более сложной по своим экологическим условиям, чем водная среда. Для жизни на суше, как растениям, так и животным, потребовалось выработать целый комплекс принципиально новых адаптационных приспособлений.

Плотность воздуха в 800 раз меньше чем плотность воды, поэтому жизнь во взвешенном состоянии в воздухе практически невозможна. Только бактерии, споры грибов и пыльца растений регулярно присутствуют в воздухе, и способны переносится на значительные расстояния воздушными течениями, однако у всех главная функция жизненного цикла – размножение осуществляется на поверхности земли, где имеются питательные вещества. Обитатели суши вынуждены обладать развитой опорной системой,

поддерживающей тело. У растений это разнообразные механические ткани, животные обладают сложным костным скелетом. Малая плотность воздуха определяет низкую сопротивляемость передвижению. Поэтому многие наземные животные смогли использовать в ходе своей эволюции экологические выгоды данной особенности воздушной среды и приобрели способность к кратковременному или длительному полёту. Возможностью перемещаться в воздухе обладают не только птицы и насекомые, но даже отдельные млекопитающие и рептилии. В целом, активно летать или планировать за счёт воздушных течений могут не менее 60 % видов наземных животных.

Жизнь многих растений во многом зависит от движения воздушных потоков, так как именно ветром разносится их пыльца и происходит опыление. Такой способ опыления называется анемофилией . Анемофилия свойственна для всех голосеменных растений, а среди покрытосеменных, ветроопыляемые составляют не менее 10 % от общего количества видов. Для многих видов свойственна анемохория – расселение с помощью воздушных потоков. При этом перемещаются не половые клетки, а зародыши организмов и молодые особи – семена и мелкие плоды растений, личинки насекомых, мелкие пауки и др. Анемохорные семена и плоды растений обладают либо очень маленькими размерами (например семена орхидей), либо различными крыловидными и парашютовидными придатками, благодаря которым возрастает способность к планированию. Пассивно переносимые ветром организмы получили собирательное название аэропланктона по аналогии с планктонными обитателями водной среды.

Малая плотность воздуха обуславливает очень низкое давление на суше, по сравнению с водной средой. На уровне моря оно составляет 760 мм рт. ст. По мере возрастания высоты, давление уменьшается и на высоте примерно 6000 м составляет только половину от той величины, которая обычно наблюдается у поверхности Земли. Для большинства позвоночных животных и растений это верхняя граница распространения. Низкое давление в горах приводит к уменьшению обеспеченности кислородом и обезвоживанию животных за счёт увеличения частоты дыхания. В целом, подавляющее большинство наземных организмов в гораздо большей степени чувствительны к изменению давления, чем водные обитатели, так как обычно колебания давления в наземной среде не превышают десятые доли атмосферы. Даже крупные птицы, способные подниматься на высоты более 2 км попадают в условия, в которых давление не более чем на 30 % отличается от приземного.

Кроме физических свойств воздушной среды, для жизни наземных организмов весьма важны также её химические особенности. Газовый состав воздуха в приземном слое атмосферы повсеместно однороден, за счёт постоянного перемешивания воздушных масс конвекционными и ветровыми потоками. На современном этапе эволюции атмосферы Земли, в составе воздуха преобладает азот (78 %) и кислород (21 %), далее следуют инертный газ аргон (0.9 %) и углекислый газ (0.035 %). Более высокое содержание кислорода в наземно-воздушной среде обитания, по сравнению с водной средой, способствует возрастанию у наземных животных уровня обмена веществ. Именно в наземной среде возникли физиологические механизмы, на основе высокой энергетической эффективности окислительных процессов в организме, обеспечивающие млекопитающим и птицам возможность поддерживать на постоянном уровне температуру своего тела и двигательную активность, что дало им возможность обитать те только в тёплых, но и в холодных регионах Земли. В настоящее время кислород, по причине своего высокого содержания в атмосфере, не принадлежит к числу факторов ограничивающих жизнь в наземной среде. Однако в почве при определённых условиях может возникнуть его дефицит.

Концентрация углекислого газа может изменяться в приземном слое в достаточно значительных пределах. Например, при отсутствии ветра в крупных городах и промышленных центрах содержание этого газа может в десятки раз превышать концентрацию в естественных ненарушенных биоценозах, за счёт его интенсивно выделения при сжигании органического топлива. Повышенные концентрации углекислого газа могут возникать также в зонах вулканической активности. Высокие концентрации СО 2 (более 1 %) токсичны для животных и растений, однако низкое содержание этого газа (менее 0.03 %) тормозит процесс фотосинтеза. Основным природным источником СО 2 является дыхание почвенных организмов. Углекислый газ поступает из почвы в атмосферу, причём особенно интенсивно его выделяют умеренно влажные, хорошо прогреваемые почвы со значительным количеством органического материала. Например, почвы букового широколиственного леса выделяют от 15 до 22 кг/га углекислоты в час, песные песчаные почвы – не более 2 кг/га. Наблюдаются суточные изменения в содержании углекислого газа и кислорода в приземных слоях воздуха, обусловленные ритмом дыхания животных и фотосинтеза растений.

Азот, представляющий собой основной компонент воздушной смеси, для большинства обитателей наземно-воздушной среды является недоступным к непосредственному усвоению в силу своих инертных свойств. Только некоторые прокариотические организмы, среди которых клубеньковые бактерии и сине-зеленые водоросли обладают способностью поглощать азот из воздуха и вовлекать его в биологический круговорот веществ.

Важнейшим экологическим фактором в наземных местообитаниях является солнечный свет. Всем живым организмам для своего существования необходима энергия, поступающая из вне. Основным её источником является солнечный свет, на долю которого приходится 99.9 % в общем балансе энергии на поверхности Земли, а 0.1 % – это энергия глубинных слоёв нашей планеты, роль которой достаточна высока только в отдельных районах интенсивной вулканической деятельности, например в Исландии или на Камчатке в Долине гейзеров. Если принять солнечную энергию достигающую поверхности атмосферы Земли за 100 %, то около 34 % отражается обратно в Космическое пространство, 19 % поглощается при прохождении через атмосферу, и только 47 % достигает наземно-воздушных и водных экосистем в виде прямой и рассеянной лучистой энергии. Прямая солнечная радиация – это электромагнитное излучение с длинами волн от 0.1 до 30.000 нм. Доля рассеянной радиации в виде отражённых от облаков и поверхности Земли лучей возрастает с уменьшением высоты стояния Солнца над горизонтом и при возрастании содержания в атмосфере частиц пыли. Характер воздействия солнечных лучей на живые организмы зависит от их спектрального состава.

Ультрафиолетовые коротковолновые лучи с длинами волн менее 290 нм губительны для всего живого, т.к. обладают способностью ионизировать, расщеплять цитоплазму живых клеток. Эти опасные лучи на 80 – 90 % поглощаются озоновым слоем, расположенным на высотах от 20 до 25 км. Озоновый слой, представляющий собой совокупность молекул О 3 , образуется в результате ионизации молекул кислорода и является, таким образом, продуктом фотосинтетической деятельности растений в глобальном масштабе. Это своеобразный ""зонтик"" прикрывающий наземные сообщества от губительного ультрафиолета. Предполагается, что он возник около 400 млн. лет назад, за счёт выделения кислорода при фотосинтезе океанических водорослей, что дало возможность развиваться жизни на суше. Длинноволновые ультрафиолетовые лучи с длиной волн от 290 до 380 нм также обладают высокой химической активностью. Длительное и интенсивное их воздействие наносит вред организмам, но малые дозы многим из них необходимы. Лучи с длинами волн около 300 нм вызывают образование витамина D у животных, с длинами от 380 до 400 нм – приводят к появлению загара как защитной реакции кожи. В область видимых солнечных лучей, т.е. воспринимаемых человеческим глазом, входят лучи с длинами волн от 320 до 760 нм. В пределах видимой части спектра находится зона фотосинтетически активных лучей – от 380 до 710 нм. Именно в данном диапазоне световых волн осуществляется процесс фотосинтеза.

Свет и его энергия, во многом определяющая температуру среды конкретного местообитания, влияют на газообмен и испарение воды листьями растений, стимулирует работу ферментов синтеза белков и нуклеиновых кислот. Растениям свет необходим для образования пигмента хлорофилла, формирования структуры хлоропластов, т.е. структур ответственных за фотосинтез. Под влиянием света происходит деление и рост клеток растений, их цветение и плодоношение. Наконец, от интенсивности света в конкретном местообитании зависит распространение и численность определённых видов растений, а, следовательно, и структура биоценоза. При низкой освещённости, например под пологом широколиственного или елового леса, или в утренние и вечерние часы, свет становится важным лимитирующим фактором, способным ограничивать фотосинтез. В ясный летний день на открытом местообитании или в верхней части кроны деревьев в умеренных и низких широтах освещённость может достигать 100.000 люкс, тогда как для успеха протекания фотосинтеза достаточно и 10.000 люкс. При очень большой освещённости начинается процесс обесцвечивания и разрушения хлорофилла, что существенно замедляет выработку первичного органического вещества в процессе фотосинтеза.

Как известно, в результате фотосинтеза поглощается углекислый газ и выделяется кислород. Однако в процессе дыхания растения днём, и в особенности ночью, кислород поглощается, а CO 2 , наоборот, выделяется. Если постепенно увеличивать интенсивность света, то соответственно будет возрастать и скорость фотосинтеза. Со временем наступит такой момент, когда фотосинтез и дыхание растения будут точно уравновешивать друг друга и выработка чистого биологического вещества, т.е. не потреблённого самим растением в процессе окисления и дыхания для своих нужд, прекратиться. Данное состояние, при котором суммарный газообмен CO 2 и O 2 равен 0 называется точкой компенсации .

Вода – это одно из абсолютно необходимых веществ для успешного течения процесса фотосинтеза и её недостаток отрицательно сказывается на течении множества клеточных процессов. Даже недостаток влаги в почве в течение нескольких дней может привести к серьёзным потёрям в урожае, т.к. в листьях растений начинает накапливаться вещество препятствующее росту тканей – абсцизовая кислота.

Оптимальной для фотосинтеза большинства растений умеренного пояса является температура воздуха около 25 ºС. При более высоких температурах скорость фотосинтеза замедляется в связи с ростом затрат на дыхание, потерей влаги в процессе испарения для охлаждения растения и уменьшением потребления CO 2 в связи со снижением газообмена.

У растений возникают различные морфологические и физиологические адаптации к световому режиму наземно-воздушной среды обитания. По требованиям к уровню освещения все растения принято делить на следующие экологические группы.

Светолюбивые или гелиофиты – растения открытых, постоянно хорошо освещаемых местообитаний. Листья гелиофитов обычно мелкие или с рассечённой листовой пластинкой, с толстой наружной стенкой клеток эпидермиса, нередко с восковым налётом для частичного отражения избыточной световой энергии или с густым опушением позволяющим эффективно рассеивать тепло, с большим количеством микроскопических отверстий – устьиц, с помощью которых происходит газо- и влагообмен со средой, с хорошо развиты механическими тканями и тканями способными запасать воду. Листья некоторых растений из данной группы обладают фотометричностью, т.е. способны менять своё положение в зависимости от высоты Солнца. В полдень листья располагаются ребром к светилу, а утром и вечером – параллейно к его лучам, что предохраняет их от перегрева и позволяет использовать свет и солнечную энергию в необходимой мере. Гелиофиты входят в состав сообществ практически всех природных зон, но наибольшее их количество встречается в экваториальной и тропической зоне. Это растения дождевых тропических лесов верхнего яруса, растения саванн Западной Африки, степей Ставрополья и Казахстана. Например, к ним принадлежат кукуруза, просо, сорго, пшеница, гвоздичные, молочайные.

Тенелюбивые или сциофиты – растения нижних ярусов леса, глубоких оврагов. Они способны обитать в условиях значительного затенения, которое для них является нормой. Листья сциофитов располагаются горизонтально, обычно они имеют тёмно-зелёный цвет и более крупные размеры, по сравнению с гелиофитами. Клетки эпидермиса крупные, но с более тонкими наружными стенками. Хлоропласты крупные, но число их в клетках невелико. Число устьиц на единицу площади меньше чем у гелиофитов. К тенелюбивым растениям умеренной климатического пояса принадлежат мхи, плауны, травы из семейства имбирные, кислица обыкновенная, майник двулистный и др. Также к ним относятся многие растения нижнего яруса тропической зоны. Мхи как растения самого низкого лесного яруса, могут жить при освещённости до 0.2 % от общей на поверхности лесного биоценоза, плауны – до 0.5 %, а цветковые могут нормально развиваться только при освещенности не менее 1 % от общей. У сциофитов с меньшей интенсивностью протекают процессы дыхания и влагообмена. Интенсивность фотосинтеза быстро достигает максимума, но при значительном освещении начинает снижаться. Компенсационная точка располагается в условиях пониженной освещённости.

Теневыносливые растения могут переносить значительное затенение, но хорошо растут и на свету, адаптированы к значительной сезонной динамике освещённости. К этой группе принадлежат луговые растения, лесные травы и кустарники, растущие в затенённых участках. На интенсивно освещаемых участках они растут быстрее, но вполне нормально развиваются и при умеренном освещении.

Отношение к световому режиму меняется у растений на протяжении их индивидуального развития – онтогенеза. Проростки и молодые растения многих луговых трав и деревьев являются более теневыносливыми, чем взрослые особи.

В жизни животных видимая часть светового спектра также играет довольно важную роль. Свет для животных – это необходимое условие зрительной ориентации в пространстве. Примитивные глазки многих беспозвоночных представляют собой просто отдельные светочувствительные клетки, позволяющие воспринимать некоторые колебания освещённости, чередование света и тени. Пауки могут различать контуры движущихся предметов на расстоянии не более 2 см. Гремучие змеи способны видеть инфракрасную часть спектра и в состоянии охотиться в полной темноте, ориентируясь на тепловые лучи жертвы. У пчёл видимая часть спектра сдвинута в более коротковолновую область. Они воспринимают как цветные значительную часть ультрафиолетовых лучей, но не различают красных. Способность к восприятию цветовой гаммы зависит от того, при каком спектральном составе активен данный вид. Большинство млекопитающих ведущих сумеречный или ночной образ жизни плохо различают цвета и видят мир в чёрно-белых тонах (представители семейств собачьи и кошачьи, хомяки и др.). Жизнь в сумерках приводит к увеличению размеров глаз. Огромные глаза, способные улавливать ничтожные доли света, свойственны ведущим ночной образ жизни лемурам, долгопятам, совам. Наиболее совершенными органами зрения обладают головоногие моллюски и высшие позвоночные. Они могут адекватно воспринимать форму и размеры предметов, их цвет, определять расстояние до объектов. Самое совершенное объёмное бинокулярное зрение характерно для человека, приматов, хищных птиц – сов, соколов, орлов, грифов.

Положение Солнца является важным фактором навигации различных животным в период дальних миграций.

Условия обитания в наземно-воздушной среде осложнены погодными и климатическими изменениями. Погода – это непрерывно меняющееся состояние атмосферы около земной поверхности до высоты примерно 20 км (верхняя граница тропосферы). Изменчивость погоды проявляется в постоянных колебаниях значений важнейших факторов среды, таких как температура и влажность воздуха, количество жидкой воды выпадающей на поверхность почвы за счёт атмосферных осадков, степень освещённости, скорость ветрового потока и др. Для погодных характеристик свойственны не только достаточно очевидные сезонные изменения, но и непериодические случайные колебания в течение относительно коротких промежутков времени, а также и в суточном цикле, что в особенности негативно сказывающиеся на жизни обитателей суши, так как к этим колебаниям чрезвычайно трудно выработать эффективные адаптации. На жизнь обитателей крупных водоёмов суши и морей погода влияет в значительно меньшей степени, затрагивая только поверхностные биоценозы.

Многолетний режим погоды характеризует климат местности. В понятие климата входят не только осреднённые за длительный временной интервал значения важнейших метеорологических характеристик и явлений, но и их годовой ход, а также вероятность отклонения от нормы. Климат зависит, прежде всего, от географических условий региона – широты местности, высоты над уровнем моря, близостью к Океану и др. Зональное разнообразие климатов зависит также от влияния муссонных ветров, несущих теплые влажные воздушные массы с тропических морей на континенты, от траекторий движения циклонов и антициклонов, от влияния горных массивов на движение воздушных масс, и от многих других причин, создающих чрезвычайное разнообразие условий жизни на суше. Для большинства наземных организмов, в особенности для растений и мелких осёдлых животных, важны не столько крупномасштабные особенности климата той природной зоны, в которой они живут, а те условия, которые создаются в их непосредственном местообитании. Такие локальные модификации климата, создающиеся под влиянием многочисленных явлений имеющих локальное распространение, называют микроклиматом . Широко известны различия между температурой и влажностью лесных и луговых местообитаний, на северных и южных склонах холмов. Устойчивый микроклимат возникает в гнездах, дуплах, пещерах и норах. Например в снежной берлоге белого медведя, к моменту появления детёныша, температура воздуха может на 50 °С превышать температуру окружающей среды.

Для наземно-воздушной среды, свойственны значительно большие колебания температуры в суточном и сезонном цикле, чем для водной. На обширных пространствах умеренных широт Евразии и Северной Америки, находящихся на значительном отдалёнии от Океана, амплитуда температуры в годовом ходе может достигать 60 и даже 100 °С, за счёт очень холодной зимы и жаркого лета. Поэтому основу флоры и фауны в большинстве континентальных районов составляют эвритермные организмы.

Литература

Основная – Т.1 – с. 268 – 299; – c. 111 – 121; Дополнительная ; .

Вопросы для самопроверки:

1. В чём состоят основные физические отличия наземно-воздушной среды обитания

от водной?

2. От каких процессов зависит содержание углекислого газа в приземном слое атмосферы

и в чём состоит его роль в жизни растений?

3. В каком диапазоне лучей светового спектра осуществляется фотосинтез?

4. Каково значение озонового слоя для обитателей суши, как он возник?

5. От каких факторов зависит интенсивность фотосинтеза растений?

6. Что такое точка компенсации?

7. В чём состоят характерные особенности растений-гелиофитов?

8. В чём состоят характерные особенности растений-сциофитов?

9. Какова роль солнечного света в жизни животных?

10. Что такое микроклимат и как он формируется?

Слоистое строение оболочек Земли и состав атмосферы; световой режим как фактор наземно-воздушной среды; адаптации организмов к различным световым режимам; температурный режим в наземно-воздушной среде, температурные адаптации; загрязнения наземно-воздушной среды

Наземно-воздушная среда - самая сложная по экологическим условиям жизни. Жизнь на суше потребовала таких морфологических и биохимических приспособлений, которые оказались возможны лишь при достаточно высоком уровне организации как растений, так и животных. На рис. 2 изображена схема оболочек Земли. К наземновоздушной среде можно отнести наружную часть литосферы и нижнюю часть атмосферы. Атмосфера, в свою очередь, имеет довольно четко выраженное слоистое строение. Нижние слои атмосферы отображены на рис. 2. Поскольку основная масса живых существ обитает в тропосфере, именно этот слой атмосферы входит в понятие наземно-воздушной среды. Тропосфера - самая нижняя часть атмосферы. Высота ее в разных областях от 7 до 18 км, в ней содержится основная масса водяных паров, которые, конденсируясь, образуют облака. В тропосфере происходит мощное перемещение воздуха, и температура падает в 1 среднем на 0,6°С с поднятием на каждые 100 м.

Атмосфера Земли состоит из механической смеси газов, химически не действующих друг на друга. В ней происходят все метеорологические процессы, совокупность которых называется климатом. Верхней границей атмосферы условно считается 2000 км, т. е. ее высота составляет У 3 часть радиуса Земли. В атмосфере непрерывно протекают различные физические процессы: изменяются температура, влажность, происходит конденсация водяных паров, возникают туманы, облака, солнечные лучи нагревают атмосферу, ионизируя ее, и т. д.

Основная масса воздуха сосредоточена в слое 70 км. Сухой воздух содержит (в %): азота - 78,08; кислорода - 20,95; аргона - 0,93; углекислого газа - 0,03. Остальных газов очень мало. Это водород, неон, гелий, криптон, радон, ксенон - большинство инертных газов.

Воздух атмосферы является одним из основных жизненно важных элементов окружающей среды. Он надежно защищает планету от вредного космического излучения. Под воздействием атмосферы на Земле совершаются важнейшие геологические процессы, которые в конечном итоге формируют ландшафт.

Атмосферный воздух относится к категории неисчерпаемых ресурсов, но интенсивное развитие промышленности, рост городов, расширение исследований космического пространства усиливают отрицательное антропогенное воздействие на атмосферу. Поэтому вопрос охраны атмосферного воздуха становится все более актуальным.

Кроме воздуха определенного состава, на живые организмы, населяющие наземно-воздушную среду, воздействуют давление воздуха и влажность, а также солнечная радиация и температура.

Рис. 2.

Световой режим, или солнечная радиация. Для осуществления процессов жизнедеятельности всем живым организмам необходима энергия, поступающая извне. Основным ее источником является солнечная радиация.

Действие разных участков спектра солнечного излучения на живые организмы различно. Известно, что в спектре солнечных лучей выделяют ультрафиолетовую, видимую и инфракрасную области, которые, в свою очередь, состоят из световых волн разной длины (рис. 3).

Среди ультрафиолетовых лучей (УФЛ) до поверхности Земли доходят только длинноволновые (290-300 нм), а коротковолновые (менее 290 нм), губительные для всего живого, практически полностью поглощаются на высоте около 20-25 км озоновым экраном - тонким слоем атмосферы, содержащим молекулы 0 3 (см. рис. 2).


Рис. 3. Биологическое действие разных участков спектра солнечного излучения: 1 - денатурация белка; 2 - интенсивность фотосинтеза пшеницы; 3 - спектральная чувствительность глаза человека. Заштрихована область ультрафиолетового излучения, не проникающая

сквозь атмосферу

Длинноволновые ультрафиолетовые лучи (300-400 нм), обладающие большой энергией фотонов, имеют высокую химическую и мутагенную активность. Большие дозы их вредны для организмов.

В диапазоне 250-300 нм УФЛ оказывают мощное бактерицидное действие и вызывают у животных образование антирахитного витамина Д, т. е. в небольших дозах УФЛ необходимы человеку и животным. При длине 300-400 нм УФЛ вызывают у человека загар, который является защитной реакцией кожи.

Инфракрасные лучи (ИКЛ) с длиной волны более 750 нм оказывают тепловое действие, не воспринимаются глазом человека и обеспечивают тепловой режим планеты. Особенно важны эти лучи для холоднокровных животных (насекомых, пресмыкающихся), которые используют их для повышения температуры тела (бабочки, ящерицы, змеи) или для охоты (клещи, пауки, змеи).

В настоящее время изготовлено много приборов, в которых используется та или иная часть спектра: ультрафиолетовые облучатели, бытовые приборы с инфракрасным излучением для быстрого приготовления пищи и т. д.

Видимые лучи с длиной волны 400-750 нм имеют большое значение для всех живых организмов.

Свет как условие жизни растений. Свет совершенно необходим растениям. Зеленые растения используют солнечную энергию именно этой области спектра, улавливая ее в процессе фотосинтеза:

В связи с разной потребностью в световой энергии у растений возникают различные морфологические и физиологические адаптации к световому режиму обитания.

Адаптация - это системы регулирования обменных процессов и физиологических особенностей, обеспечивающих максимальную приспособленность организмов к условиям окружающей среды.

В соответствии с адаптациями к световому режиму растения делят на следующие экологические группы.

  • 1. Светолюбивые - имеющие следующие морфологические адаптации: сильноветвящиеся побеги с укороченными междоузлиями, розе- точные; листья мелкие или с сильно рассеченной листовой пластинкой, нередко с восковым налетом или опушением, часто повернуты ребром к свету (например, акация, мимоза, софора, василек, ковыль, сосна, тюльпан).
  • 2. Тенелюбивые - постоянно находящиеся в условиях сильного затенения. Листья у них темно-зеленого цвета, располагаются горизонтально. Это растения нижних ярусов лесов (например, грушанки, майник двулистный, папоротники и т. д.). При недостатке света живут глубоководные растения (красные и бурые водоросли).
  • 3. Теневыносливые - могут переносить затенение, но хорошо растут и на свету (например, лесные травы и кустарники, растущие и в затененных местах, и на опушках, а также дуб, бук, граб, ель).

По отношению к свету растения в лесу располагаются ярусами. Кроме того, даже у одного и того же дерева листья по-разному улавливают свет в зависимости от яруса. Как правило, они составляют листовую мозаику, т. е. располагаются таким образом, чтобы увеличить листовую поверхность для лучшего улавливания света.

Световой режим меняется в зависимости от географической широты, времени суток и времени года. В связи с вращением Земли световой режим имеет отчетливую суточную и сезонную ритмичность. Реакция организма на смену режима освещения называется фотопериодизмом. В связи с фотопериодизмом в организме изменяются процессы обмена веществ, роста и развития.

С фотопериодизмом у растений связано явление фототропизма - движение отдельных органов растения к свету. Например, движение корзинки подсолнуха в течение дня вслед за солнцем, раскрывание соцветий у одуванчика и вьюнка утром и закрывание их вечером, и наоборот - открывание вечером цветов ночной фиалки и душистого табака и закрывание их утром (суточный фотопериодизм).

Сезонный фотопериодизм наблюдается в широтах со сменой времен года (умеренные и северные широты). С наступлением длинного дня (весной) в растениях наблюдается активное сокодвижение, почки набухают и раскрываются. При наступлении осеннего короткого дня растения сбрасывают листву и готовятся к зимнему покою. Необходимо различать растения «короткого дня» - они распространены в субтропиках (хризантемы, перилла, рис, соя, дурнишник, конопля); и растения «длинного дня» (рудбекия, хлебные злаки, крестоцветные, укроп) - они распространены в основном в умеренных и приполярных широтах. Растения «длинного дня» не могут развиваться на юге (они не дают семян), то же относится и к растениям «короткого дня», если их выращивать на севере.

Свет как условие жизни животных. Для животных свет не является фактором первостепенного значения, как для зеленых растений, так как они существуют за счет энергии солнца, накопленной этими растениями. Тем не менее животным нужен свет определенного спектрального состава. В основном свет необходим им для зрительной ориентации в пространстве. Правда, не у всех животных есть глаза. У примитивных это просто фоточувствительные клетки или даже место в клетке (например, стигма у одноклеточных организмов или «светочувствительный глазок»).

Образное видение возможно только при достаточно сложном устройстве глаза. Например, пауки могут различать контуры движущихся предметов только на расстоянии 1-2 см. Глаза позвоночных воспринимают форму и размеры предметов, их цвет и определяют расстояние до них.

Видимый свет - это условное понятие для разных видов животных. Для человека это лучи от фиолетового до темно-красного (вспомним цвета радуги). Гремучие змеи, например, воспринимают инфракрасную часть спектра. Пчелы же различают многоцветье ультрафиолетовых лучей, но не воспринимают красных. Спектр видимого света для них сдвинут в ультрафиолетовую область.

Развитие органов зрения во многом зависит от экологической обстановки и условий среды обитания организмов. Так, у постоянных обитателей пещер, куда не проникает солнечный свет, глаза могут быть полностью или частично редуцированы: у слепых жужелиц, летучих мышей, некоторых амфибий и рыб.

Способность к цветовому зрению зависит также от того, дневной или ночной образ жизни ведут организмы. Собачьи, кошачьи, хомяки (которые питаются, охотясь в сумерках) все видят в черно-белом изображении. Такое же зрение и у ночных птиц - сов, козодоев. Дневные же птицы имеют хорошо развитое цветовое зрение.

У животных и птиц также существуют приспособления к дневному и ночному образу жизни. Например, большинство копытных, медведи, волки, орлы, жаворонки активны днем, тогда как тигры, мыши, ежи, совы наибольшую активность проявляют ночью. Продолжительность светового дня влияет на наступление брачного периода, миграций и перелетов у птиц, спячки у млекопитающих и т. д.

Животные ориентируются с помощью органов зрения во время дальних перелетов и миграций. Птицы, например, с поразительной точностью выбирают направление полета, преодолевая многие тысячи километров от гнездовий до мест зимовок. Доказано, что при таких дальних перелетах птицы хотя бы частично ориентируются по Солнцу и звездам, т. е. астрономическим источникам света. Они способны к навигации, изменению ориентации, чтобы попасть в нужную точку Земли. Если птиц перевозят в клетках, то они правильно выбирают направление на зимовку из любой точки Земли. В сплошной туман птицы не летают, так как в процессе полета часто сбиваются с пути.

Среди насекомых способность к такого рода ориентации развита у пчел. В качестве ориентира они используют положение (высоту) Солнца.

Температурный режим в наземно-воздушной среде. Температурные адаптации. Известно, что жизнь есть способ существования белковых тел, поэтому границы существования жизни - это температуры, при которых возможно нормальное строение и функционирование белков, в среднем от 0°С до +50°С. Однако некоторые организмы обладают специализированными ферментными системами и приспособлены к активному существованию при температурах, выходящих за указанные пределы.

Виды, предпочитающие холод (их называют криофилами ), могут сохранять активность клеток до -8°... -10°С. Переохлаждение способны выносить бактерии, грибы, лишайники, мхи, членистоногие. Наши деревья также не погибают при низких температурах. Важно только, чтобы в период подготовки к зиме вода в клетках растений перешла в особое состояние, а не превратилась в лед - тогда клетки погибают. Растения преодолевают переохлаждение, накапливая в своих клетках и тканях вещества - осмотики-протекторы: различные сахара, аминокислоты, спирты, которые «выкачивают» излишнюю воду, не давая ей превратиться в лед.

Существует группа видов организмов, оптимум жизни которых - высокие температуры, их называют термофилами. Это разнообразные черви, насекомые, клещи, обитающие в пустынях и жарких полупустынях, это бактерии горячих источников. Есть источники с температурой + 70°С, содержащие живых обитателей - сине-зеленые водоросли (цианобактерии), некоторые виды моллюсков.

Если же принимать во внимание и латентные (длительно покоящиеся) формы организмов, такие, как споры некоторых бактерий, цисты, споры и семена растений, то они могут выдерживать значительно отклоняющиеся от нормы температуры. Споры бактерий могут выдерживать нагревание до 180°С. Многие семена, пыльца растений, цисты, одноклеточные водоросли выдерживают замораживание в жидком азоте (при -195,8°С), а затем длительное хранение при -70°С. После размораживания и помещения в благоприятные условия и достаточную питательную среду эти клетки могут стать вновь активными и начать размножаться.

Временная приостановка всех жизненных процессов организма называется анабиозом. Анабиоз может наступать у животных как при понижении температуры среды, так и при ее повышении. Например, у змей и ящериц при повышении температуры воздуха выше 45°С наступает тепловое оцепенение. У земноводных при температуре воды ниже 4°С жизненная активность практически отсутствует. Из состояния анабиоза живые существа могут возвратиться к нормальной жизни только в том случае, если не нарушена структура макромолекул в их клетках (в первую очередь ДНК и белков).

Устойчивость к температурным колебаниям у наземных обитателей различна.

Температурные адаптации у растений. Растения, будучи организмами неподвижными, вынуждены приспосабливаться к тем температурным колебаниям, которые существуют в местах их обитания. Они обладают специфическими системами, предохраняющими от переохлаждения или перегрева. Транспирация - это система испарения воды растениями через устьичный аппарат, которая спасает их от перегрева. Некоторые растения приобрели даже устойчивость к пожарам - их называют пирофитами. Пожары часто бывают в саваннах, кустарниковых зарослях. У деревьев саванн толстая кора, пропитанная огнеупорными веществами. Плоды и семена их имеют толстые, одревесневшие покровы, которые растрескиваются, когда охвачены огнем, что помогает семенам попасть в землю.

Температурные адаптации животных. Животные, по сравнению с растениями, обладают большими возможностями приспосабливаться к изменению температуры, так как способны передвигаться, обладают мускулатурой и производят собственное внутреннее тепло. В зависимости от механизмов поддержания постоянной температуры тела различают пойкилотермных (холоднокровных) и гомойотермных (теплокровных) животных.

Пойкилотермные - это насекомые, рыбы, земноводные, пресмыкающиеся. Их температура тела меняется вместе с температурой окружающей среды.

Гомойотермные - животные с постоянной температурой тела, способные ее поддерживать даже при сильных колебаниях наружной температуры (это млекопитающие и птицы).

Основные пути температурных адаптаций:

  • 1) химическая терморегуляция - увеличение теплопродукции в ответ на понижение температуры окружающей среды;
  • 2) физическая терморегуляция - способность удерживать тепло благодаря волосяному и перьевому покровам, распределению жировых запасов, возможности испарительной теплоотдачи и т. п.;

3) поведенческая терморегуляция - способность перемещаться из мест крайних температур в места оптимальных температур. Это основной путь терморегуляции у пойкилотермных животных. При повышении или понижении температуры они стремятся изменить позу или спрятаться в тень, в нору. Пчелы, муравьи, термиты строят гнезда с хорошо регулируемой внутри них температурой.

У теплокровных система терморегуляции значительно усовершенствовалась (хотя она слаба у детенышей и птенцов).

Для иллюстрации совершенства терморегуляции у высших животных и человека можно привести такой пример. Около 200 лет назад доктор Ч. Блэгден в Англии поставил такой опыт: он вместе с друзьями и собакой провел 45 мин в сухой камере при +126°С без последствий для здоровья. Любители финской бани знают, что можно проводить в сауне с температурой более + 100°С некоторое время (для каждого - свое), и это полезно для здоровья. Но мы также знаем, что, если держать при такой температуре кусок мяса, он сварится.

При действии холода у теплокровных усиливаются окислительные процессы, особенно в мышцах. Вступает в действие химическая терморегуляция. Отмечается мышечная дрожь, приводящая к выделению дополнительного тепла. Особенно усиливается обмен липидов, так как в жирах содержится значительный запас химической энергии. Поэтому накопление жировых запасов обеспечивает лучшую терморегуляцию.

Усиленное производство теплопродукции сопровождается потреблением большого количества пищи. Так, птицам, остающимся на зиму, нужно много корма, им страшны не морозы, а бескормица. При хорошем урожае ели и сосны клесты, например, даже зимой выводят птенцов. У людей - жителей суровых сибирских или северных районов - из поколения в поколение вырабатывалось высококалорийное меню - традиционные пельмени и другая калорийная пища. Поэтому, прежде чем следовать модным западным диетам и отвергать пищу предков, нужно вспомнить о существующей в природе целесообразности, лежащей в основе многолетних традиций людей.

Эффективным механизмом регуляции теплообмена у животных, как и у растений, является испарение воды путем потоотделения или через слизистые оболочки рта и верхних дыхательных путей. Это пример физической терморегуляции. Человек при сильной жаре может выделить до 12 л пота в день, рассеивая при этом тепла в 10 раз больше нормы. Выделяемая вода частично должна возвращаться через питье.

Теплокровным животным, так же как и холоднокровным, свойственна поведенческая терморегуляция. В норах живущих под землей животных колебания температур тем меньше, чем глубже нора. В искусно построенных гнездах пчел поддерживается ровный, благоприятный микроклимат. Особый интерес представляет групповое поведение животных. Например, пингвины в сильный мороз и буран образуют «черепаху» - плотную кучу. Те, кто оказался с краю, постепенно пробираются внутрь, где поддерживается температура около +37°С. Там же, внутри, помещаются и детеныши.

Таким образом, для того чтобы жить и размножаться в определенных условиях наземно-воздушной среды, у животных и растений в процессе эволюции выработались самые разнообразные приспособления и системы соответствия этой среде обитания.

Загрязнения наземно-воздушной среды. В последнее время все более значительным внешним фактором, изменяющим наземно-возду- шую среду обитания, становится антропогенный фактор.

Атмосфера, как и биосфера, имеет свойство самоочищения, или сохранения равновесия. Однако объем и скорость современных загрязнений атмосферы превосходят природные возможности их обезвреживания.

Во-первых, это природное загрязнение - различная пыль: минеральная (продукты выветривания и разрушения горных пород), органическая (аэропланктон - бактерии, вирусы, пыльца растений) и космическая (частицы, попадающие в атмосферу из космоса).

Во-вторых, это искусственные (антропогенные) загрязнения - промышленные, транспортные и бытовые выбросы в атмосферу (пыль цементных заводов, сажа, различные газы, радиоактивное загрязнение, пестициды).

По приблизительным подсчетам, в атмосферу за последние 100 лет выброшено 1,5 млн т мышьяка; 1 млн т никеля; 1,35 млн т кремния, 900 тыс. т кобальта, 600 тыс. т цинка, столько же меди и других металлов.

Химические предприятия выбрасывают углекислый газ, окись железа, оксиды азота, хлор. Из пестицидов особенно токсичны фосфо- рорганические соединения, из которых в атмосфере получаются еще более токсичные.

В результате выбросов в городах, где снижено ультрафиолетовое излучение и наблюдается большое скопление людей, происходит деградация воздушного бассейна, одним из проявлений которой является смог.

Смог бывает «классический» (смесь токсичных туманов, возникающих при незначительной облачности) и «фотохимический » (смесь едких газов и аэрозолей, которая образуется без тумана в результате фотохимических реакций). Наиболее опасен лондонский и лос-анджелесский смог. Он поглощает до 25 % солнечного излучения и 80 % ультрафиолетовых лучей, от этого страдает городское население.

Наземно-воздушная среда является самой сложной для жизни организмов. Физические факторы, ее составляющие, очень разнообразны: свет, температура. Но организмы приспособились в ходе эволюции к этим меняющимся факторам и выработали системы адаптации для обеспечения чрезвычайной приспособленности к условиям обитания. Несмотря на неисчерпаемость воздуха как ресурса окружающей среды, качество его стремительно ухудшается. Загрязнение воздуха - самая опасная форма загрязнения окружающей среды.

Вопросы и задания для самоконтроля

  • 1. Объясните, почему наземно-воздушная среда является самой сложной для жизни организмов.
  • 2. Приведите примеры адаптаций у растений и животных к высоким и низким температурам.
  • 3. Почему температура оказывает сильное влияние на жизнедеятельность любых организмов?
  • 4. Проанализируйте, как свет влияет на жизнедеятельность растений и животных.
  • 5. Охарактеризуйте, что такое фотопериодизм.
  • 6. Докажите, что различные волны светового спектра по-разному воздействуют на живые организмы, приведите примеры. Перечислите, на какие группы подразделяются живые организмы по способу использования энергии, приведите примеры.
  • 7. Прокомментируйте, с чем связаны сезонные явления в природе и как на них реагируют растения и животные.
  • 8. Объясните, почему загрязнение наземно-воздушной среды представляет наибольшую опасность для живых организмов.

Санкт-Петербургская государственная академия

Ветеринарно медицины.

Кафедра общей биологии, экологии и гистологии.

Реферат по экологии на тему:

Наземно-воздушая среда, её факторы

и адаптации организмов к ним»

Выполнил: Студент 1-го курса

Ой группы Пяточенко Н. Л.

Проверил: доцент кафедры

Вахмистрова С. Ф.

Санкт-Петербург

Введение

Условия жизни (условия существования) – это совокупность необходимых для организма элементов, с которыми он находится в неразрывной связи и без которых существовать не может.

Приспособления организма к среде носят название адаптации. Способность к адаптациям – одно их основных свойств жизни вообще, обеспечивающее возможность ее существования, выживания и размножения. Адаптация проявляется на разных уровнях – от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экосистем. Адаптации возникают и изменяются в ходе эволюции вида.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды разнообразны. Они имеют разную природу и специфику действия. Экологические факторы подразделяются на две большие группы: абиотические и биотические.

Абиотические факторы – это комплекс условий неорганической среды, влияющих на живые организмы прямо или косвенно: температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды и т.д.

Биотические факторы – это все формы воздействия живых организмов друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других, вступая в связь с представителями своего и других видов.

В отдельных случаях антропогенные факторы выделяют в самостоятельную группу наряду с биотическими и абиотическими факторами, подчеркивая чрезвычайное действие антропогенного фактора.

Антропогенные факторы – это все формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. Значение антропогенного воздействия на весь живой мир Земли продолжает стремительно возрастать.

Изменения факторов среды во времени могут быть:

1)регулярно-постоянными, меняющими силу воздействия в связи со временем суток, сезоном года или ритмом приливов и отливов в океане;

2)нерегулярными, без четкой периодичности, например, изменение погодных условий в разные годы, бури, ливни, сели и т.д.;

3)направленными на протяжении определенных или длительных отрезков времени, например, похолодание или потепление климата, зарастание водоема и т.д.

Экологические факторы среды могут оказывать на живые организмы различные воздействия:

1) как раздражители, вызывая приспособительные изменения физиологических и биохимических функций;

2) как ограничители, обуславливающие невозможность существования в данных

условиях;

3) как модификаторы, вызывающие анатомические и морфологические изменения организмов;

4) как сигналы, свидетельствующие об изменении других факторов.

Несмотря на большое разнообразие экологических факторов, в характере их взаимодействия с организмами и в ответных реакциях живых существ можно выделить ряд общих закономерностей.

Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, оптимум, а дающая наихудший эффект – пессимум, т.е. условия, при которых жизнедеятельность организма максимально угнетается, но он еще может существовать. Так, при выращивании растений в различных температурных режимах точка, при которой наблюдается максимальный рост, и будет оптимумом. В большинстве случаев это некий диапазон температур, составляющий несколько градусов, потому здесь лучше говорить о зоне оптимума. Весь интервал температур (от минимальной до максимальной), при которых еще возможен рост, называют диапазоном устойчивости (выносливости), или толерантности. Точка, ограничивающая его (т.е. минимальная и максимальная) пригодные для жизни температуры – это предел устойчивости. Между зоной оптимума и пределом устойчивости по мере приближения к последнему растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения, в рамках диапазона устойчивости

Зависимость действия экологического фактора от его интенсивности (по В.А. Радкевичу, 1977)

По мере удаления вверх и вниз но шкале не только усиливается стресс, а в конечном итоге, по достижении пределов устойчивости организма, происходит его гибель. Подобные эксперименты можно проводить и для проверки влияния других факторов. Результаты графически будут соответствовать кривой подобного типа

Наземно-воздушная среда жизни, ее характеристика и формы адаптации к ней.

Жизнь на суше потребовала таких приспособлений, которые оказались возможными только у высокоорганизованных живых организмов. Наземно-воздушная среда более сложная для жизни, она отличается высоким содержанием кислорода, малым количеством водяных паров, низкой плотностью и т.д. Это сильно изменило условия дыхания, водообмена и передвижения живых существ.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Организмы воздушной среды должны иметь собственную опорную систему, поддерживающую тело: растения – разнообразные механические ткани, животные – твердый или гидростатический скелет. Кроме этого, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры.

Малая плотность воздуха обеспечивает низкую сопротивляемость передвижения. Поэтому многие наземные животные приобрели способность к полету. К активному полету приспособилось 75% всех наземных, преимущественно насекомые и птицы.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным потокам воздушных масс возможен пассивный полет организмов. В связи с этим у многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона.

Наземные организмы существуют в условиях сравнительно низкого давления, обусловленного малой плотностью воздуха. В норме оно равно 760 мм ртутного столба. С увеличением высоты над уровнем моря давление уменьшается. Низкое давление может ограничивать распространенность видов в горах. Для позвоночных животных верхняя граница жизни – около 60 мм. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно такие же пределы продвижения в горах имеют высшие растения. Несколько более выносливы членистоногие, которые могут встречаться на ледниках, выше границы растительности.

Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов очень важны ее химические свойства. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот – 78,1%, кислород – 21,0%, аргон 0,9%, углекислый газ – 0,003% от объема).

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первичноводными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойтермия животных. Кислород из-за постоянного его высокого содержания в воздухе не является лимитирующим фактором жизни в наземной среде.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Повышенное насыщение воздуха СО? возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко. Низкое содержание С02 тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа. Этим пользуются в практике тепличного и оранжерейного хозяйства.

Азот воздуха для большинства обитателей наземной среды является инертным газом, но отдельные микроорганизмы (клубеньковые бактерии, азотбактерии, сине-зеленые водоросли и др.) обладают способностью связывать его и вовлекать в биологический круговорот веществ.

Дефицит влаги – одна из существенных особенностей наземно-воздушной среды жизни. Вся эволюция наземных организмов шла под знаком приспособления к добыванию и сохранению влаги. Режимы влажности среды на суше очень разнообразны – от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Также значительна суточная и сезонная изменчивость содержания водяных паров в атмосфере. Водообеспеченность наземных организмов зависит также от режима выпадения осадков, наличия водоемов, запасов почвенной влаги, близости фунтовых вод и т.д.

Это привело к развитию у наземных организмов адаптации к различным режимам водообеспечения.

Температурный режим. Следующей отличительной чертой воздушно-наземной среды являются значительные температурные колебания. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Устойчивость к температурным изменениям среды у наземных обитателей очень различна, в зависимости от того, в каком конкретном местообитания проходит их жизнь. Однако в целом наземные организмы значительно более эвритермны по сравнению с водными организмами.

Условия жизни в наземно-воздушной среде осложняются, кроме того, существованием погодных изменений. Погода – непрерывно меняющиеся состояния атмосферы у заемной поверхности, до высоты примерно в 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетания таких факторов среды, как температура, влажность воздуха, облачность, осадки, сила и направление ветра и т.д. Многолетний режим погоды характеризует климат местности. В понятие «Климат» входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонение от него и их повторяемость. Климат определяется географическими условиями района. Основные климатические факторы – температура и влажность – измеряются количеством осадков и насыщенностью воздуха водяными парами.

Для большинства наземных организмов, особенно мелких, не столько важен климат района, сколько условия их непосредственного обитания. Очень часто местные элементы среды (рельеф, экспозиция, растительность и т.д.) так изменяют в конкретном участке режим температур, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие модификации климата, складывающиеся в приземном слое воздуха, называются микроклиматом. В каждой зоне микроклимат очень разнообразен. Можно выделить микроклиматы очень небольших участков.

Световой режим наземно-воздушной среды также обладает некоторыми особенностями. Интенсивность и количество света здесь наиболее велики и практически не лимитируют жизнь зеленых растений, как в воде или почве. На суше возможно существование чрезвычайно светолюбивых видов. Для подавляющего большинства наземных животных с дневной и даже ночной активностью зрение представляет собой один из основных способов ориентации. У наземных животных зрение имеет важное значение для поисков добычи, многие виды обладают даже цветным зрением. В связи с этим у жертв возникают такие приспособительные особенности, как защитная реакция, маскирующая и предупреждающая окраска, мимикрия и т.д.

У водных обитателей такие адаптации развиты значительно меньше. Возникновение ярко окрашенных цветков высших растений также связано с особенностями аппарата опылителей и в конечном счете – со световым режимом среды.

Рельеф местности и свойства грунта – также условия жизни наземных организмов и, в первую очередь, растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяются «эдафическими факторами среды» (от греческого «эдафос» – «почва»).

По отношению к разным свойствам почв можно выделить целый ряд экологических групп растений. Так, по реакции на кислотность почвы различают:

1) ацидофильные виды – растут на кислых почвах с рН не менее 6,7 (растения сфагновых болот);

2) нейтрофильные склонны расти на почвах с рН 6,7–7,0 (большинство культурных растений);

3) базифильные растут при рН более 7,0 (мордовник, лесная ветренница);

4) индиферентные могут произрастать на почвах с разным значением рН (ландыш).

Отличаются растения и по отношению к влажности почвы. Определенные виды приурочены к разным субстратам, например, петрофиты растут на каменистых почвах, пасмофиты заселяют сыпучие пески.

Рельеф местности и характер грунта влияют на специфику передвижения животных: например, копытных, страусов, дроф, живущих на открытых пространствах, твердом грунте, для усиления отталкивания при беге. У ящериц, обитающих в сыпучих песках, пальцы окаймлены бахромой из роговых чешуек, увеличивающих опоры. Для наземных обитателей, роющих норы, плотный грунт неблагоприятен. Характер почвы в определенных случаях влияет на распределение наземных животных, роющих норы или зарывающихся в грунт, или откладывающих яйца в почву и т.д.

О составе воздуха.

Газовый состав воздуха, которым мы дышим, выглядит так: 78% составляет азот, 21 % - кислород и 1% приходится на другие газы. Но в атмосфере крупных промышленных городов это соотношение часто нарушено. Значительную долю составляют вредные примеси, обусловленные выбросами предприятий и автотранспорта. Автотранспорт привносит в атмосферу многие примеси: углеводороды неизвестного состава, бенз(а)пирен, углекислый газ, соединения серы и азота, свинец, угарный газ.

Атмосфера состоит из смеси ряда газов - воздуха, в котором взвешены коллоидные примеси - пыль, капельки, кристаллы и пр. С высотой состав атмосферного воздуха меняется мало. Однако начиная с высоты около 100 км, наряду с молекулярным кислородом и азотом появляется и атомарный в результате диссоциации молекул, и начинается гравитационное разделение газов. Выше 300 км в атмосфере преобладает атомарный кислород, выше 1000 км - гелий и затем атомарный водород. Давление и плотность атмосферы убывают с высотой; около половины всей массы атмосферы сосредоточено в нижних 5 км, 9/10 - в нижних 20 км и 99,5% - в нижних 80 км. На высотах около 750 км плотность воздуха падает до 10-10 г/м3 (тогда как у земной поверхности она порядка 103 г/м3), но и такая малая плотность еще достаточна для возникновения полярных сияний. Резкой верхней границы атмосфера не имеет; плотность составляющих ее газов

В состав атмосферного воздуха, которым дышит каждый из нас, входят несколько газов, основными из которых являются: азот(78.09%), кислород(20.95%), водород(0.01%) двуокись углерода (углекислый газ)(0.03%) и инертные газы(0.93%). Кроме того, в воздухе всегда находится некоторое кол-во водяных паров, кол-во которых всегда изменяется с переменой температуры: чем выше температура, тем содержание пара больше и наоборот. Вследствие колебания кол-ва водяных паров в воздухе процентное содержание в нем газов также непостоянно. Все газы, входящие в состав воздуха, бесцветны и не имеют запаха. Вес воздуха изменяется в зависимости не только от температуры, но и от содержания в нем водяных паров. При одинаковой температуре вес сухого воздуха больше, чем влажного, т.к. водяные пары значительно легче паров воздуха.

В таблице приведен газовый состав атмосферы в объемном массовом отношении, а также время жизни основных компонентов:

Компонент % объемные % массовые
N2 78,09 75,50
O2 20,95 23,15
Ar 0,933 1,292
CO2 0,03 0,046
Ne 1,8 10-3 1,4 10-3
He 4,6 10-4 6,4 10-5
CH4 1,52 10-4 8,4 10-5
Kr 1,14 10-4 3 10-4
H2 5 10-5 8 10-5
N2O 5 10-5 8 10-5
Xe 8,6 10-6 4 10-5
O3 3 10-7 - 3 10-6 5 10-7 - 5 10-6
Rn 6 10-18 4,5 10-17

Свойства газов, входящих в состав атмосферного воздуха под давлением меняются.

К примеру: кислород под давлением более 2-х атмосфер оказывает ядовитое действие на организм.

Азот под давлением свыше 5 атмосфер оказывает наркотическое действие (азотное опьянение). Быстрый подъем из глубины вызывает кессонную болезнь из-за бурного выделения пузырьков азота из крови, как бы вспенивая ее.

Повышение углекислого газа более 3% в дыхательной смеси вызывает смерть.

Каждый компонент, входящий в состав воздуха, с повышением давления до определенных границ становится ядом, способным отравить организм.

Исследования газового состава атмосферы. Атмосферная химия

Для истории бурного развития сравнительно молодой отрасли науки, именуемой атмосферной химией, более всего подходит термин “спурт” (бросок), применяемый в высокоскоростных видах спорта. Выстрелом же из стартового пистолета, пожалуй, послужили две статьи, опубликованные в начале 1970-х годов. Речь в них шла о возможном разрушении стратосферного озона оксидами азота - NO и NO2. Первая принадлежала будущему нобелевскому лауреату, а тогда сотруднику Стокгольмского университета П. Крутцену, который посчитал вероятным источником оксидов азота в стратосфере распадающуюся под действием солнечного света закись азота N2O естественного происхождения. Автор второй статьи, химик из Калифорнийского университета в Беркли Г.Джонстон предположил, что оксиды азота появляются в стратосфере в результате человеческой деятельности, а именно - при выбросах продуктов сгорания реактивных двигателей высотных самолетов.

Конечно, вышеупомянутые гипотезы возникли не на пустом месте. Соотношение по крайней мере основных компонент в атмосферном воздухе - молекул азота, кислорода, водяного пара и др. - было известно намного раньше. Уже во второй половине XIX в. в Европе производились измерения концентрации озона в приземном воздухе. В 1930-е годы английский ученый С.Чепмен открыл механизм формирования озона в чисто кислородной атмосфере, указав набор взаимодействий атомов и молекул кислорода, а также озона в отсутствие каких-либо других составляющих воздуха. Однако в конце 50-х годов измерения с помощью метеорологических ракет показали, что озона в стратосфере гораздо меньше, чем его должно быть согласно циклу реакций Чепмена. Хотя этот механизм и по сей день остается основополагающим, стало ясно, что существуют какие-то иные процессы, также активно участвующие в формировании атмосферного озона.

Нелишне упомянуть, что знания в области атмосферной химии к началу 70-х годов в основном были получены благодаря усилиям отдельных ученых, чьи исследования не были объединены какой-либо общественно значимой концепцией и носили чаще всего чисто академический характер. Иное дело - работа Джонстона: согласно его расчетам, 500 самолетов, летая по 7 ч в день, могли сократить количество стратосферного озона не меньше чем на 10%! И если бы эти оценки были справедливы, то проблема сразу становилась социально-экономической, так как в этом случае все программы развития сверхзвуковой транспортной авиации и сопутствующей инфраструктуры должны были подвергнуться существенной корректировке, а может быть, и закрытию. К тому же тогда впервые реально встал вопрос о том, что антропогенная деятельность может стать причиной не локального, но глобального катаклизма. Естественно, в сложившейся ситуации теория нуждалась в очень жесткой и в то же время оперативной проверке.

Напомним, что суть вышеупомянутой гипотезы состояла в том, что оксид азота вступает в реакцию с озоном NO + O3 ® ® NO2 + O2, затем образовавшийся в этой реакции диоксид азота реагирует с атомом кислорода NO2 + O ® NO + O2, тем самым восстанавливая присутствие NO в атмосфере, в то время как молекула озона утрачивается безвозвратно. При этом такая пара реакций, составляющая азотный каталитический цикл разрушения озона, повторяется до тех пор, пока какие-либо химические или физические процессы не приведут к удалению оксидов азота из атмосферы. Так, например, NO2 окисляется до азотной кислоты HNO3, хорошо растворимой в воде, и потому удаляется из атмосферы облаками и осадками. Азотный каталитический цикл весьма эффективен: одна молекула NO за время своего пребывания в атмосфере успевает уничтожить десятки тысяч молекул озона.

Но, как известно, беда не приходит одна. Вскоре специалисты из университетов США - Мичигана (Р.Столярски и Р.Цицероне) и Гарварда (С.Вофси и М. Макэлрой) - обнаружили, что у озона может быть еще более беспощадный враг - соединения хлора. Хлорный каталитический цикл разрушения озона (реакции Cl + O3 ® ClO + O2 и ClO + O ® Cl + O2), по их оценкам, был в несколько раз эффективнее азотного. Сдержанный оптимизм вызывало лишь то, что количество хлора естественного происхождения в атмосфере сравнительно невелико, а значит, суммарный эффект его воздействия на озон может оказаться не слишком сильным. Однако ситуация кардинально изменилась, когда в 1974 г. сотрудники Калифорнийского университета в Ирвине Ш. Роуленд и М. Молина установили, что источником хлора в стратосфере являются хлорфторуглеводородные соединения (ХФУ), массово используемые в холодильных установках, аэрозольных упаковках и т.д. Будучи негорючими, нетоксичными и химически пассивными, эти вещества медленно переносятся восходящими воздушными потоками от земной поверхности в стратосферу, где их молекулы разрушаются солнечным светом, в результате чего выделяются свободные атомы хлора. Промышленное производство ХФУ, начавшееся в 30-е годы, и их выбросы в атмосферу постоянно наращивались во все последующие годы, особенно в 70-е и 80-е. Таким образом, в течение очень короткого промежутка времени теоретики обозначили две проблемы атмосферной химии, обусловленные интенсивным антропогенным загрязнением.

Однако чтобы проверить состоятельность выдвинутых гипотез, необходимо было выполнить немало задач.

Во-первых, расширить лабораторные исследования, в ходе которых можно было бы определить или уточнить скорости протекания фотохимических реакций между различными компонентами атмосферного воздуха. Надо сказать, что существовавшие в то время весьма скудные данные об этих скоростях к тому же имели изрядную (до нескольких сот процентов) погрешность. Кроме того, условия, в которых производились измерения, как правило, мало соответствовали реалиям атмосферы, что серьезно усугубляло ошибку, поскольку интенсивность большинства реакций зависела от температуры, а иногда от давления или плотности атмосферного воздуха.

Во-вторых, усиленно изучать радиационно-оптические свойства ряда малых газов атмосферы в лабораторных условиях. Молекулы значительного числа составляющих атмосферного воздуха разрушаются ультрафиолетовым излучением Солнца (в реакциях фотолиза), среди них не только упомянутые выше ХФУ, но также молекулярный кислород, озон, оксиды азота и многие другие. Поэтому оценки параметров каждой реакции фотолиза были столь же необходимы и важны для правильного воспроизведения атмосферных химических процессов, как и скорости реакций между различными молекулами.

В-третьих, нужно было создавать математические модели, способные возможно более полно описывать взаимные химические превращения компонент атмосферного воздуха. Как уже упоминалось, продуктивность разрушения озона в каталитических циклах определяется тем, сколь долго пребывает в атмосфере катализатор (NO, Cl или какой-либо другой). Понятно, что такой катализатор, вообще-то говоря, мог вступить в реакцию с любой из десятков составляющих атмосферного воздуха, быстро разрушаясь при этом, и тогда ущерб стратосферному озону оказался бы значительно меньше, чем предполагалось. С другой стороны, когда в атмосфере ежесекундно происходит множество химических превращений, вполне вероятно выявление других механизмов, прямо или косвенно влияющих на образование и разрушение озона. Наконец, такие модели в состоянии выделить и оценить значимость отдельных реакций или их групп в формировании других газов, входящих в состав атмосферного воздуха, а также позволить вычислить концентрации газов, которые недоступны измерениям.

И наконец, предстояло организовать широкую сеть для измерений содержания в воздухе различных газов, в том числе соединений азота, хлора и др., используя с этой целью наземные станции, запуски метеозондов и метеоракет, полеты самолетов. Безусловно, создание базы данных было наиболее дорогостоящей задачей, которую и не решить в короткое время. Однако только измерения могли дать исходную точку для теоретических изысканий, будучи одновременно пробным камнем истинности высказанных гипотез.

С начала 70-х по крайней мере раз в три года выходят специальные, постоянно пополняемые сборники, содержащие сведения обо всех значимых атмосферных реакциях, включая реакции фотолиза. Причем погрешность в определении параметров реакций между газовыми компонентами воздуха сегодня составляет, как правило, 10-20%.

На вторую половину этого десятилетия приходится бурное развитие моделей, описывающих химические преобразования в атмосфере. Наибольшее их число было создано в США, но появились они и в Европе, и в СССР. Сперва это были боксовые (нульмерные), а потом и одномерные модели. Первые воспроизводили с разной степенью достоверности содержание основных атмосферных газов в заданном объеме - боксе (отсюда и их название) - в результате химических взаимодействий между ними. Поскольку постулировалось сохранение общей массы воздушной смеси, удаление какой-либо ее доли из бокса, например, ветром, не рассматривалось. Боксовые модели были удобны для выяснения роли отдельных реакций или их групп в процессах химических образований и разрушений газов атмосферы, для оценки чувствительности газового состава атмосферы к неточностям определения скоростей реакций. С их помощью исследователи могли, задав в боксе атмосферные параметры (в частности, температуру и плотность воздуха), соответствующие высоте полетов авиации, оценить в грубом приближении, как изменятся концентрации атмосферных примесей в результате выбросов продуктов сгорания двигателями самолетов. В то же время боксовые модели были непригодны для изучения проблемы хлорфторуглеводородов (ХФУ), так как не могли описать процесс их перемещения от земной поверхности в стратосферу. Вот здесь пригодились одномерные модели, которые совмещали в себе учет подробного описания химических взаимодействий в атмосфере и переноса примесей в вертикальном направлении. И хотя вертикальный перенос задавался и здесь достаточно грубо, использование одномерных моделей было заметным шагом вперед, поскольку они давали возможность как-то описать реальные явления.

Оглядываясь назад, можно сказать, что наши современные знания во многом базируются на проведенной в те годы с помощью одномерных и боксовых моделей черновой работе. Она позволила определить механизмы формирования газового состава атмосферы, оценить интенсивность химических источников и стоки отдельных газов. Важная особенность этого этапа развития атмосферной химии в том, что рождавшиеся новые идеи апробировались на моделях и широко обсуждались среди специалистов. Полученные результаты часто сравнивались с оценками других научных групп, поскольку натурных измерений было явно недостаточно, да и точность их была весьма низкой. Кроме того, для подтверждения правильности моделирования тех или иных химических взаимодействий было необходимо проводить комплексные измерения, когда одновременно определялись бы концентрации всех участвующих реагентов, что в то время, да и сейчас, было практически невозможно. (До сих пор проведено лишь несколько измерений комплекса газов с “Шаттла” в течение 2-5 сут.) Поэтому модельные исследования шли впереди экспериментальных, и теория не столько объясняла проведенные натурные наблюдения, сколько способствовала их оптимальному планированию. Например, такое соединение, как хлорный нитрат ClONO2, сначала появилось в модельных исследованиях и только потом было обнаружено в атмосфере. Даже сравнивать имевшиеся измерения с модельными оценками было трудно, поскольку одномерная модель не могла учесть горизонтальных движений воздуха, из-за чего атмосфера предполагалась горизонтально однородной, а полученные модельные результаты соответствовали некоторому среднеглобальному ее состоянию. Однако в реальности состав воздуха над индустриальными регионами Европы или США сильно отличается от его состава над Австралией или над акваторией Тихого океана. Поэтому результаты любого натурного наблюдения в значительной мере зависят от места и времени проведения измерений и, конечно, не соответствуют в точности среднеглобальному значению.

Чтобы устранить этот пробел в моделировании, в 80-е годы исследователи создают двумерные модели, в которых наряду с вертикальным переносом учитывался и перенос воздуха вдоль меридиана (вдоль круга широты атмосфера по-прежнему считалась однородной). Создание таких моделей на первых порах было сопряжено со значительными трудностями.

Во-первых, резко возрастало количество внешних модельных параметров: в каждом узле сетки необходимо было задать скорости вертикального и межширотного переноса, температуру и плотность воздуха и т.д. Многие параметры (в первую очередь, вышеупомянутые скорости) не были надежно определены в экспериментах и поэтому подбирались из качественных соображений.

Во-вторых, состояние вычислительной техники того времени заметно сдерживало полноценное развитие двумерных моделей. В отличие от экономичных одномерных и тем более боксовых двумерные модели требовали существенно больших затрат памяти и времени ЭВМ. И в результате их создатели были вынуждены значительно упрощать схемы учета химических превращений в атмосфере. Тем не менее комплекс атмосферных исследований, как модельных, так и натурных с использованием спутников, позволил нарисовать относительно стройную, хотя и далеко не полную картину состава атмосферы, а также установить основные причинно-следственные связи, вызывающие изменения содержания отдельных компонент воздуха. В частности, многочисленные исследования показали, что полеты самолетов в тропосфере не наносят сколь-нибудь существенного вреда тропосферному озону, однако их подъем в стратосферу, похоже, может иметь отрицательные последствия для озоносферы. Мнение большинства специалистов о роли ХФУ было почти единодушным: гипотеза Роуленда и Молина подтверждается, и эти вещества действительно способствуют разрушению стратосферного озона, а регулярный рост их промышленного производства - мина замедленного действия, так как распад ХФУ происходит не сразу, а спустя десятки и сотни лет, поэтому последствия загрязнения будут сказываться в атмосфере очень долго. Более того, долго сохраняясь, хлорфторуглеводороды могут достигнуть любой, самой удаленной точки атмосферы, и, следовательно, это - угроза глобального масштаба. Настало время согласованных политических решений.

В 1985 г. при участии 44 стран в Вене была разработана и принята конвенция по охране озонного слоя, стимулировавшая его всестороннее изучение. Однако вопрос, что же делать с ХФУ, все еще оставался открытым. Пустить дело на самотек по принципу “само рассосется” было нельзя, но и запретить производство этих веществ в одночасье невозможно без огромного ущерба для экономики. Казалось бы, есть простое решение: нужно заменить ХФУ другими веществами, способными выполнять те же функции (например, в холодильных агрегатах) и в то же время безвредными или хотя бы менее опасными для озона. Но воплотить в жизнь простые решения часто бывает очень непросто. Мало того что создание таких веществ и налаживание их производства требовали огромных капиталовложений и времени, необходимы были критерии оценки воздействия любого из них на атмосферу и климат.

Теоретики снова оказались в центре внимания. Д. Уэбблс из Ливерморской национальной лаборатории предложил использовать для этой цели озоноразрушающий потенциал, который показывал, насколько молекула вещества-заменителя сильнее (или слабее), чем молекула CFCl3(фреона-11), воздействует на атмосферный озон. На тот момент также хорошо было известно, что температура приземного слоя воздуха существенно зависит от концентрации некоторых газовых примесей (их назвали парниковыми), в первую очередь углекислого газа CO2, водяного пара H2O, озона и др. К этой категории отнесли и ХФУ, и многие их потенциальные заменители. Измерения показали, что в ходе индустриальной революции среднегодовая глобальная температура приземного слоя воздуха росла и продолжает расти, и это свидетельствует о значительных и не всегда желательных изменениях климата Земли. Для того чтобы поставить эту ситуацию под контроль, вместе с озоноразрушающим потенциалом вещества стали также рассматривать его потенциал глобального потепления. Этот индекс указывал, насколько сильнее или слабее изучаемое соединение воздействует на температуру воздуха, чем такое же количество углекислого газа. Проведенные расчеты показали, что ХФУ и альтернативные вещества обладали весьма высокими потенциалами глобального потепления, но из-за того, что их концентрации в атмосфере были гораздо меньше концентрации CO2, H2O или O3, их суммарный вклад в глобальное потепление оставался пренебрежимо малым. До поры до времени…

Таблицы рассчитанных значений озоноразрушающих потенциалов и потенциалов глобального потепления хлорфторуглеводородов и их возможных заменителей легли в основу международных решений о сокращении и последующем запрещении производства и использования многих ХФУ (Монреальский протокол 1987 г. и более поздние дополнения к нему). Возможно, собравшиеся в Монреале эксперты не были бы столь единодушными (в конце концов статьи Протокола основывались на не подтвержденных натурными экспериментами “измышлениях” теоретиков), но за подписание этого документа высказалось еще одно заинтересованное “лицо” - сама атмосфера.

Сообщение об обнаружении английскими учеными в конце 1985 г. “озонной дыры” над Антарктидой стало, не без участия журналистов, сенсацией года, а реакцию мировой общественности на это сообщение легче всего охарактеризовать одним коротким словом - шок. Одно дело, когда угроза разрушения озонного слоя существует лишь в отдаленной перспективе, другое - когда все мы поставлены перед свершившимся фактом. К этому не были готовы ни обыватели, ни политики, ни специалисты-теоретики.

Очень быстро выяснилось, что ни одна из существовавших тогда моделей не могла воспроизвести столь значительного сокращения содержания озона. Значит, какие-то важные природные явления либо не учитывались, либо недооценивались. Вскоре проведенные в рамках программы изучения антарктического феномена натурные исследования установили, что важную роль в формировании “озонной дыры”, наряду с обычными (газофазными) атмосферными реакциями, играют особенности переноса атмосферного воздуха в стратосфере Антарктики (ее почти полная изоляция зимой от остальной атмосферы), а также в ту пору мало изученные гетерогенные реакции (реакции на поверхности атмосферных аэрозолей - частиц пыли, сажи, льдинок, капель воды и т.д.). Только учет вышеупомянутых факторов позволил добиться удовлетворительного согласования модельных результатов с данными наблюдений. А уроки, преподанные антарктической “озонной дырой”, серьезно сказались на дальнейшем развитии атмосферной химии.

Во-первых, был дан резкий толчок к детальному изучению гетерогенных процессов, протекающих по законам, отличным от тех, которые определяют процессы газофазные. Во-вторых, пришло ясное осознание того, что в сложной системе, каковой является атмосфера, поведение ее элементов зависит от целого комплекса внутренних связей. Другими словами, содержание газов в атмосфере определяется не только интенсивностью протекания химических процессов, но и температурой воздуха, переносом воздушных масс, особенностями загрязнения аэрозолями различных частей атмосферы и пр. В свою очередь радиационные нагрев и выхолаживание, формирующие поле температуры стратосферного воздуха, зависят от концентрации и распределения в пространстве парниковых газов, а следовательно, и от атмосферных динамических процессов. Наконец, неоднородный радиационный нагрев разных поясов земного шара и частей атмосферы порождает движения атмосферного воздуха и контролирует их интенсивность. Таким образом, неучет каких-либо обратных связей в моделях может быть чреват большими ошибками в полученных результатах (хотя, заметим попутно, и чрезмерное усложнение модели без насущной необходимости столь же нецелесообразно, как стрельба из пушек по известным представителям пернатых).

Если взаимосвязь температуры воздуха и его газового состава учитывалась в двумерных моделях еще в 80-е годы, то привлечение трехмерных моделей общей циркуляции атмосферы для описания распределения атмосферных примесей стало возможным благодаря компьютерному буму только в 90-е. Первые такие модели общей циркуляции использовались для описания пространственного распределения химически пассивных веществ - трассеров. Позже из-за недостаточной оперативной памяти компьютеров химические процессы задавались только одним параметром - временем пребывания примеси в атмосфере, и лишь относительно недавно блоки химических превращений стали полноправными частями трехмерных моделей. И хотя до сих пор сохраняются трудности подробного представления атмосферных химических процессов в трехмерных моделях, сегодня они уже не кажутся непреодолимыми, и лучшие трехмерные модели включают в себя сотни химических реакций, наряду с реальным климатическим переносом воздуха в глобальной атмосфере.

В то же время широкое применение современных моделей вовсе не ставит под сомнение полезность более простых, о которых говорилось выше. Хорошо известно, чем сложнее модель, тем труднее отделить “сигнал” от “модельного шума”, анализировать полученные результаты, выделить главные причинно-следственные механизмы, оценить влияние на конечный результат тех или иных явлений (а значит, и целесообразности их учета в модели). И здесь более простые модели служат идеальным испытательным полигоном, они позволяют получить предварительные оценки, в дальнейшем используемые в трехмерных моделях, изучить новые природные явления до их включения в более сложные и т.д.

Бурный научно-технический прогресс породил еще несколько направлений исследований, так или иначе связанных с атмосферной химией.

Спутниковый мониторинг атмосферы. Когда было налажено регулярное пополнение базы данных со спутников, для большинства важнейших компонент атмосферы, охватывающих почти весь земной шар, возникла необходимость в совершенствовании методов их обработки. Здесь и фильтрование данных (разделение сигнала и ошибок измерений), и восстановление вертикальных профилей концентрации примесей по их суммарным содержаниям в столбе атмосферы, и интерполяция данных в тех областях, где прямые измерения по техническим причинам невозможны. К тому же спутниковый мониторинг дополняется проведением самолетных экспедиций, которые планируются для решения различных проблем, например, в тропической зоне Тихого океана, Северной Атлантике и даже в летней стратосфере Арктики.

Важная часть современных исследований - ассимиляция (усвоение) этих баз данных в моделях различной сложности. При этом параметры подбираются из условия наибольшей близости измеренных и модельных значений содержания примесей в точках (регионах). Таким образом производится проверка качества моделей, а также экстраполяция измеренных величин за пределы регионов и периодов проведения измерений.

Оценка концентраций короткоживущих атмосферных примесей. Атмосферные радикалы, играющие ключевую роль в атмосферной химии, такие как гидроксил OH, пергидроксил HO2, оксид азота NO, атомарный кислород в возбужденном состоянии O (1D) и др., имеют наибольшую химическую реактивность и, следовательно, очень маленькое (несколько секунд или минут) “время жизни” в атмосфере. Поэтому измерение таких радикалов чрезвычайно затруднено, а реконструкция их содержания в воздухе часто осуществляется по модельным соотношениям химических источников и стоков этих радикалов. Долгое время интенсивности источников и стоков вычислялись по модельным данным. С появлением соответствующих измерений стало возможным восстанавливать на их основе концентрации радикалов, при этом совершенствуя модели и расширяя сведения о газовом составе атмосферы.

Реконструкция газового состава атмосферы в доиндустриальный период и более ранние эпохи Земли. Благодаря измерениям в антарктических и гренландских ледовых кернах, возраст которых колеблется от сотен до сотен тысяч лет, стали известны концентрации углекислого газа, закиси азота, метана, окиси углерода, а также температура тех времен. Модельная реконструкция состояния атмосферы в те эпохи и его сопоставление с нынешним позволяют проследить эволюцию земной атмосферы и оценить степень воздействия человека на природную среду.

Оценка интенсивности источников важнейших компонент воздуха. Систематические измерения в приземном воздухе содержания газов, таких, как метан, оксид углерода, оксиды азота, стали основой для решения обратной задачи: оценки размера выбросов в атмосферу газов, имеющих наземные источники, по их известным концентрациям. К сожалению, лишь инвентаризация виновников вселенского переполоха - ХФУ - является относительно простой задачей, так как почти все эти вещества не имеют естественных источников и общее их количество, поступившее в атмосферу, ограничивается объемом их производства. Остальные газы имеют разнородные и сравнимые по мощности источники. Например, источник метана - переувлажненные территории, болота, нефтяные скважины, угольные шахты; это соединение выделяется колониями термитов и даже является продуктом жизнедеятельности крупного рогатого скота. Оксид углерода попадает в атмосферу в составе выхлопных газов, в результате сжигания топлива, а также при окислении метана и многих органических соединений. Трудно осуществить прямые измерения выбросов этих газов, но разработаны методики, позволяющие давать оценки глобальных источников газов-загрязнителей, погрешность которых в последние годы значительно сократилась, хотя и остается большой.

Прогнозирование изменений состава атмосферы и климата Земли Рассматривая тенденции - тренды содержания атмосферных газов, оценки их источников, темпы роста населения Земли, скорости увеличения производства всех видов энергии и т.д., - специальными группами экспертов создаются и постоянно корректируются сценарии вероятного загрязнения атмосферы в ближайшие 10, 30, 100 лет. Исходя из них, с помощью моделей прогнозируются возможные изменения газового состава, температуры и циркуляции атмосферы. Таким образом удается заблаговременно обнаружить неблагоприятные тенденции в состоянии атмосферы и можно попытаться их устранить. Антарктический шок 1985 г. не должен повториться.

Явление парникового эффекта атмосферы

В последние годы стало отчётливо понятно, что аналогия между обычным парником и парниковым эффектом атмосферы не вполне корректна. Ещё в конце прошлого века известный американский физик Вуд, заменив в лабораторной модели парника обычное стекло на кварцевое и не обнаружив при этом никаких изменений в функционировании парника, показал, что дело не в задержке теплового излучения почвы стеклом, пропускающим солнечную радиацию, роль стекла в данном случае состоит лишь в “отсечении” турбулентного теплообмена между поверхностью почвы и атмосферой.

Парниковый (оранжерейный) эффект атмосферы – это её свойство пропускать солнечную радиацию, но задерживать земное излучение способствуя аккумуляции тепла землёй. Земная атмосфера сравнительно хорошо пропускает коротковолновую солнечную радиацию, которая почти полностью поглощается земной поверхностью. Нагреваясь за счёт поглощения солнечной радиации, земная поверхность становится источником земного, в основном длинноволнового, излучения, часть которого уходит в космическое пространство.

Влияние увеличивающейся концентрации СО2

Учёные – исследователи продолжают спорить о составе так называемых парниковых газов. Наибольший интерес в этой связи вызывает влияние увеличивающейся концентрации углекислого газа (СО2) на парниковый эффект атмосферы. Высказывается мнение, что известная схема: “рост концентрации углекислого газа усиливает парниковый эффект, что ведёт к потеплению глобального климата” – предельно упрощена и очень далека от действительности, так как наиболее важным “парниковым газом” является вовсе не СО2, а водяной пар. При этом оговорки, что концентрация водяного пара в атмосфере определяется лишь параметрами самой климатической системы, сегодня уже не выдерживает критики, так как антропогенное воздействие на глобальный круговорот воды убедительно доказано.

В качестве научных гипотез укажем на следующие последствия грядущего парникового эффекта. Во-первых, согласно наиболее распространенным оценкам, к концу XXI века содержание атмосферного СО2 удвоится, что неизбежно приведёт к повышению средней глобальной приземной температуры на 3 – 5 о С. При этом потепление ожидается более засушливым летом в умеренных широтах Северного полушария.

Во-вторых, предполагается, что подобный рост средней глобальной приземной температуры приведёт к повышению уровня Мирового океана на 20 – 165 сантиметров за счёт термического расширения воды. Что касается ледникового щита Антарктиды, то его разрушение не является неизбежным, так как для таяния необходимо более высокие температуры. В любом случае, процесс таяния антарктических льдов займёт весьма продолжительное время.

В-третьих, концентрация атмосферного СО2 может оказать весьма благоприятное воздействие на урожаи сельскохозяйственных культур. Результаты проведённых экспериментов позволяют предполагать, что в условиях прогрессирующего роста содержания СО2 в воздухе природная и культурная растительность достигнут оптимального состояния; возрастёт листовая поверхность растений, повысится удельный вес сухого вещество листьев, увеличатся средний размер плодов и число семян, ускорится созревание зерновых, а их урожайность повысится.

В-четвёртых, в высоких широтах естественные леса, особенно бореальные могут оказаться весьма чувствительными к измениям температуры. Потепление может привести к резкому сокращению площадей бореальных лесов, а также к перемещению их границу на север леса тропиков и субтропиков окажутся, вероятно, более чувствительными к изменению режима осадков, а не температуры.

Световая энергия солнца, проникает сквозь атмосферу, поглощается поверхностью земли и нагревает её. При этом световая энергия переходит в тепловую, которая выделяется в виде инфракрасного или теплового излучения. Вот это инфракрасное излучение, отражённое от поверхности земли, и поглощается углекислым газом, при этом он нагревается сам и нагревает атмосферу. Значит, чем больше в атмосфере углекислого газа, тем сильнее он улавливает климат на планете. То же самое происходит и в парниках, поэтому это явление называется парниковым эффектом.

Если так называемые парниковые газы будут поступать с теперешней скоростью, то в следующем столетии средняя температура Земли повысится на 4 – 5 о С, что может привести к глобальному потеплению планеты.

Заключение

Изменить свое отношение к природе совсем не означает, что следует отказаться от технического прогресса. Его остановка не решит проблему, а может лишь отсрочить ее решение. Надо настойчиво и терпеливо добиваться снижения выбросов за счет введения новых экологических технологий экономии сырья, потребляемой энергии и увеличения количества высаживаемых насаждений проведения воспитательных мероприятий экологического мировоззрения у населения.

Так, например, в США одно из предприятий по производству синтетического каучука расположено рядом с жилыми кварталами, и это не вызывает протеста жителей, потому что работают экологически чистые технологические схемы, которые в прошлом, при старых технологиях, не отличались чистотой.

Значит, нужен строгий отбор технологий, отвечающих самым жестким критериям, современные перспективные технологии позволят добиться высокого уровня экологичности производства во всех отраслях промышленности и транспорта, а так же увеличения количества высаживаемых зеленых насаждений в промышленных зонах и городах.

В последние годы ведущие позиции в развитии атмосферной химии занял эксперимент, а место теории такое же, как в классических, респектабельных науках. Но по-прежнему существуют области, где приоритетными остаются именно теоретические изыскания: например, только модельные эксперименты в состоянии обеспечить прогнозирование изменений состава атмосферы или оценить эффективность ограничительных мер, реализуемых в рамках Монреальского протокола. Стартовав с решения пусть важной, но частной задачи, сегодня химия атмосферы в сотрудничестве со смежными дисциплинами охватывает весь сложный комплекс проблем изучения и охраны окружающей среды. Пожалуй, можно сказать, что первые годы становления атмосферной химии прошли под девизом: “Не опоздать!” Стартовый рывок закончился, бег продолжается.

  • II. Распределите характеристики соответственно органоидам клетки (поставьте буквы, соответствующие характеристикам органоида, напротив названия органоида). (26 баллов)
  • II. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ ДНЕВНОЙ ФОРМЫ ОБУЧЕНИЯ ВСЕХ НЕФИЛОСОФСКИХ СПЕЦИАЛЬНОСТЕЙ 1 страница

  • Наземно-воздушная среда – самая сложная по экологическим условиям. Жизнь на суше потребовала таких приспособлений, которые оказались возможными лишь при достаточно высоком уровне организации растений и животных.

    4.2.1. Воздух как экологический фактор для наземных организмов

    Низкая плотность воздуха определяет его малую подъемную силу и незначительную спорность. Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения – разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим скелетом. Кроме того, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры. Жизнь во взвешенном состоянии в воздухе невозможна.

    Правда, множество микроорганизмов и животных, споры, семена, плоды и пыльца растений регулярно присутствуют в воздухе и разносятся воздушными течениями (рис. 43), многие животные способны к активному полету, однако у всех этих видов основная функция их жизненного цикла – размножение – осуществляется на поверхности земли. Для большинства из них пребывание в воздухе связано только с расселением или поиском добычи.

    Рис. 43. Распределение членистоногих воздушного планктона по высоте (по Дажо, 1975)

    Малая плотность воздуха обусловливает низкую сопротивляемость передвижению. Поэтому многие наземные животные использовали в ходе эволюции экологические выгоды этого свойства воздушной среды, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий. Летают наземные животные в основном с помощью мускульных усилий, но некоторые могут и планировать за счет воздушных течений.

    Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов.

    Анемофилия – древнейший способ опыления растений. Ветром опыляются все голосеменные, а среди покрытосеменных анемофильные растения составляют примерно 10 % всех видов.

    Анемофилия наблюдается в семействах буковых, березовых, ореховых, вязовых, коноплевых, крапивных, казуариновых, маревых, осоковых, злаков, пальм и во многих других. Ветроопыляемые растения имеют целый ряд приспособлений, улучшающих аэродинамические свойства их пыльцы, а также морфологические и биологические особенности, обеспечивающие эффективность опыления.

    Жизнь многих растений полностью зависит от ветра, и расселение совершается с его помощью. Такая двойная зависимость наблюдается у елей, сосен, тополей, берез, вязов, ясеней, пушиц, рогозов, саксаулов, джузгунов и др.

    У многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т. п. Пассивно переносимые потоками воздуха организмы получили в совокупности названиеаэропланктона по аналогии с планктонными обитателями водной среды. Специальные адаптации для пассивного полета – очень мелкие размеры тела, увеличение его площади за счет выростов, сильного расчленения, большой относительной поверхности крыльев, использование паутины и т. п. (рис. 44). Анемохорные семена и плоды растений обладают также либо очень мелкими размерами (например, семена орхидей), либо разнообразными крыловидными и парашютовидными придатками, увеличивающими их способность к планированию (рис. 45).

    Рис. 44. Приспособления к переносу воздушными потоками у насекомых:

    1 – комарик Cardiocrepis brevirostris;

    2 – галлица Porrycordila sp.;

    3 – перепончатокрылое Anargus fuscus;

    4 – хермес Dreyfusia nordmannianae;

    5 – личинка непарного шелкопряда Lymantria dispar

    Рис. 45. Приспособления к переносу ветром у плодов и семян растений:

    1 – липа Tilia intermedia;

    2 – клен Acer monspessulanum;

    3 – береза Betula pendula;

    4 – пушица Eriophorum;

    5 – одуванчик Taraxacum officinale;

    6 – рогоз Typha scuttbeworhii

    В расселении микроорганизмов, животных и растений основную роль играют вертикальные конвекционные потоки воздуха и слабые ветры. Сильные ветры, бури и ураганы также оказывают существенное экологическое воздействие на наземные организмы.

    Малая плотность воздуха обусловливает сравнительно низкое давление на суше. В норме оно равно 760 мм рт. ст. С увеличением высоты над уровнем моря давление уменьшается. На высоте 5800 м оно равняется лишь половине нормального. Низкое давление может ограничивать распространение видов в горах. Для большинства позвоночных верхняя граница жизни около 6000 м. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно таковы же пределы продвижения в горы высших растений. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности.

    В целом все наземные организмы гораздо более стенобатны, чем водные, так как обычные колебания давления в окружающей их среде составляют доли атмосферы и даже для поднимающихся на большую высоту птиц не превышают 1 / 3 нормального.

    Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов чрезвычайно важны ее химические особенности. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот – 78,1 %, кислород – 21,0, аргон – 0,9, углекислый газ – 0,035 % по объему) благодаря высокой диффузионной способности газов и постоянному перемешиванию конвекционными и ветровыми потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

    Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первично-водными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойотермия животных. Кислород, из-за постоянно высокого его содержания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефицит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т. п.

    Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточные изменения содержания углекислоты в приземных слоях, связанные с ритмом фотосинтеза растений. Сезонные обусловлены изменениями интенсивности дыхания живых организмов, преимущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко.

    В природе основным источником углекислоты является так называемое почвенное дыхание. Почвенные микроорганизмы и животные дышат очень интенсивно. Углекислый газ диффундирует из почвы в атмосферу, особенно энергично во время дождя. Много его выделяют почвы умеренно влажные, хорошо прогреваемые, богатые органическими остатками. Например, почва букового леса выделяет СО 2 от 15 до 22 кг/га в час, а неудобренная песчаная всего 2 кг/га.

    В современных условиях мощным источником поступления дополнительных количеств СО 2 в атмосферу стала деятельность человека по сжиганию ископаемых запасов топлива.

    Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд прокариотических организмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биологический круговорот.

    Рис. 46. Склон горы с уничтоженной растительностью из-за выбросов сернистого газа окрестными промышленными предприятиями

    Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы. Это особенно относится к ядовитым газообразным веществам – метану, оксиду серы, оксиду углерода, оксиду азота, сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воздух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропогенный: работа различных промышленных предприятий и транспорта, эрозия почв и т. п. Оксид серы (SО 2), например, ядовит для растений даже в концентрациях от одной пятидесятитысячной до одной миллионной от объема воздуха. Вокруг промышленных центров, загрязняющих атмосферу этим газом, погибает почти вся растительность (рис. 46). Некоторые виды растений особо чувствительны к SО 2 и служат чутким индикатором его накопления в воздухе. Например, многие лишайники погибают даже при следах оксида серы в окружающей атмосфере. Присутствие их в лесах вокруг крупных городов свидетельствует о высокой чистоте воздуха. Устойчивость растений к примесям в воздушной среде учитывают при подборе видов для озеленения населенных пунктов. Чувствительны к задымлению, например, обыкновенная ель и сосна, клен, липа, береза. Наиболее устойчивы туя, тополь канадский, клен американский, бузина и некоторые другие.

    4.2.2. Почва и рельеф. Погодные и климатические особенности наземно-воздушной среды

    Эдафические факторы среды. Свойства грунта и рельеф местности также влияют на условия жизни наземных организмов, в первую очередь растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяют названиемэдафические факторы среды (от греч. «эдафос» – основание, почва).

    Характер корневой системы растений зависит от гидротермического режима, аэрации, сложения, состава и структуры почвы. Например, корневые системы древесных пород (березы, лиственницы) в районах с многолетней мерзлотой располагаются на небольшой глубине и распростерты вширь. Там, где нет многолетней мерзлоты, корневые системы этих же растений менее распростерты и проникают вглубь. У многих степных растений корни могут доставать воду с большой глубины, в то же время у них много и поверхностных корней в гумусированном горизонте почвы, откуда растения поглощают элементы минерального питания. На переувлажненной, плохо аэрированной почве в мангровых зарослях многие виды имеют специальные дыхательные корни – пневматофоры.

    Можно выделить целый ряд экологических групп растений по отношению к разным свойствам почв.

    Так, по реакции на кислотность почвы различают: 1) ацидофильные виды – растут на кислых почвах с рН менее 6,7 (растения сфагновых болот, белоус); 2)нейтрофильные – тяготеют к почвам с рН 6,7–7,0 (большинство культурных растений); 3)базифильные – растут при рН более 7,0 (мордовник, лесная ветреница); 4)индифферентные – могут произрастать на почвах с разным значением рН (ландыш, овсяница овечья).

    По отношению к валовому составу почвы различают: 1) олиготрофные растения, довольствующиеся малым количеством зольных элементов (сосна обыкновенная); 2)эвтрофные, нуждающиеся в большом количестве зольных элементов (дуб, сныть обыкновенная, пролесник многолетний); 3)мезотрофные, требующие умеренного количества зольных элементов (ель обыкновенная).

    Нитрофилы – растения, предпочитающие почвы, богатые азотом (крапива двудомная).

    Растения засоленных почв составляют группу галофитов (солерос, сарсазан, кокпек).

    Некоторые виды растений приурочены к разным субстратам: петрофиты растут на каменистых почвах, апсаммофиты заселяют сыпучие пески.

    Рельеф местности и характер грунта влияют на специфику передвижения животных. Например, копытные, страусы, дрофы, живущие на открытых пространствах, нуждаются в твердом грунте для усиления отталкивания при быстром беге. У ящериц, обитающих на сыпучих песках, пальцы окаймлены бахромкой из роговых чешуй, которая увеличивает поверхность опоры (рис. 47). Для наземных обитателей, роющих норы, плотные грунты неблагоприятны. Характер почвы в ряде случаев влияет на распределение наземных животных, роющих норы, зарывающихся в грунт для спасения от жары или хищников либо откладывающих в почву яйца и т. д.

    Рис. 47. Вееропалый геккон – обитатель песков Сахары: А – вееропалый геккон; Б – нога геккона

    Погодные особенности. Условия жизни в наземно-воздушной среде осложняются, кроме того,погодными изменениями. Погода – это непрерывно меняющееся состояние атмосферы у земной поверхности до высоты примерно 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетания таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т. п. Для погодных изменений наряду с закономерным чередованием их в годовом цикле характерны непериодические колебания, что существенно усложняет условия существования наземных организмов. На жизнь водных обитателей погода влияет в значительно меньшей степени и лишь на население поверхностных слоев.

    Климат местности. Многолетний режим погоды характеризуетклимат местности. В понятие климата входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонения от него и их повторяемость. Климат определяется географическими условиями района.

    Зональное разнообразие климатов осложняется действием муссонных ветров, распределением циклонов и антициклонов, влиянием горных массивов на движение воздушных масс, степенью удаления от океана (континентальность) и многими другими местными факторами. В горах наблюдается климатическая поясность, во многом аналогичная смене зон от низких широт к высоким. Все это создает чрезвычайное разнообразие условий жизни на суше.

    Для большинства наземных организмов, особенно мелких, важен не столько климат района, сколько условия их непосредственного местообитания. Очень часто местные элементы среды (рельеф, экспозиция, растительность и т. п.) так изменяют в конкретном участке режим температуры, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие локальные модификации климата, складывающиеся в приземном слое воздуха, называют микроклиматом. В каждой зоне микроклиматы очень разнообразны. Можно выделить микроклиматы сколь угодно малых участков. Например, особый режим создается в венчиках цветков, что используют обитающие там насекомые. Широко известны различия температуры, влажности воздуха и силы ветра на открытом пространстве и в лесу, в травостое и над оголенными участками почвы, на склонах северной и южной экспозиций и т. п. Особый устойчивый микроклимат возникает в норах, гнездах, дуплах, пещерах и других закрытых местах.

    Осадки. Помимо водообеспечения и создания запасов влаги, они могут играть и другую экологическую роль. Так, сильные ливневые дожди или град оказывают иногда механическое воздействие на растения или животных.

    Особенно многообразна экологическая роль снегового покрова. Суточные колебания температур проникают в толщу снега лишь до 25 см, глубже температура почти не изменяется. При морозах в -20-30 °C под слоем снега в 30–40 см температура лишь ненамного ниже нуля. Глубокий снежный покров защищает почки возобновления, предохраняет от вымерзания зеленые части растений; многие виды уходят под снег, не сбрасывая листвы, например ожика волосистая, вероника лекарственная, копытень и др.

    Рис. 48. Схема телеметрического изучения температурного режима рябчика, находящегося в подснежной лунке (по А. В. Андрееву, А. В. Кречмару, 1976)

    Мелкие наземные зверьки ведут и зимой активный образ жизни, прокладывая под снегом и в его толще целые галереи ходов. Для ряда видов, питающихся подснежной растительностью, характерно даже зимнее размножение, которое отмечено, например, у леммингов, лесной и желтогорлой мыши, ряда полевок, водяной крысы и др. Тетеревиные птицы – рябчики, тетерева, тундряные куропатки – зарываются в снег на ночевку (рис. 48).

    Крупным животным зимний снеговой покров мешает добывать корм. Многие копытные (северные олени, кабаны, овцебыки) питаются зимой исключительно подснежной растительностью, и глубокий снежный покров, а особенно твердая корка на его поверхности, возникающая в гололед, обрекают их на бескормицу. При кочевом скотоводстве в дореволюционной России огромным бедствием в южных районах был джут – массовый падеж скота в результате гололедицы, лишавшей животных корма. Передвижение по рыхлому глубокому снегу также затруднено для животных. Лисы, например, в снежные зимы предпочитают в лесу участки под густыми елями, где тоньше слой снега, и почти не выходят на открытые поляны и опушки. Глубина снежного покрова может ограничивать географическое распространение видов. Например, настоящие олени не проникают на север в те районы, где толща снега зимой более 40–50 см.

    Белизна снежного покрова демаскирует темных животных. В возникновении сезонной смены окраски у белой и тундряной куропаток, зайца-беляка, горностая, ласки, песца, по-видимому, большую роль сыграл отбор на маскировку под цвет фона. На Командорских островах наряду с белыми много голубых песцов. По наблюдениям зоологов, последние держатся преимущественно вблизи темных скал и незамерзающей прибойной полосы, а белые предпочитают участки со снежным покровом.