Решение интегралов разными способами. Интегрирование методом замены переменной

4.1. ПРОСТЕЙШИЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ 4.1.1. Понятие неопределенного интеграла

В дифференциальном исчислении рассматривалась задача нахождения производной или дифференциала по заданной функции y = F(x), т. е. необходимо было найти f (x) = F"(x) или dF(x) = F"(x) dx = f (x) dx. Поставим обратную задачу: восстановить продифференцированную функцию, т. е., зная производную f(x) (или дифференциал f(x)dx), найти такую функцию F(x), чтобы F"(x) = f (x). Эта задача оказывается значительно более трудной, чем задача дифференцирования. Например, пусть известна скорость перемещения точки, а надо найти закон

ее перемещения S = S(t), причемДля решения подобных

задач вводятся новые понятия и действия.

Определение. Дифференцируемая функция F(x) называется первообразной для функции f (x) на (a; b), если F"(x) = f (x) на (a; b).

Например, для f (x) = x 2 первообразная так как

для f (x) = cos x первообразной будет F(x) = sin x, потому что F"(x) = (sin x)" = cos x, что совпадает с f (x).

Всегда ли существует первообразная для заданной функции f (x)? Да, если эта функция непрерывна на (a; b). Кроме того, первообразных бесчисленное множество, и отличаются они друг от друга только постоянным слагаемым. Действительно, sin x + 2, sin x - 2, sin x + c - все эти функции будут первообразными для cos x (производная от постоянной величины равна 0) - рис. 4.1.

Определение. Выражение F(x) + C, где С - произвольная постоянная величина, определяющее множество первообразных для функции f (x), называется неопределенным интегралом и обозначается символом , т. е., где знак - знак неопределенного

интеграла, f (x) - называется подынтегральной функцией, f (x)dx - подынтегральньм выражением, х - переменной интегрирования.

Рис. 4.1. Пример семейства интегральных кривых

Определение. Операция нахождения первообразной по заданной производной или дифференциалу называется интегрированием этой функции.

Интегрирование - действие, обратное дифференцированию, его можно проверить дифференцированием, причем дифференцирование однозначно, а интегрирование дает ответ с точностью до постоянной. Придавая постоянной величине С конкретные значенияпо-

лучим различные функции

каждая из которых задает на координатной плоскости кривую, называемую интегральной. Все графики интегральных кривых сдвинуты параллельно относительно друг друга вдоль оси Oy. Следовательно, геометрически неопределенный интеграл представляет собой семейство интегральных кривых.

Итак, введены новые понятия (первообразной и неопределенного интеграла) и новое действие (интегрирование), но как все-таки находить первообразную? Чтобы легко было ответить на этот вопрос, надо в первую очередь составить и выучить наизусть таблицу неопределенных интегралов от основных элементарных функций. Она получается в результате обращения соответствующих формул дифференцирования. Например, если

Обычно в таблицу включаются некоторые интегралы, полученные после применения простейших методов интегрирования. Эти формулы помечены в табл. 4.1 символом «*» и доказаны при дальнейшем изложении материала.

Таблица 4.1. Таблица основных неопределенных интегралов

Формула 11 из табл. 4.1 может иметь вид
,

так как. Аналогичное замечание и по поводу фор-

мулы 13:

4.1.2. Свойства неопределенных интегралов

Рассмотрим простейшие свойства неопределенного интеграла, которые позволят интегрировать не только основные элементарные функции.

1.Производная от неопределенного интеграла равна подынтегральной функции:

2.Дифференциал от неопределенного интеграла равен подынтегральному выражению:

3.Неопределенный интеграл от дифференциала функции равен этой функции, сложенной с произвольной постоянной:

Пример 1. Пример 2.

4.Постоянный множитель можно выносить за знак интеграла: Пример 3.

5.Интеграл от суммы или разности двух функций равен сумме или разности интегралов от этих функций:

Пример 4.

Формула интегрирования остается справедливой, если переменная интегрирования является функцией: если то

Произвольная функция, имеющая непрерывную производную. Это свойство называется инвариантностью.

Пример 5., поэтому

Сравнить с

Универсального способа интегрирования не существует. Далее будут приведены некоторые методы, позволяющие вычислить заданный интеграл с помощью свойств 1-5 и табл. 4.1.

4.1.3.Непосредственное интегрирование

Этот метод заключается в прямом использовании табличных интегралов и свойств 4 и 5. Примеры.


4.1.4.Метод разложения

Этот метод заключается в разложении подынтегральной функции в линейную комбинацию функций с уже известными интегралами.

Примеры.


4.1.5. Метод подведения под знак дифференциала

Для приведения данного интеграла к табличному бывает удобно сделать преобразования дифференциала.

1. Подведение под знак дифференциала линейной функции

отсюда
в частности, dx =
d(x + b),

дифференциал не меняется, если к переменной прибавить

или отнять постоянную величину. Если переменная увеличивается в несколько раз, то дифференциал умножается на обратную величину. Примеры с решениями.

Проверим формулы 9*, 12* и 14* из табл. 4.1, используя метод подведения под знак дифференциала:


что и требовалось доказать.

2. Подведение под знак дифференциала основных элементарных функций:

Замечание. Формулы 15* и 16* могут быть проверены дифференцированием (см. свойство 1). Например,


а это и есть подынтегральная функция из формулы 16*.

4.1.6. Метод выделения полного квадрата из квадратичного трехчлена

При интегрировании выражений типа или

выделением полного квадрата из квадратного трехчлена

ax 2 + bx + c удается свести их к табличным 12*, 14*, 15* или 16* (см. табл. 4.1).

Поскольку в общем виде эта операция выглядит сложнее, чем на самом деле, ограничимся примерами.

Примеры.

1.

Решение. Здесь мы выделяем полный квадрат из квадратного трехчлена x 2 + 6x + 9 = (x 2 + 6x + 9) - 9 + 5 = (x + 3) 2 - 4 , а затем используем метод подведения под знак дифференциала.

Рассуждая аналогично, можно вычислить следующие интегралы:

2. 3.

На заключительном этапе интегрирования была использована формула 16*.

4.1.7. Основные методы интегрирования

Таких методов два: метод замены переменной, или подстановка, и интегрирование по частям.

Метод замены переменной

Существуют две формулы замены переменной в неопределенном интеграле:

1) 2)

Здесьсуть монотонные дифференцируемые функ-

ции своих переменных.

Искусство применения метода состоит, в основном, в выборе функцийтак, чтобы новые интегралы являлись табличными или сводились к ним. В окончательном ответе следует вернуться к старой переменной.

Заметим, что подведение под знак дифференциала является частным случаем замены переменной.

Примеры.

Решение. Здесь следует ввести новую переменную t так, чтобы избавиться от квадратного корня. Положим x + 1 = t, тогда x = t 2 + 1, а dx = 2 tdt:

Решение. Заменив x - 2 на t, получим в знаменателе одночлен и после почленного деления интеграл сведется к табличному от степенной функции:

При переходе к переменной x использованы формулы:

Метод интегрирования по частям

Дифференциал произведения двух функций определяется формулой

Интегрируя это равенство (см. свойство 3), найдем:


ОтсюдаЭто и есть формула интегрирования по

частям.

Интегрирование по частям предполагает субъективное представление подынтегрального выражения в виде u . dV, и при этом интеграл должен быть проще, чемВ противном случае применение

метода не имеет смысла.

Итак, метод интегрирования по частям предполагает умение выделять из подынтегрального выражения сомножители u и dV с учетом вышеизложенных требований.

Приведем ряд типичных интегралов, которые могут быть найдены методом интегрирования по частям. 1. Интегралы вида

где P(x) - многочлен; k - постоянная. В этом случае u = P(x), а dV - все остальные сомножители.

Пример 1.

2.Интегралы типа

Здесь положим- другие сомножители.

Пример 2.


Пример 3.
Пример 4.


Любой результат можно проверить дифференцированием. Напр мер, в данном случае

Результат верен.

3.Интегралы вида

где a, b - const. За u следует взять e ax , sin bx или cos bx.

Пример 5.


Отсюда получаем Пример 6.


Отсюда


Пример 7.
Пример 8.

Решение. Здесь надо сперва сделать замену переменной, а потом интегрировать по частям:

Пример 9.
Пример 10.

Решение. Этот интеграл с равным успехом может быть найден как в результате замены переменной 1 + х 2 = t 2 , так и методом интегрирования по частям:


Самостоятельная работа

Выполнить непосредственное интегрирование (1-10).

Применить простейшие методы интегрирования (11-46).

Выполнить интегрирование, используя методы замены переменной и интегрирования по частям (47-74).

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Приведение к табличному виду или метод непосредственного интегрирования . С помощью тождественных преобразований подынтегральной функции интеграл сводится к интегралу, к которому применимы основные правила интегрирования и возможно использование таблицы основных интегралов .

Пример

Задание. Найти интеграл $\int 2^{3 x-1} d x$

Решение. Воспользуемся свойствами интеграла и приведем данный интеграл к табличному виду.

$\int 2^{3 x-1} d x=\int 2^{3 x} \cdot 2^{-1} d x=\frac{1}{2} \int\left(2^{3}\right)^{x} d x=$

$=\frac{1}{2} \int 8^{x} d x=\frac{8^{x}}{2 \ln 8}+C$

Ответ. $\int 2^{3 x-1} d x=\frac{8^{x}}{2 \ln 8}+C$

ссылке →

2. Внесение под знак дифференциала

3. Интегрирование заменой переменной

Интегрирование заменой переменной или методом подстановки . Пусть $x=\phi(t)$, где функция $\phi(t)$ имеет непрерывную производную $\phi^{\prime}(t)$, а между переменными $x$ и $t$ существует взаимно однозначное соответствие. Тогда справедливо равенство

$\int f(x) d x=\int f(\phi(t)) \cdot \phi^{\prime}(t) \cdot d t$

Определенный интеграл зависит от переменной интегрирования, поэтому если выполнена замена переменных, то обязательно надо вернуться к первоначальной переменной интегрирования.

Пример

Задание. Найти интеграл $\int \frac{d x}{3-5 x}$

Решение. Заменим знаменатель на переменную $t$ и приведем исходный интеграл к табличному.

$=-\frac{1}{5} \ln |t|+C=-\frac{1}{5} \ln |3-5 x|+C$

Ответ. $\int \frac{d x}{3-5 x}=-\frac{1}{5} \ln |3-5 x|+C$

Подробнее о данном методе решении интегралов по ссылке →

4. Интегрирование по частям

Интегрированием по частям называют интегрирование по формуле

$\int u d v=u v-\int v d u$

При нахождении функции $v$ по ее дифференциалу $d v$ можно брать любое значение постоянной интегрирования $C$, так как она в конечный результат не входит. Поэтому для удобства будем брать $C=0$ .

Использование формулы интегрирования по частям целесообразно в тех случаях, когда дифференцирование упрощает один из сомножителей, в то время как интегрирование не усложняет другой.

Пример

Задание. Найти интеграл $\int x \cos x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям.

$=x \sin x+\cos x+C$

Ответ. $\int x \cos x d x=x \sin x+\cos x+C$

Первообразная F(x) от функции f(x) - это такая функция, производная которой равна f(x) :
F′(x) = f(x), x ∈ Δ ,
где Δ - промежуток, на котором выполняется данное уравнение.

Совокупность всех первообразных называется неопределенным интегралом:
,
где C - постоянная, не зависящая от переменной x .

Основные формулы и методы интегрирования

Таблица интегралов

Конечная цель вычисления неопределенных интегралов - путем преобразований, привести заданный интеграл к выражению, содержащему простейшие или табличные интегралы.
См. Таблица интегралов >>>

Правило интегрирования суммы (разности)

Вынесение постоянной за знак интеграла

Пусть c - постоянная, не зависящая от x . Тогда ее можно вынести за знак интеграла:

Замена переменной

Пусть x - функция от переменной t , x = φ(t) , тогда
.
Или наоборот, t = φ(x) ,
.

С помощью замены переменной можно не только вычислить простые интегралы, но и упростить вычисление более сложных.

Правило интегрирования по частям

Интегрирование дробей (рациональных функций)

Введем обозначение. Пусть P k (x), Q m (x), R n (x) обозначают многочлены степеней k, m, n , соответственно, относительно переменной x .

Рассмотрим интеграл, состоящий из дроби многочленов (так называемая рациональная функция):

Если k ≥ n , то сначала нужно выделить целую часть дроби:
.
Интеграл от многочлена S k-n (x) вычисляется по таблице интегралов.

Остается интеграл:
, где m < n .
Для его вычисления, подынтегральное выражение нужно разложить на простейшие дроби.

Для этого нужно найти корни уравнения:
Q n (x) = 0 .
Используя полученные корни, нужно представить знаменатель в виде произведения сомножителей:
Q n (x) = s (x-a) n a (x-b) n b ... (x 2 +ex+f) n e (x 2 +gx+k) n g ... .
Здесь s - коэффициент при x n , x 2 + ex + f > 0 , x 2 + gx + k > 0 , ... .

После этого разложить дробь на простейшие:

Интегрируя, получаем выражение, состоящее из более простых интегралов.
Интегралы вида

приводятся к табличным подстановкой t = x - a .

Рассмотрим интеграл:

Преобразуем числитель:
.
Подставляя в подынтегральное выражение, получаем выражение, в которое входят два интеграла:
,
.
Первый, подстановкой t = x 2 + ex + f приводится к табличному.
Второй, по формуле приведения:

приводится к интегралу

Приведем его знаменатель к сумме квадратов:
.
Тогда подстановкой , интеграл

также приводится к табличному.

Интегрирование иррациональных функций

Введем обозначение. Пусть R(u 1 , u 2 , ... , u n) означает рациональную функцию от переменных u 1 , u 2 , ... , u n . То есть
,
где P, Q - многочлены от переменных u 1 , u 2 , ... , u n .

Дробно-линейная иррациональность

Рассмотрим интегралы вида:
,
где - рациональные числа, m 1 , n 1 , ..., m s , n s - целые числа.
Пусть n - общий знаменатель чисел r 1 , ..., r s .
Тогда интеграл сводится к интегралу от рациональных функций подстановкой:
.

Интегралы от дифференциальных биномов

Рассмотрим интеграл:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

Если ни одно из трех чисел не является целым числом, то по теореме Чебышева интегралы данного вида не могут быть выражены конечной комбинацией элементарных функций.

В ряде случаев, сначала бывает полезным привести интеграл к более удобным значениям m и p . Это можно сделать с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Здесь мы рассматриваем интегралы вида:
,

Подстановки Эйлера

Такие интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Тригонометрические и гиперболические подстановки

Прямые методы

В большинстве случаев, подстановки Эйлера приводят к более длинным вычислениям, чем прямые методы. С помощью прямых методов интеграл приводится к одному из перечисленных ниже видов.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Третий и наиболее сложный тип:
.

Здесь нужно сделать подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
;
,
которые интегрируются, соответственно подстановками:
z 2 = A 1 t 2 + C 1 ;
y 2 = A 1 + C 1 t -2 .

Общий случай

Интегрирование трансцендентных (тригонометрических и показательных) функций

Заранее отметим, что те методы, которые применимы для тригонометрических функций, также применимы и для гиперболических функций. По этой причине мы не будем рассматривать интегрирование гиперболических функций отдельно.

Интегрирование рациональных тригонометрических функций от cos x и sin x

Рассмотрим интегралы от тригонометрических функций вида:
,
где R - рациональная функция. Сюда также могут входить тангенсы и котангенсы, которые следует преобразовать через синусы и косинусы.

При интегрировании таких функций полезно иметь в виду три правила:
1) если R(cos x, sin x) умножается на -1 от перемены знака перед одной из величин cos x или sin x , то полезно другую из них обозначить через t .
2) если R(cos x, sin x) не меняется от перемены знака одновременно перед cos x и sin x , то полезно положить tg x = t или ctg x = t .
3) подстановка во всех случаях приводит к интегралу от рациональной дроби. К сожалению, эта подстановка приводит к более длинным вычислениям чем предыдущие, если они применимы.

Произведение степенных функций от cos x и sin x

Рассмотрим интегралы вида:

Если m и n - рациональные числа, то одной из подстановок t = sin x или t = cos x интеграл сводится к интегралу от дифференциального бинома.

Если m и n - целые числа, то интегралы вычисляются интегрированием по частям. При этом получаются следующие формулы приведения:

;
;
;
.

Интегрирование по частям

Применение формулы Эйлера

Если подынтегральное выражение линейно относительно одной из функций
cos ax или sin ax , то удобно применить формулу Эйлера:
e iax = cos ax + isin ax (где i 2 = -1 ),
заменив эту функцию на e iax и выделив действительную (при замене cos ax ) или мнимую часть (при замене sin ax ) из полученного результата.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Определение . Метод интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции (или подынтегрального выражения) и применяя свойства неопределенного интеграла приводится к одному или нескольким табличным интегралам называется непосредственным интегрированием .

Часто при непосредственном интегрировании используются следующие преобразования дифференциала (операция «внесения под знак дифференциала»):

Например . 1) ;

При вычислении данных интегралов пользовались формулами 1 и 2 таблицы интегралов, которая приведена ниже.

Таблица основных неопределенных интегралов.

  1. Метод интегрирования подстановкой (заменой переменной).

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования. При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся.

Данный метод интегрирования основывается на следующей теореме:

Теорема. Пусть функцию f(x) можно представить в виде: f(x)=g(j(x))×j¢(х), тогда если G(u) является первообразной для g(u), то и G(j(x)) является первообразной для g(j(x)). То есть имеет место равенство: .

Например.

  1. Метод интегрирования по частям.

Интегрирование по частям состоит в том, что подынтегральное выражение некоторого интеграла представляется в виде произведения двух сомножителей u и dv, затем используется формула интегрирования по частям.

Теорема Пусть функции u(x) и v(x) дифференцируемы, тогда имеет место формула:

Так как u¢(x)dx=du, v¢(x)dx=dv, то формулу можно переписать в виде:

Например.

Формулу интегрирования по частям в процессе решения можно применять несколько раз.

Например

Например

перенесем из правой части равенства в левую:

Некоторые типы интегралов, которые удобно вычислять методом интегрирования по частям:

; ; , где Р(х)– многочлен от х, к – некоторое число u=P(x), dv – остальные множители
; ; ; ; dv=P(x)dх, u – все остальные множители
; , где а и b – некоторые числа , dv – остальные множители
  1. Интегрирование рациональных дробей.

ОпределениеРациональными будем называть дроби вида , где P n (x), Q m (x) многочлены соответственно n-ой и m-ой степени от х. К простейшим рациональным дробям отнесем дроби четырех типов:

Где А и а – некоторые действительные числа, – простейшая дробь первого типа;

– простейшая дробь второго типа;

– простейшая дробь третьего типа;

– простейшая дробь четвертого типа.

Рассмотрим интегрирование дробей первых трех типов.

3) Интегрирование простейшей дроби третьего типа проводится в два этапа. Разберем процесс интегрирования на примере.

(выделим в числителе производную знаменателя для последующего внесения под знак дифференциала: (х 2 +2х+3)¢=2х+2)

Определение Рациональные дроби называются правильными если степень многочлена в числителе меньше степени многочлена в знаменателе и неправильными если степень многочлена в числителе больше или равна степени многочлена в знаменателе.

В случае неправильной рациональной дроби возможно выделить целую часть. Для этого многочлен из числителя делят с остатком на многочлен знаменателя. Полученное частное будет целой частью, а остаток – числителем новой правильной рациональной дроби. Например, выделим целую часть: .

Таким образом, интегрирование рациональных дробей в обоих случаях сводится к интегрированию правильной рациональной дроби, которая не всегда является простейшей рациональной дробью одного из четырех типов.

Рассмотрим некоторый многочлен Q(x). Пусть число а является корнем этого многочлена, тогда Q(x)=(х-а)Q 1 (x), где Q 1 (x) – многочлен степени на 1 меньше степени Q(x). Число а может быть корнем кратности к, тогда Q(x)=(х-а) к Q 2 (x), где Q 2 (x) – многочлен степени на к меньше степени Q(x). Кроме того, многочлен Q(x) наряду с действительными корнями может иметь комплексный корень a+bi, тогда комплексное число a-bi также будет корнем Q(x). В этом случае Q(x)=(х 2 +px+q)Q 3 (x), где х 2 +px+q=(х-(a+bi))(х-(a-bi)). Если же указанные комплексные числа являются корнями кратности m, тогда Q(x)=(х 2 +px+q) m Q 4 (x).

Таким образом, всякий многочлен Q(x) можно представить в виде:

Q(x)=(х-а 1) к 1 (х-а 2) к 2 …(х-а n) k n (х 2 +p 1 x+q 1) m 1 (х 2 +p 2 x+q 2) m 2 …(х 2 +p s x+q s) m s .

Теорема. Любую правильную рациональную дробь можно представить в виде суммы простейших рациональных дробей 1-4 типов.

Например. Рассмотрим алгоритм представления правильной рациональной дроби в виде суммы простейших рациональных дробей 1-4 типов.

Так как знаменатели дробей равны, очевидно, должны быть равны и числители, а это равенство возможно при равенстве коэффициентов при одинаковых степенях х. Таким образом, подставив вместо неопределенных коэффициентов A, B, C их значения получим: .

Например Найти интеграл .

Подынтегральная функция является неправильной рациональной дробью. После деления числителя на знаменатель с остатком получим: .

Разложим правильную рациональную дробь на простейшие методом неопределенных коэффициентов:

Отсюда следует, что Решая полученную систему линейных уравнений, получаем Тогда , то есть = ;

Найдем отдельно

Таким образом, .

  1. Интегрирование тригонометрических функций.

1. Пусть необходимо найти , где R – некоторая функция

При отыскании таких интегралов часто бывает полезно воспользоваться универсальной тригонометрической подстановкой: . С ее помощью всегда можно перейти от интеграла тригонометрической функции к интегралу от рациональной функции:

Х=2arctgt, .

2. Если функция R(sinx, cosx) нечетна относительно sinx, то есть R(-sinx, cosx)=- R(sinx, cosx), то применяют подстановку cosx=t;

3. Если функция R(sinx, cosx) нечетна относительно соsx, то есть R(sinx, -cosx)=- R(sinx, cosx), то применяют подстановку sinx=t;

4. Если функция R(sinx, cosx) четна относительно sinx и соsx, то есть R(-sinx, -cosx)=R(sinx, cosx), то применяют подстановку tgx=t; такая же подстановка применяется в случае .

Например.

Например Найти интеграл . Подынтегральная функция четна относительно sinx, тогда применяем подстановку tgx=t.

5. Для нахождения интегралов вида используют следующие приемы:

а) если n – нечетное целое положительное число, то используют подстановку sinx=t;

б) если m – нечетное целое положительное число, то используют подстановку соsx=t;

в) если m и n – целые неотрицательные четные числа, то используют формулы понижения порядка ; ; ;

г) если m+n – четное отрицательное целое число, то используют подстановку tgx=t.

Например. .

Например. . ; приводятся к интегралам от тригонометрических функций с помощью следующих подстановок:

а) для интеграла подстановка х=a×sint;

б) для интеграла подстановка х=a×tgt;

в) для интеграла подстановка .