Конспект урока "Затухающие и вынужденные колебания. Резонанс"

Рассмотрим колебания маятника при наличии сил трения. Кроме возвращающей силы здесь появляется сила трения, которую будем считать пропорциональной скорости:

где r - коэффициент трения.

В этом случае уравнение колебаний принимает вид

Введем обозначения:

где - коэффициент затухания.

Тогда уравнение колебаний приводится к виду

Решение этого уравнения

где - частота колебаний при наличии затухания. Выражение

называют амплитудой затухающих колебаний. Зависимость x(t) имеет вид


Временем релаксации называется величина ф=1/д. Амплитуду затухающих колебаний запишем в виде

При t = ф амплитуда уменьшается в е раз.

Для характеристики затухающих колебаний вводят различные величины. Рассмотрим некоторые из них.

Логарифмическим декрементом затуханий называется величина, равная логарифму отношения амплитуд колебаний, отличающихся на период.

Период затухающих колебаний.

Часто используется также величина

называемая добротностью.

Для амплитуды колебаний можно записать

Учитывая формулу

можно записать

где - число колебаний, совершаемое маятником за время, когда амплитуда колебаний уменьшается в раз.

Вынужденные колебания

Рассмотрим случай, когда на маятник действует внешняя сила

Уравнение колебаний в этом случае имеет вид

Решение уравнения вынужденных колебаний запишем в виде

общее решение однородного уравнения,

частное решение неоднородного уравнения. Здесь

угол сдвига фаз,

амплитуда, которая зависит от частоты приложенного напряжения.

Функция описывает собственные колебания маятника. Эти колебания не зависят от внешней силы, имеют затухающий характер и спустя время почти исчезают.

Функция описывает вынужденные колебания, создаваемые внешними силами. Это незатухающие колебания с частотой внешнего возбуждения.

Нетрудно показать, что максимальное значение амплитуды достигается при частоте

которая называется резонансной, а само явление возрастания амплитуды вынужденных колебаний при определенной частоте называется резонансом. Резонансная кривая имеет вид, показанный на рисунке.

При резонансной частоте амплитуда колебаний возрастает во много раз. Явление резонанса следует учитывать при строительстве зданий, сооружений, машин. Собственная частота колебаний этих объектов должна быть далека от частоты вынужденных колебаний, которым могут подвергаться эти объекты. В противном случае возникают вибрации большой амплитуды, которые могут вызвать катастрофу. Такие случаи неоднократно отмечались.

Вместе с тем явления резонанса могут быть очень полезными, когда требуется многократное усиление необходимых колебаний. Это явление широко используется в радиотехнике, акустике, при создании сверхточных приборов.

Важную роль в технике играют автоколебания. Автоколебаниями называют незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.

Примеры автоколебаний: часы, ламповые генераторы, двигатели внутреннего сгорания и пр. Строгая теория автоколебательных систем очень сложна, т.к. такие системы описываются нелинейными дифференциальными уравнениями, и в большинстве случаев получить строгое аналитическое решение таких уравнений не удается.

Колебательное движение реальной механической системы всегда сопровождается трением, на преодоление которого расходуется часть энергии колебательной системы. Поэтому энергия колебания в процессе колебания уменьшается, переходя в теплоту. Так как энергия колебания пропорциональна квадрату амплитуды, то постепенно уменьшается и амплитуда колебаний (рис. 53; х - смещение, t - время). Когда вся энергия колебания перейдет в теплоту, колебание прекратится (затухнет). Такого рода колебания называются затухающими.

Для того чтобы система совершала незатухающие колебания, необходимо восполнять извне потери энергии колебания на трение. Для этого надо воздействовать на систему периодически изменяющейся силой

где амплитудное (максимальное) значение силы, круговая частота колебаний силы, время. Внешняя сила, обеспечивающая незатухающие колебания системы, называется вынуждающей силой, а колебания системы - вынужденными. Очевидно, что вынужденные колебания происходят с частотой, равной частоте вынуждающей силы. Определим амплитуду вынужденных колебаний.

Для упрощения расчета пренебрежем силой трения, полагая, что на колеблющееся тело действуют только две силы: вынуждающая и возвращающая Тогда, согласно второму закону Ньютона,

где - масса и ускорение колеблющегося тела. Но, как было показано в § 27, Тогда

где смещение колеблющегося тела. Согласно формуле (9),

где - круговая частота собственных колебаний тела (т. е. колебаний, обусловленных только действием возвращающей силы). Поэтому

Из уравнения (22) следует, что амплитуда вынужденного колебания

зависит от соотношения круговых частот вынужденного и собственного колебаний: при будет В действительности благодаря трению амплитуда вынужденных колебаний

остается конечной. Она достигает максимального значения в том случае, когда частота вынужденных колебаний близка к частоте собственных колебаний системы. Явление резкого возрастания амплитуды вынужденных колебаний при называется резонансом.

Используя резонанс, можно посредством небольшой вынуждающей силы вызвать колебание с большой амплитудой. Подвесим, например, карманные или ручные часы на нити такой длины, чтобы частота собственных колебаний полученного физического маятника (рис. 54) совпала с частотой колебаний балансира часового механизма. В результате часы сами начнут колебаться, отклоняясь от положения равновесия на угол а 30°.

Явление резонанса имеет место при колебаниях любой природы (механических, звуковых, электрических и др.). Оно широко используется в акустике - для усиления звука, в радиотехнике - для усиления электрических колебаний и т. п.

В некоторых случаях резонанс играет вредную роль. Он может вызвать сильную вибрацию конструкций (зданий, опор, мостов и т. п.) при работе установленных на этих конструкциях механизмов (станков, моторов и т. п.). Поэтому при расчете сооружений необходимо обеспечивать значительное различие между частотами колебаний механизмов и собственных колебаний конструкций.

В технике распространен еще один вид незатухающих колебаний - так называемые автоколебания, отличающиеся от вынужденных тем, что у них потери энергии колебания восполняются за счет постоянного источника энергии, вводимого в действие на очень короткие промежутки времени (в сравнении с периодом колебаний). Причем этот источник «включается» в нужные моменты времени автоматически самой колебательной системой. Примером автоколебательной системы может служить часовой маятник. Здесь потенциальная энергия приподнятого груза (или деформированной пружины) вводится в действие посредством анкерного механизма. Другим примером может служить замкнутый колебательный контур с электронной лампой; с действием этой автоколебательной системы мы познакомимся позже (см. § 112).

Тема 17 Затухающие и вынужденные колебания

1 Затухающие колебания. Величины их характеризующие.

2 Вынужденные колебания.

3 Резонанс.

Основные понятия по теме

При наличии в системе диссипативных сил амплитуда колебаний убывает с течением времени. Такие колебания принято называть затухающими колебаниями . Формально это означает, что в уравнение движения тела, совершающего свободные колебания, при описании затухающих колебаний, необходимо добавить слагаемые учитывающие диссипативные силы. В первом приближении величину этих сил принято считать пропорциональной скорости движения тела. В этом случае уравнение движения пружинного маятника (16.1) принимает вид

где коэффициент сопротивления.

Разделив обе части уравнения (17.1) на , перепишем его в виде

. (17.2)

В выражении (17.2) введены общепринятые обозначения собственная частота колебаний и коэффициент затухания.

Решение уравнения (17.2) имеет вид

Здесь частота затухающих колебаний, их начальная фаза. Функция описывает убывание амплитуды затухающих колебаний с течением времени. График зависимости смещения частицы из положения равновесия приведен на рисунке 17.1. Из вида приведенного графика следует принципиальный вывод – затухающие колебания являются негармоническими . Следовательно, величины используемые ранее для описания свободных колебаний, при описании затухающих колебаний непригодны. Исключение составляет только начальная фаза колебаний , так как она определяет начальные условия возбуждения колебаний и не связана с их дальнейшим поведением во времени.

Затухающие колебания принято характеризовать следующими величинами:

время релаксации колебаний. Время релаксации затухающих колебаний – это время, в течении которого их амплитуда уменьшается в раз;

коэффициент затухания, который характеризует диссипативные силы в системе. Коэффициент затухания связан с временем релаксации очевидным соотношением

и, следовательно, имеет размерность ;

декремент затухания. Декремент затухания показывает, во сколько раз амплитуда затухающих колебаний убывает за время одного полного колебания, то есть

; (17.5)

логарифмический декремент затухания; (17.6)

добротность колебательной системы, характеризующая ее энергетические потери за время одного полного колебания. Добротность

, (17.7)

где энергия, запасенная в системе в момент времени , потери энергии за время одного полного колебания.

Введенные выше понятия полностью характеризуют затухающие колебания, то есть описывают поведение кривых представленных на рисунке 17.1 в зависимости от времени. Обратное утверждение также является верным. Имея график зависимости , полученный экспериментально, можно определить все вышеназванные величины характеризующие затухающие колебания.

В реальных ситуациях затухание колебаний является неизбежным, но вредным явлением. Устранить его проявления в рассматриваемой колебательной системе можно, если в число сил, под действием которых происходят колебания, дополнительно включить вынуждающие силы, приводящие к компенсации потерь энергии в колебательной системе. Из основного условия, содержащегося в определении колебаний, «повторяемость во времени» следует, что вынуждающая сила должна иметь периодический характер

. (17.8)

В выражении (17.8) амплитуда вынуждающей силы, ее частота.

При добавлении вынуждающей силы в уравнение движения (17.1), последнее, приобретая внешний вид

, (17.9)

одновременно приобретает и качественно новое математическое свойство. В отличие от уравнений (16.1) и (17.1) уравнение (17.9) является неоднородным дифференциальным уравнением. Установившиеся вынужденные колебания описывает только частное решение неоднородного дифференциального уравнения (17.9), которое имеет вид

Из (17.10) следует, что вынужденные колебания, так же как и свободные, являются гармоническими. Однако они отличаются от свободных колебаний рядом особенностей. Во первых, как ясно из выражения (17.10), частота вынужденных колебаний равна частоте вынуждающей силы, то есть вынуждающая сила навязывает колебательной системе свою частоту. Во вторых, амплитуда вынужденных колебаний

19. Затухающие колебания.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Затухание механических колебаний вызывается главным образом трением. Затухание в электрических колебательных системах вызывается тепловыми потерями и потерями на излучение электромагнитных волн, а также тепловыми потерями в диэлектриках и ферромагнетиках вследствие электрического и магнитного гистерезиса.

Закон затухания колебаний определяется свойствами колебательных систем.

Система называется линейной, если параметры, характеризующие те физические свойства системы, которые существенны для рассматриваемого процесса, не изменяются в ходе процесса.

Линейные системы описываются линейными дифференциальными уравнениями.

Различные по своей природе линейные системы описываются одинаковыми уравнениями , что позволяет осуществлять единый подход к изучению колебаний различной физической природы.

20.Дифференциальное уравнение свободных затухающих колебаний линейной системы

Дифференциальное уравнение свободных затухающих колебаний

линейной системы имеет вид

где s- колеблющаяся величина,

- коэффициент затухания,

ω 0 - циклическая частота свободных незатухающих колебаний той же колебательной системы (при ).

В случае малых затуханий ( ) решение этого уравнения:

- амплитуда зату­хающих колебаний,

А 0 - начальная амплитуда,

- циклическая частота затухающих колебаний.

Промежуток времени , в течение которого амплитуда затухающих о

колебаний уменьшается в е раз называется временем релаксации.



Затухание нарушает периодичность колебаний.

Затухающие колебания не являются периодическими.

Однако если затухание мало, то можно условно пользоваться понятием периода затухающих колебаний как промежутка времени между двумя последующими максимумами колеблющейся физической величины:

Если A(t) и A(t + T) - амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающихся на период, то отношение

называется декрементом затухания, а его логарифм

называется логарифмическим декрементом затухания.

Здесь N - число колебаний, совершаемых за время уменьшения амплитуды в е раз.

22.Добротность колебательной системы.

Добротностью колебательной системы называется безразмерная величина Q, равная произведению на отношение энергии W(t) колебаний системы в произвольный момент времени t к убыли этой энергии за промежуток времени от t до t + T (за один условный период затухающих колебаний):

Энергия W(t) пропорциональна квадрату амплитуды А(t), поэтому:

При малых значениях логарифмического декремента затухания ( << 1)

Поэтому (принимая Т ≈Т 0)

Волны в упругой среде.

23.Волновой процесс.

Если возбудить колебания в какой-либо точке среды (твердой, жидкой или газообразной) то, вследствие взаимодействия между частицами среды, эти колебания будут передаваться от одной точки среды к другой со скоростью, зависящей от свойств среды.

При рассмотрении колебаний не учитывается детальное строение среды; среда рассматривается как сплошная, непрерывно распределенная впространстве и обладающая упругими свойствами.

Среда называется линейной, если ее свойства не изменяются под действием возмущений, создаваемых колебаниями.

Волновым процессом или волной - называется процесс распро­странения колебаний в сплошной среде.

При распространении волны частицы колеблются около своих положений равновесия, а не перемещаются вслед за волной.

Вместе с волной от частицы к частице передается только состояние колебательного движения и его энергия.

Основным свойством всех волн является перенос энергии без переноса вещества .

24.Упругие волны.

Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде.

Продольная волна - волна, в которой частицы среды колеблются в направлении распространения волны .

Поперечная волна - волна, в которой частицы среды колеблются в плоскостях, перпендикулярных направлению распространения волны .

Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации сжатия и растяжения (в твердых, жидких и газообразных телах).

Поперечные волны могут распространяться только в среде, в которой возникают упругие силы при деформации сдвига (только в твердых телах).

36. Упругая гармоническая волна.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими.

Пусть гармоническая волна распространяется со скоростью υ вдоль оси ОХ. Обозначим смещения частиц среды через

Для данного момента времени t зависимость между смещением частиц среды и расстоянием х этих частиц от источника колебаний О можно представить в виде графика волны.

Отличие графика волны от графика гармонического колебания:

1) график волны представляет зависимость смещения всех частиц среды от расстояния до источника колебаний вданный момент времени ;

2) график гармонического колебания это зависимость смещения данной частицы от времени

Длиной волны λ называется расстояние между ближайшими частицами, колеблющимися в одинаковой фазе.

Длина волны равна расстоянию, на которое распространяется гармоническая волна за время, равное периоду колебаний Т:

где п - частота колебаний, υ - скорость распространения волны.

Волновым фронтом называется геометрическое место точек, до которых доходят колебания к определенному моменту времени t.

Волновой поверхностью называется геометрическое место точек, колеблющихся в одинаковой фазе.

Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени - один.

37.Бегущие волны.

Бегущими волнами называются волны, которые переносят в пространстве энергию.

Перенос энергии количественно характеризуется вектором плотности потока энергии (вектор Умова ). Направление этого вектора совпадает с направлением распространения энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно волне.

Важными примерами бегущих волн являются плоская и сферическая волны.

Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.

Волна называется сферической, если ее волновые поверхности имеют вид концентрических сфер. Центры этих сфер называются центром волны.

25.Уравнение плоской волны.

Пусть точки, которые расположены в плоскости х = 0, колеблются по закону . И пусть υ- скорость распространения колебаний в данной среде.

Колебания частицы В среды (см. рисунок), расположенной на расстоянии х от источника колебаний О, будут происходить по тому же закону. Но, поскольку для прохождения волной расстояния х требуется время , то ее колебания будут отставать по времени от колебания источника на τ.

Уравнение колебаний частиц, лежащих вплоскости х, имеет вид

Следовательно, функция является не только периодической функцией времени , но и периодической функцией координаты х.

В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид

здесь: А = const - амплитуда волны,

ω - циклическая частота,

- начальная фаза волны,

- фаза плоской волны.

Если определить волновое число:

то уравнение плоской бегущей волны можно записать в виде

или в экспоненциальной форме

где физический смысл имеет только вещественная часть.

В общем виде уравнение плоской волны, распространяющейся в направлении имеет вид:

25.Фазовая скорость.

Скорость в этих уравнениях есть скорость распространения фазы волны и ее называют фазовой скоростью.

Действительно, пусть в волновом процессе фаза постоянна:

26. Уравнение сферической волны.

где r - расстояние от центра волны до рассматриваемой точки среды. Амплитуда колебаний в сферической волне убывает с расстоянием по закону .

27 . Волновое уравнение.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением - дифференциальным уравнением в частных производных:

или

где υ - фазовая скорость,

- оператор Лапласа.

Решением волнового уравнения является уравнение любой волны (в том числе и плоская и сферическая волны).

Волновое уравнение для плоской волны, распространяющейся вдоль оси х :

28.Принцип суперпозиции.

Если среда, в которой распространяется одновременно несколько волн, линейна, то к этим волнам применим принцип суперпозиций (наложения) волн:

при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвующие в каждом из слагающих волновых процессов.

29.Групповая скорость.

Любое сложное колебание может быть представлено в виде суммы одновременно совершающихся гармонических колебаний (разложение Фурье).

Поэтому любая волна может быть представлена в виде суммы гармонических волн, то есть в виде волнового пакета или группы волн.

Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства.

За скорость распространения волнового пакета принимают скорость перемещения максимума его амплитуды (центра волнового пакета).

Групповой скоростью и называется скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет (или скорость движения центра волнового пакета).

Ее величина

Связь групповой и фазовой скоростей:

30. Интерференция волн.

Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

Две волны называются когерентными , если разность их фаз не зависит от времени.

Гармонические волны, имеющие одинаковую частоту, когерентны всегда.

Интерференцией волн называется явление наложения волн , при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других в зависимости от соотношения между фазами этих волн.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками, колеблющимися с одинаковыми амплитудой , частотой ωи постоянной разностью фаз:

,

где и - расстояния от источников до рассматриваемой точки, k -

волновое число, - начальные фазы волн.

Амплитуда результирующей волны

Поскольку для когерентных источников , то результат интерференции двух волн зависит от величины , называемой разностью хода.

Интерференционный максимум наблюдается в точках, где

Числа называются порядком интерференционного максимума.

наблюдается в точках,

Интерференционный минимум наблюдается в точках, где .

Числа называются порядком интерференционного минимума.

31. Стоячие волны.

Особым случаем интерференции являются стоячие волны.

Стоячие волны - это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Пусть две плоские бегущие волны с одинаковыми амплитудами и частотами распространяются навстречу друг другу вдоль оси х :

,

Расстояния между двумя соседними узлами и между двумя соседними пучностями одинаковы и равны половине длины волны λ бегущих волн. Эту

величину называют длиной стоячей волны: .

В бегущей волне В стоячей волне
Амплитуда колебаний
все точки волны совершают колебания с одинаковой амплитудой разными амплитудами
Фаза колебаний
фаза колебаний зависит от коор­динаты х рассматриваемой точки все точки между двумя узлами колеблются с одинаковыми фазами
при переходе через узел фаза колебаний изменяется на π ; точки лежащие по разные стороны от узла колеблются в противофазе
Перенос энергии
энергия колебательного движе­ния переносится в направлении распространения бегущей волны переноса энергии нет, лишь впределах происходят взаимные превращения кинетической энергии в потенциальную и обратно

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн.

менее плотная пучность.

Если среда, от которой происходит отражение, более плотная , то на границе сред образуется узел стоячей волны.

32. Эффект Доплера.

Эффектом Доплера называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. В акустике эффект Доплера проявляется как повышение тона при приближении источника звука к приемнику и понижения тона звука при удалении источника от приемника.

Пусть источник и приемник звука движутся вдоль соединяющей их прямой; - скорости источника и приемника (положительны при сближении и отрицательны при удалении источника и приемника);

Скорость распространения колебаний υ зависит только от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние . Источник же пройдет расстояние . Поэтому к моменту окончания излучения волны длина волны в направлении движения сократится и станет . Частота колебаний которые воспринимает приемник, увеличится:

Тема: Затухающие и вынужденные колебания


Коэффициент затухания.

Амплитуда

и частота затухающих колебаний.

    Логарифмический декремент затухания.

Добротность колебательной системы.

Апериодический процесс.

    Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания.

Раньше мы рассмотрели собственные колебания консервативных (идеальных) колебательных систем. В таких системах возникают гармонические колебания, которые характеризуются постоянством амплитуды и периода, и описываются следующим дифференциальным уравнением

. (1)

В реальных же колебательных системах всегда присутствуют силы, препятствующие колебаниям (силы сопротивления). Например, в механических системах всегда присутствует сила трения. В этом случае энергия колебаний постепенно расходуется на работу против силы трения. Поэтому энергия и амплитуда колебаний будет уменьшаться, и колебания будут затухать. В электрическом колебательном контуре энергия колебаний расходуется на нагревание проводников. То есть реальные колебательные системы являются диссипативными .

Собственные колебания в реальных системах являются затухающими.

Чтобы получить уравнение колебаний в реальной системе необходимо учесть силу сопротивления. Во многих случаях можно считать, что при небольших скоростях изменения величины S сила сопротивления пропорциональна скорости

где r – коэффициент сопротивления (коэффициент трения при механических колебаниях), а знак минус показывает, что сила сопротивления противоположна скорости.

Подставив силу сопротивления в формулу (2), получим дифференциальное уравнение, описывающее колебания в реальной системе

Перенесем все члены в левую часть, разделим на величину m и введем следующие обозначения

Как и прежде величина ω 0 определяет частоту собственных колебаний идеальной системы. Величина же β характеризует диссипацию энергии в системе и называется коэффициентом затухания. Из формулы (5) видно, что коэффициент затухания можно уменьшить, увеличив значение величины m при неизменном значении величины r .

С учетом введенных обозначений получим дифференциальное уравнение затухающих колебаний

    Решение дифференциального уравнения затухающих колебаний. Амплитуда и частота затухающих колебаний.

Можно показать, что при небольших значениях коэффициента затухания общее решение дифференциального уравнения затухающих колебаний имеет следующий вид

где величина, стоящая перед синусом называется амплитудой затухающих колебаний

Частота ω затухающих колебаний определяется следующим выражением

Из приведенной формулы (7) видно, что частота собственных колебаний реальной колебательной системы меньше частоты колебаний идеальной системы .

Г
рафик уравнения затухающих колебаний приведен на рисунке. Сплошной линией показан график смещения S(t), а штрихпунктирной линией показано изменение амплитуды затухающих колебаний.

Следует иметь в виду, что в результате затухания не все значения величин повторяются. Поэтому, строго говоря, понятия частоты и периода не применимы к затухающим колебаниям. В этом случае под периодом понимают промежуток времени, по прошествии которого колеблющиеся величины принимают максимальные (или минимальные) значения.

    Логарифмический декремент затухания. Добротность колебательной системы. Апериодический процесс.

Для количественной характеристики быстроты убывания амплитуды затухающих колебаний вводится логарифмический декремент затухания δ .

Логарифмическим декрементом затухания называется натуральный логарифм отношения амплитуд в моменты времени t и t + T , т.е. отличающихся на период .

По определению логарифмический декремент определяется следующей формулой

. (8)

Если вместо амплитуд в формуле (8) подставить формулу (6), то получим формулу, связывающую логарифмический декремент с коэффициентом затухания и периодом

. (9)

Промежуток времени τ , в течение которого амплитуда колебаний уменьшается в е раз, называется временем релаксации . С учетом этого получим, что , где N – это число колебаний, в течение которых амплитуда уменьшается в е раз. То есть логарифмический декремент затухания обратно пропорционален числу колебаний, в течение которых амплитуда уменьшается в е раз . Если, например, β =0,001, то это означает, что через 100 колебаний амплитуда уменьшится в е раз.

Добротностью колебательной системы называется безразмерная величина θ, равная произведению числа 2π и отношения энергии W (t ) колебаний в произвольный момент времени и убыли этой энергии за один период затухающих колебаний

. (10)

Так как энергия пропорциональна квадрату амплитуды колебаний, то заменив энергии в формуле (10) квадратами амплитуд, определяемых формулой (6), получим

При незначительных затуханиях , и . С учетом этого для добротности можно записать

. (12)

Приведенные здесь соотношения можно записать для различных колебательных систем. Для этого достаточно величины S , m , k и r заменить соответствующими величинами, характеризующими конкретные колебания. Например, для электромагнитных колебаний S→ q , m L , k →1/C и r R .

Апериодический процесс.

П
ри большом значении коэффициента затухания β происходит не только быстрое уменьшение амплитуды, но и увеличение периода колебаний. Из формулы (7) видно, что при циклическая частота колебаний обращается в нуль (Т = ∞), т.е. колебания не возникают. Это означает, что при большом сопротивлении вся энергия, сообщенная системе, к моменту возвращения ее в положение равновесия расходуется на работу против силы сопротивления. Система, выведенная из положения равновесия, возвращается в положение равновесия без запаса энергии. Говорят, что процесс протекает апериодически. При этом время установления равновесия определяется значением сопротивления.

Читателю предлагается самому посмотреть как влияют значения величин r , m , Т 1 и φ 0 на характер колебаний реальной колебательной системы.

Для этого необходимо навести курсор на диаграмму и двойным «клик» активизировать ее. Затем в открывшемся окне изменять значения величин, приведенных в цветных ячейках. По окончанию работы с графиком таблицу EXEL закрыть с сохранением или без сохранения данных.

Вопросы для самопроверки:

    Вывести уравнение затухающих колебаний. Какой вид имеет график уравнения затухающих колебаний?колебания 1.1 Механические колебания : гармонические, затухающие и вынужденные колебания Колебаниями называются процессы, отличающиеся той...

  1. Изучение вынужденных колебании в электрическом контуре

    Лабораторная работа >> Физика

    Установившиеся вынужденные колебания описываются функцией (5). Напряжение на конденсаторе равно (6) т.е. вынужденные колебания происходят... вследствие чего свободные колебания затухают. Уравнение, описывающее свободные (ε =О) затухающие колебания в контуре...

  2. Свободные и вынужденные колебания в контуре

    Лабораторная работа >> Коммуникации и связь

    И лабораторным стендом» 2) «Свободные колебания в одиночном контуре»3) «Вынужденные колебания в последовательном контуре» Выполнил студент... R1 в крайнее левое положение. Поосциллограмме затухающих колебаний измерили логарифмический декремент затухания. ; = ...

  3. Вынужденные электрические колебания

    Лабораторная работа >> Физика

    Решение однородного уравнения представляет собой затухающие собственные колебания , которые рано или поздно... времени устанавливаются вынужденные колебания с той же частотой, какова частота колебаний источника. Амплитуда вынужденных колебаний напря...