Схема индикатора разряда li ion. Простой индикатор состояния литиевых аккумуляторов

Светодиодный индикатор уровня заряда обычной или аккумуляторной батареи, где все пороги устанавливаются с помощью потенциометров, можно собрать по приведённой в данном материале схеме. Огромным плюсом является то, что он работает с батареями от 3 до 28 В.

Схема индикатора разряда аккумулятора

Сами светоизлучающие диодные индикаторы бывают различных типов и цветов, рекомендуемые показаны на самой схеме. Из-за различий в прямом падении напряжения, токоограничивающие резисторы должны быть скорректированы для достижения наилучшей производительности и однородности свечения. По схеме R18-R22 предлагаются одинакового сопротивления — обратите внимание, что эти резисторы в итоге не должны быть равны. Однако, если все они одного цвета, одного номинала резистора будет достаточно.

Цвет светодиода — уровень заряда

  • Красный : от 0 до 25%
  • Оранжевый : 25 — 50%
  • Желтый : 50 — 75%
  • Зеленый : 75 — 100%
  • Синий : >100% напряжения

Здесь LM317 работает как простой источник опорного напряжения 1.25 В. Минимальное входное напряжение должно превышать выходное напряжение на значение в пару вольт. Минимальное входное напряжение = 1,25 В + 1,75 В = 3 В. Хотя LM317 имеет минимальную нагрузку по даташиту 5 мА, не обнаружен ни один экземпляр, который не функционировал бы при 3,8 мА. Именно резистор R5 (330 Ом) обеспечивает минимальную нагрузку.

При испытаниях оценивался уровень заряда 4,5 В батареи, именно для неё и приводятся напряжения на схеме. Настройка происходит так: сначала должны быть определены напряжения срабатывания каждого компаратора в соответствии с уровнем разряда батареи, потом напряжение должно быть разделено по коэффициенту деления делителя напряжения. Так, для 4,5 В АКБ, оно выглядит следующим образом:

Пороговое значение напряжений

  • 4.8V 1.12V
  • 4.5V 1.05V
  • 4,2 0.98V
  • 3.9V 0.91V

Работа индикатора состояния АКБ

Микросхема LM317 U3 — это 1.25 вольтовый источник опорного напряжения. Резисторы R5 и R6 образуют делитель напряжения, что снижает напряжение батареи до уровня, который находится недалеко от значения опорного напряжения. Элемент U2A является усилителем, так что независимо от того, сколько ток потребления этого узла, напряжение остается стабильным. Резисторы R8 — R11 обеспечивают высокое сопротивление на входы компаратора. U1 состоит из четырёх компараторов, которые сравнивают опорное напряжение потенциометров с напряжением батареи. ОУ LM358 U2B — тоже работает как своеобразный компаратор, который контролирует светодиод низшего порядка.

На граничных значениях напряжения светодиоды могут светить не чётко, как правило происходит мерцание между двумя соседними светодиодами. Чтобы предотвратить это, небольшое количество напряжения положительной обратной связи добавляется через R14 — R17.

Тестирование индикатора

Если тестирование проводится непосредственно с аккумулятора, обратите внимание, что защита от обратной полярности не предусмотрена. Лучше изначально цепи питания подключать через резистор 100 Ом, чтобы ограничить возможные неисправности. А после определения того, что полярность правильная, этот резистор может быть удален.

Упрощённая версия индикатора

Для тех, кто хочет собрать устройство попроще, микросхема U2, все диоды и некоторые резисторы могут быть устранены. Советуем начать с этой версии, а затем, убедившись в нормальной работе, собирать полную версию индикатора разряда аккумулятора. Всем удачи в запуске!



TL431 — трехногая микросхема, которую часто называют «управляемым стабилитроном», ведь с ее помощью можно получать любое напряжение в диапазоне 2,5…36 вольт. Кроме того, ее можно использовать как компаратор на напряжение 2,5 вольта:

— если на входе меньше, чем 2,5 вольта — ток через выходной транзистор микросхемы не идет;
— если на входе больше, чем 2,5 вольта — транзистор открыт, и ток идет через него.



Очень похоже на транзистор в ключевом режиме, не? И даже нагрузку — те же индикаторные светодиоды — можно включать точно так же, как в транзисторный ключ.


Готовая схема на 7 вольт (для двух последовательно соединенных Li-ion батарей, где 8,4 вольта при полном заряде); для повышения точности R2 можно сделать из постоянного на 47k и подстроечного на 10k . Вывод 1, проводя аналогию с n-p-n транзистором — «база», вывод 2 — «эмиттер», вывод 3 — «коллектор» (условно, конечно, стабилитрон — не транзистор). Пока на «базе» напряжение выше, чем 2,5 вольта — микросхема открыта, и ток идет через нее. По мере разряда батареи напряжение снижается, и как только с делителя пойдет меньше, чем 2,5 вольта — транзистор микросхемы закроется, и ток пойдет через светодиод.

При желании можно собрать эту же схему на резисторах 10k и 5k6 — она будет работать, но станет чуть более прожорливой. Так что для экономии лучше взять резисторы побольше номиналом. Повторюсь: индикатор разряда батареи не должен сильно ее разряжать .

R3 задает ток через светодиод-нагрузку и выходной транзистор микросхемы. Подбирается хотя бы и по желаемой яркости свечения.


Красным светодиодам для включения надо маленькое напряжение (начиная с 1,5 В), так что они могут светиться даже тогда, когда TL431 , по идее, открыта и шунтирует их. Решение — последовательно поставить второй светодиод или диод 1N4007. Или использовать светодиоды с более высоким напряжением включения — зеленые, синие, белые.

Индикатор разряда аккумулятора предназначен для получения оперативного предупреждения о разряде аккумуляторной батареи, что поможет защитить вас от многих проблем. Предлагаемая схема достаточно проста, а вся регулировка заключается в выставление порога срабатывания переменным резистором для включения светодиодной индикации.

Чтобы максимально упростить самодельную конструкцию, информация о степени разряда батареи поступает по принципу светодиодного столбика, то есть чем выше напряжение на батареи, тем больше светодиодов загорается. Нижний уровень отмечается красным светодиодом (верхний по схеме), на максимальное напряжение указывает нижний зеленый светодиод. Полное отсутствие свечения говорит о сильной критическом разряде аккумулятора.

В основе конструкции лежат четыре компаратора операционного усилителя LM324, каждый из них контролирует определенный уровень напряжения.

Опорное напряжение в 5 вольт для всех четырех компараторов идет со стабилитрона и сопротивления R6.

Если на прямом входе ОУ потенциал будет меньше потенциала на его инверсном входе, на выходе компаратора присутствует низкий логический уровень и светодиод не горит. Если опорное напряжение превысит потенциал на противоположном входе компаратор переключается, и светодиод загорится. Для каждого компаратора установлен свой персональный уровень, который настраивается сопротивлением делителя на резисторах R1-R5.

Вариант этой конструкции, но уже на операционном усилителе LM 339 подойдет для аккумуляторов с выходным напряжением 6 или 12 вольт.

В арсенале отечественных микросхем имеется серия КР1171, которые специально разработаны для контроля снижения напряжения питания. Вот и используем ее для контроля напряжения в аккумуляторной батареи.

Малый потребляемый ток в режиме «Вык.» позволяет встраивать данную конструкцию в устройства с непрерывным контролем напряжения аккумуляторной батареи. При этом индикатор можно подключить до выключателя питания устройства, напрямую к клеммам аккумуляторной батареи. Для переделки данной схемы индикатора на другое напряжение достаточно использовать соответствующую микросхему серии КР1171 и подобрать резистор R1 для нового напряжения. Исключение составляет только микросхема КР1171СП20, т. к. ее пороговый уровень 2В, а генератор на микросхеме К561ЛА7 не работает.

Для достижения минимальных размеров можно вместо динамика использовать миниатюрный излучатель. C помощью сопротивления R6 можно регулировать громкость звука.

Данная конструкция рассчитана на напряжение аккумуляторной батареи от 6 до 24 вольт.

Схема состоит из делителя напряжения на резисторах R1 R2, первый транзистор реагирует на уменьшение напряжения ниже заданного значения, а электронный ключ на втором транзисторе, через стоковую цепь запускает свepxъяркий светодиод.

При подключении схемы к аккумуляторной батареи, напряжение котopoгo необходимо контролировать, на затворе первого транзистора появляется напряжение положительной полярности, регулируемое резистором R2. Если оно выше порогового - транзистор открыт, сопротивление его канала не выше десятка Ом, поэтому напряжение на стоке второго транзистора VТ2 стремится к нулю и он закрыт, светодиод соответственно не горит, сигнализируя о том, что напряжение аккумуляторной батареи в норме. При снижении напряжения до порогового уровня, при котором напряжение на затворе первого транзистора становится ниже порогового, он закрывается, сопротивление его канала резко возрастает и напряжение на стоке стремится к значению напряжения питания. При этом открывается транзисторный ключ и светодиод загорается, говоря о недопустимой степени разряда аккумуляторной батареи.

На транзисторах VT2, VT3 построен триггер Шмитта, на VT1 - модуль запрета его срабатывания. В коллекторную цепь VT3 включен индикатор HL1, размещенный на приборной панели. В горячем состоянии нить накала индикатора обладает сопротивление в районе 50 Ом. Сопротивление холодной нити индикатора в несколько раз ниже. Поэтому транзистор VT3 выдерживает бросок тока в коллекторной цепи до уровня 2,5 А.

Напряжение бортовой сети за минусом напряжения на стабилитроне VD2 через делитель R5-R6 поступает на базу VT2. Если оно выше 13,5 В, триггер Шмитта переключается и транзистор VT3 закрыт, а HL1 не светится.

Очередная поделка выходного дня – индикатор разряда для аккумуляторной батареи.
Батарея боится переразряда, от этого зависит срок её службы и надо контролировать её напряжение, чтоб вовремя ставить на зарядку; а мамка в ближайшее время денег на новые «батарейки» не даст.

Собираем индикатор разряда АКБ, специально для начинающих: простой, из «мусора». Вариантов в интернете миллион, я выбрал вот такую схему. Собрал на макетке, поэкспериментировал с ней – работает. Может, кому пригодится. А вот собственно и схемка:

При таких номиналах деталей я настраивал подстроечником R2 (нашел в хламе многооборотный ELECTRON на 10кОм) порог срабатывания на 8 и на 5 вольт. Гистерезис в первом случае составляет 0,4 В, во втором – 0,15 В. Кстати, подстроечник действительно лучше взять многооборотный, но только килоома на 3, ибо при уставке 8В его сопротивление равно примерно 1,6кОм, а для 5В - примерно 2,6кОм.

Изменить гистерезис можно подбором резистора R4, но если его сопротивление будет слишком малым, страдает пороговость включения: светодиод будет загораться плавно, что не есть гут; а если большим (десятки Ом) – гистерезис будет огромным, до нескольких вольт, что тоже паршиво. Ещё у меня есть сомнения по поводу термостабильности данной схемы, но в условиях комнаты работает неплохо. На схеме обозначен ток потребления при погасшем/зажженном светодиоде и напряжении на входе 5 В.
«Отака, малята, фигня…»

Ниже на фото на Макетной плате собрана и показана работа этой схемки. Итак, при напряжении 8,25 Вольт у нас светодиод не загорается.

Но как только напряжение упало до 8 Вольт, то у нас светодиод сразу же сигнализирует о малом напряжении.

Применение этой схемы можно найти в различной радиоаппаратуре, которая питается электрохимическими элементами. Можно также доработать этот каскад и вместо светодиода поставить другую цепь, которая бы включала или выключала резервное питание или зарядку на АКБ.

Индикатор заряда аккумулятора – нужная штука в хозяйстве любого автомобилиста. Актуальность такого устройства возрастает многократно, когда холодным зимним утром автомобиль, почему-то, отказывается заводиться. В этой ситуации стоит определиться, то ли звонить другу, что бы тот приехал и помог завестись от своей батареи, либо аккумулятор приказал долго жить, разрядившись ниже критического уровня.

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Зависимость температуры промерзания электролита от степени заряда аккумулятора
Плотность электролита, мг/см. куб. Напряжение, В (без нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
1110 11,7 8,4 0,0 -7
1130 11,8 8,7 10,0 -9
1140 11,9 8,8 20,0 -11
1150 11,9 9,0 25,0 -13
1160 12,0 9,1 30,0 -14
1180 12,1 9,5 45,0 -18
1190 12,2 9,6 50,0 -24
1210 12,3 9,9 60,0 -32
1220 12,4 10,1 70,0 -37
1230 12,4 10,2 75,0 -42
1240 12,5 10,3 80,0 -46
1270 12,7 10,8 100,0 -60

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

  • аналоговые;
  • цифровые.

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.


Принципиальная схема индикатора

Как сделать индикатор заряда аккумулятора на светодиодах?

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3 , ниже 12В — VD1 .

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284) .

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.