Конформации и конфигурации макромолекул. Конфигурация макромолекул и стереоизомеры

конфигурация макромолекулы иначе первичная структура (англ. ) — пространственное расположение атомов в . Определяется значениями валентных углов и длинами соответствующих связей.

Описание

Конфигурация макромолекулы определяется взаимным расположением входящих в нее мономерных звеньев, а также их структурой. В настоящее время для описания конфигурации макромолекул, как правило, используют термин «структура» или «первичная структура».

Различают ближний (конфигурация присоединения соседних звеньев) и дальний конфигурационный порядок, характеризующий структуру достаточно протяженных участков макромолекул. Количественной мерой тактичности (порядка) является степень стереорегулярности. Помимо этого, тактичность может описываться количеством различных типов пар ближайших соседей (ди-, три-, тетрад), распределение которых определяется экспериментально. Количественной характеристикой конфигурации статистических сетчатых макромолекул, например, является плотность сшивки, т. е. средняя участка цепи между узлами сетки.

Конфигурацию макромолекул определяют методами рентгеноструктурного анализа, двойного лучепреломления и др. Как правило, каждый метод наиболее «чувствителен» к какой-либо конфигурационной характеристике; так, ЯМР во многих случаях позволяет количественно характеризовать ближний конфигурационный порядок в

В пределах заданной конфигурации в макромолекуле имеется большое количество внутренних степеней свободы, связанных с вращением вокруг оси одинарных связей основной цепи. Как следствие, макромолекула способна принимать различные формы (конформации ), т.е. для полимеров характерна конформационная изомерия.

Конформация - это пространственное расположение атомов и атомных групп, которое может быть изменено без разрыва химических связей основной цени в результате теплового движения и (или) внешних воздействий.

Ниже схематически изображен механизм изменения конформации изотактической триады винилового полимера в результате поворота на 180° вокруг С-С-связи. Очевидно, что подобные конформационные переходы не сопровождаются изменением заданной конфигурации и разрывом химических связей.

Таким образом, конформационная изомерия макромолекул определяется внутренним вращением вокруг одинарных химических связей полимерной цепной конструкции.

Основные положения конформационной изомерии макромолекул

Рассмотрим основные закономерности внутреннего вращения вокруг химических связей па примере низкомолекулярной модели - 1,2-дихлорэтана.

Вследствие взаимодействия боковых заместителей (Ни С1) при полном повороте вокруг оси -С-С- связи на 360° в молекуле 1,2-дихлорэтана последовательно реализуется ряд различных поворотных изомеров, или кон- формеров, с определенной потенциальной энергией. Графически это можно представить в виде энергетической карты - зависимости потенциальной энергии конформера от угла поворота. Для 1,2-дихлорэтана подобная карта схематически изображена на рис. 1.3.


Рис. 1.3. Зависимость потенциальной энергии U валентно не связанных атомов молекулы 1,2-дихлорэтана от угла поворота

У молекул подобного типа различают три стабильные конформации: одна транс- и две гош-конформации (от фр. gauche - косой, перекошенный), соответствующие минимумам потенциальной кривой. Максимумы отвечают нестабильным заслоненным конформациям, в частности г^ис-конформеру.

В полимерах внутреннее вращение вокруг одинарных связей имеет ряд специфических особенностей по сравнению с низкомолекулярными соединениями. Рассмотрим фрагмент цепи поливинилхлорида в конфигурации «голова - голова».

В отличие от 1,2-дихлорэтана, в выделенном фрагменте вместо двух атомов II заместителями у углеродных атомов являются продолжения полимерной цепи -СН 2 -. Иными словами, при вращении вокруг связи между г-м и (г + 1)-м углеродными атомами (г + 2)-й атом углерода с последующим продолжением цепи играет роль заместителя (рис. 1.4).

Рис. 1.4.

Положение (г + 2)-го атома относительно предшествующей связи задано основанием конуса с учетом валентного угла 0. Однако поворот па 360° возможен лишь при перемещении в пространстве протяженного продолжения цепи, что требует огромной тепловой энергии, превышающей, как правило, энергию диссоциации химических связей. В результате внутреннее вращение в полимерах является заторможенным и реализуется в пределах определенной дуги окружности. Размер этой дуги определяет угол заторможенного внутреннего вращения ф. Величина угла заторможенного внутреннего вращения зависит от температуры, природы химической связи, полярности и объема заместителей, конфигурационного состава полимера и т.п.

Таким образом, в первом приближении, внутреннее вращение в полимерных цепях сводится к поворотам каждой последующей связи относительно предшествующей. В реальности эти события имеют ярко выраженный кооперативный характер, так как вращение двух соседних связей относительно друг друга во многом определяется как аналогичными процессами в ближнем окружении, так и взаимодействиями дальнего порядка. В связи с этим в случае полимера угол заторможенного внутреннего вращения является усредненной величиной. Количественные оценки этой характеристики будут приведены ниже.

Конфигурация - это относительное пространственное расположение в макромолекуле атомов или атомных групп, которое задается в процессе синтеза и не может быть изменено без разрыва химических связей основной цепи.

Различают три типа конфигурационной изомерии: локальную изомерию, цис-транс -изомерию и стереоизомерию.

Локальная изомерия характерна для полимеров с асимметричным повторяющимся звеном (виниловые и винилиденовые полимеры, (метакрилаты и т.и.). Так, у молекулы винилового мономера

заместители при атомах С (1) (голова) и (2) (хвост) различаются, и, следовательно, возможны три типа присоединения (в диаде, т.е. в двух последовательно расположенных мономерных звеньях):


Присоединение по типу «голова - голова» менее вероятно, чем присоединение по типу «голова - хвост», прежде всего из-за возникающих стериче- ских затруднений. Так, например, в поливинилиденфториде (-СН 2 -CF 2 -)„ и полиметилметакрилате доля звеньев, присоединенных по типу «голова - голова», не превышает 5-6%.

Возможно присоединение мономеров и по типу «хвост - хвост», однако этот тип изомерии можно выделить лишь для диад повторяющихся звеньев, а в макромолекуле разница между присоединением «хвост - хвост» и «голова - голова» нивелируется.

Цис-транс-изомерия характерна для полимеров, содержащих в основной цепи двойные связи (полидиены, полиацетилены), и заключается в возможности расположения заместителей по одну (цис-изомер) или по разные стороны (транс- изомер) плоскости двойной связи:


Стереоизомерия ярко выражена для синтетических полимеров, имеющих в основной цепи асимметрические атомы углерода, а также для широкого круга природных полимеров, таких как белки, полисахариды и нуклеиновые кислоты.

При этом возможны два варианта:

  • 1) макромолекулы содержат в основной цепи истинно асимметрический атом углерода и проявляют оптическую активность (полипропиленоксид, природные полимеры);
  • 2) макромолекулы с псевдоасимметрическим атомом углерода , не проявляющие оптической активности.

У биополимеров асимметрические атомы углерода (обозначены?) входят в молекулы исходных мономерных соединений - аминокислот, углеводов (рибозы, глюкозы и др.):


и остаются в каждом звене макромолекул после их синтеза, как, например, у полипептидов (поли-/_-аланина) и полисахаридов (амилоза):

поли-1,4-а, D-глюкопиранозид (амилоза)

Как результат биополимеры обладают высокой оптической активностью. В классе синтетических полимеров стереоизомерия в первую очередь характерна для карбоцепных виниловых и винилиденовых полимеров, строение которых схематически показано ниже.


В этом случае наблюдаемая изомерия обусловлена различием в конфигурации тетраэдрического атома углерода, содержащего отличный от водорода заместитель X или заместители X и Z.

Строго говоря, указанные атомы углерода являются асимметрическими, поскольку связаны с четырьмя различными группами (X, Н или X, Z) и двумя отрезками цепи, различающимися длиной и концевыми группами. Однако эти полимеры не проявляют оптических свойств, обусловленных асимметрией ближайшего окружения атомов углерода, поскольку к асимметрическому атому углерода с обеих сторон примыкают одинаковые группировки СН 2 -СНХ или СН 2 -CXZ, в связи с чем эти атомы называют псев- доасимметрическими. Регулярность и характер расположения подобных центров стереоизомерии описывают понятием «тактичность». Рассмотрим этот тип изомерии более подробно на примере винилового полимера.


Будучи максимально распрямленной без нарушения валентных углов, скелетная цепь подобного карбоцепного полимера принимает форму плоского зигзага и может быть размещена в плоскость рисунка. При этом заместители у атома углерода, связи которых обозначены толстыми линиями, направлены к читателю, а заместители, связи которых обозначены тонкими линиями, направлены от читателя.

Применим предложенный в 1891 г. немецким химиком-органиком Э. Фишером упрощенный способ определения и изображения стереоизомеров. Спроецируем изображенную выше полимерную цепь на плоскость, перпендикулярную плоскости листа. В результате получим фишеровскую проекцию, для которой все отличные от водорода заместители X расположены но одну сторону от перпендикулярной листу плоскости. Такой стереоизомер называют изотактическим.


Очевиден и другой вариант расположения заместителей X, а именно строгое чередование заместителей X по разные стороны плоскости. Этот стереоизомер называют синдиотактическим.


Иными словами, изотактический полимер - это полимер, каждое мономерное звено которого содержит один центр стереоизомерии и конфигурация этих центров одинакова, а синдиотактический полимер - это полимер, каждое мономерное звено которого содержит один центр стереоизомерии и соседние звенья имеют противоположные конфигурации. Если же расположение заместителя X хаотично, то стереорегулярность отсутствует, и подобный конфигурационный изомер обозначают как атактический.

Приведенные данные относятся к полимерам, для которых в повторяющемся звене имеется один исевдоасимметрический атом углерода. Отметим, что такие макромолекулы называют монотактическими. У дитактических полимеров повторяющееся звено содержит два псевдоасимметрических атома.

Диизотактические полимеры получают на основе 1,2-дизамещенных ал- кенов общего строения (CHR=CHR"). В этом случае строение полимерного продукта зависит не только от чередования L- и D-изомеров в молекуле мономера, но и от его геометрической изомерии. Например, для 14мг:-изомера образуется эрмтро-диизотактический полимер:


Дисиндиотактические полимеры также образуют две синдиотактические структуры (эритро - и трео-), для которых строение основной цепи идентично.


Известны синтетические полимеры, включающие истинно асимметрические атомы углерода и, как результат, обладающие оптической активностью. Типичный представитель таких соединений - полипропилеиоксид , фишеровская проекция которого представлена ниже (асимметрические атомы углерода обозначены *).


Другими примерами оптически активных полимеров служат полиамид на основе (+)-2,2"-диаминобинафтила-1,Г и терефталоилхлорида


а также полиамид, полученный поликонденсацией /.-лизина и дихлорангид- рида адипиновой кислоты в присутствии ионов меди:

Синтетические оптически активные полимеры получают:

  • 1) неактивного полимера, приводящими к введению в его боковые заместители оптически активных групп или к созданию асимметрических центров путем асимметричного синтеза;
  • 2) полимеризацией или поликонденсацией оптически активных мономеров, которая происходит в условиях, исключающих рацемизацию;
  • 3) полимераналогичными превращениями оптически активных полимеров;
  • 4)стереоселективной полимеризацией одного из двух оптических изомеров, содержащихся в рацемической смеси мономера;
  • 5) асимметрическим синтезом - стереоспецифической полимеризацией или полиприсоединением симметричных мономеров.

Сложный конфигурационный состав характерен для диеновых полимеров. При полимеризации симметричного бутадиена возможно присоединение за счет раскрытия связей 1,2- или одновременного раскрытия связей 1,2- и 3,4- (1,4-присоединение). В результате получают смесь двух различных полимерных продуктов: 1,4-полибутадиена и 1,2-полибутадиена:


Для первого возможна м,ис-транс-конфигурационная изомерия, а для второго - локальная изомерия и стереоизомерия.

Ситуация усложняется при полимеризации несимметричных диенов (например, изопрена), для которых наблюдается 1,4-, 1,2- и 3,4-присоединение:


При любом варианте полимеризации происходит образование локальных изомеров. Аналогично рассмотренному выше случаю 1,4-полиизопрен дополнительно характеризуется г^г/с-отраис-изомерией, а 1,2- и 3,4-поли- изопрен - стереоизомерией.

Формирование заданной конфигурации в процессе синтеза полимера, а также исследование конфигурационного состава макромолекул являются одной из наиболее важных задач синтетической и физической химии полимеров. С конфигурацией тесным образом связаны структура полимеров в целом и их физико-механические свойства. Стереорегулярные полимеры, как правило, легко кристаллизуются, в то время как атактические полимеры могут существовать лишь в аморфном фазовом состоянии. Так, например, изотактический поливинилхлорид - кристаллический полимер с температурой плавления 240°С, атактический поливинилхлорид - аморфный полимер с температурой стеклования 90°С. Температура стеклования изотак- тического полиметилметакрилата составляет 40°С, а синдиотактического - 160°С. Натуральный каучук (1,4-гщс-полиизопрен) является мягким и податливым материалом с температурой стеклования минус 73°С, гуттаперча

(1,4-7ирянс-полиизопрен) - кристаллический полимер с температурой плавления 43°С.

Оптически активные полимеры обладают более высокими механическими свойствами, повышенной теплостойкостью но сравнению с рацемическими продуктами; они пригодны для изготовления стекол и пленок, способных вращать плоскость поляризации проходящего света (оптические приборы и светофильтры). Наиболее важная область использования оптически активных полимеров - разделение оптических изомеров хроматографическими методами и применение в качестве катализаторов в асимметрическом органическом синтезе и в качестве матрицы в асимметрическом синтезе полимеров.

Локальную конфигурацию присоединения «голова - хвост» и «голова - голова» определяют, используя метод ядерного магнитного резонанса (ЯМР). Характеристики сигнала атомов боковых заместителей, идентифицируемых этим методом (1 Н, 13 С, 15 N, 19 F), связанные со взаимодействием спинов этих ядер, зависят от их взаимного расстояния вдоль полимерной цепи, что позволяет оценить долю присоединений «голова - хвост». Этот же принцип лежит в основе определения стереоизомерии макромолекул: в изотактической конфигурации боковые группы находятся на меньшем расстоянии друг от друга, чем в синдиотактической. С использованием метода ЯМР высокого разрешения, идентифицирующего боковые группы, удается зафиксировать сигналы от мономерных звеньев, образующих изо-, синдио- и гетеротриады, и рассчитать долю этих триад и их распределение в полимерных цепях.

Классификация полимеров по химическому строению основной цепи и макромолекулы в целом. Межмолекулярное взаимодействие в полимерах. Понятия плотности энергии когезии и параметра растворимости.

Структура макромолекул включает их химическое строение и длину, распределение по длинам и молекулярным массам, форму и пространственное расположение звеньев. По химическому строению основной цепи различают гомоцепные (с цепью из атомов углерода - карбоцепные ) и гетероцепные полимеры, а по химическому строению макромолекул в целом – полимеры:

· органические - цепь состоит из атомов углерода, кислорода, азота и серы;

· элементоорганические - цепь состоит из кремния, фосфора и других атомов, к которым присоединены углеродные атомы или группы, или наоборот;

· неорганические - полностью отсутствуют атомы углерода или карбоцепные с кратными (двойными или тройными) связями без боковых групп.

Наиболее распространены органические карбоцепные полимеры, включающие и различные их производные (галогенсодержащие, эфиры, спирты, кислоты и др.), название которых образуется названием мономера с приставкой «поли». К предельным алифатическим карбоцепным полимерам относятся полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, политрифторхлорэтилен, поливиниловый спирт, поливинилацетат, полиакриламид, полиакрилонитрил, полиметилметакрилат и другие. Непредельными являются полибутадиен, полиизопрен и полихлоропрен, примером жирноароматических полимеров - полиэтиленфенилен, а ароматических – полифенилен. Число неорганических гомоцепных полимеров ограничено - карбоцепные карбин (~C≡C-C≡C~) и кумулен (=С=С=С=), а также полисера (~S-S-S~), полисилан (~SiH 2 -SiH 2 ~), полигерман (~GeH 2 -GeH 2 ~) и др. Более распространены элементоорганические гомоцепные полимеры из органических цепей (карбоцепные) с элементоорганическими боковыми группами или из неорганических цепей с органическими радикалами: поливинилалкилсиланы, полиоргансиланы, борсодержащие полимеры. Органические гетероцепные полимеры делят на классы в зависимости от природы функциональных групп в основной цепи. Они могут быть алифатическими или ароматическими в зависимости от строения углеводородных группировок между функциональными группами (табл.1.1).

Таблица 1.1.

Гетероцепные полимеры различных классов:

Функциональная группа Полимер
Название класса Представители
К и с л о р о д с о д е р ж а щ и е
Простая эфирная Простые полиэфиры Полиметиленоксид (~CH 2 -O~)
Полиэтиленоксид (~CH 2 -CH 2 -O~)
Сложноэфирная Сложные полиэфиры Полиэтилентерефталат ([-СН 2 -СН 2 -О-ОС-Ar-СО-О-] n)
Полиарилаты ([-ОС-R-СОО-R`-О-] n)
Поликарбонаты ([-О-Ar-СН 2 -Ar-O-CO-O-Ar-CH 2 -Ar-] n)
А з о т с о д е р ж а щ и е
Ацетальная Ацетали Целлюлоза (C 6 Н 1 0 О 5) n
Амидная Полиамиды (-СО-NН-) Полигексаметиленадипамид
Имидная Полиимиды Полипиромеллитимид
Мочевиновая Полимочевина Полинонаметиленмочевина
Уретановая Полиуретаны (–HN-CO-O) ~(CH 2) 4 -O-CO-NH-(CH 2) 2 ~
С е р у с о д е р ж а щ и е
Тиоэфирная Полисульфиды Полиэтиленсульфид (~CH 2 -CH 2 -S~)
Сульфоновая Полисульфоны Поли-n ,n `-оксидифенилсульфон


Неорганические гетероцепные полимеры представляют полиборазол, поликремниевая кислота, полифосфонитрилхлорид. Элементоорганические гетероцепные полимеры включают большую группу наиболее востребованных соединений из неорганических цепей с органическими боковыми группами. К ним относятся кремнийсодержащие полимеры, цепи которых состоят из чередующихся атомов кремния и кислорода (полиорганосилоксаны ) или азота (полиорганосилазаны ). Полимеры с третьим гетероатомом в основной цепи – металлом называются полиметаллорганосилоксанами (полиалюмоорганосил-оксаны, полиборорганосилоксаны и полититанорганосилоксаны). Существуют также полимеры с органонеорганическими цепями из атомов углерода, кремния, кислорода (поликарбосилоксаны, поликарбосиланы, поликарбораны), которые могут содержать алифатические или ароматические звенья. Все атомы в звеньях рассмотренных полимеров соединены химическими ковалентными связями . Существуют также координационные (хелатные, внутрикомплексные) гетероцепные полимеры, в которых звенья соединены донорно-акцепторным взаимодействием с ионом металла, образующим координационную связь (побочная валентность) и ионную связь (главная валентность). Химические и металлические связи при длине 0,1-0,2 нм значительно превышают по величине энергии физические связи и даже водородную связь (длина 0,24-0,32 нм ), которая занимает промежуточное положение между физическими и химическими связями. От химического строения и состава звеньев зависит и полярность связей, которую количественно оценивают величиной дипольного момента μ о , равного произведению заряда на расстояние между зарядами (табл.1.3), а также уровень межмолекулярного взаимодействия в полимере. В зависимости от полярности связей полимер может быть полярным и неполярным . Дипольный момент всех органических карбоцепных алифатических (неполярных) полимеров близок к нулю. В зависимости от строения макромолекул между ними могут проявляться дисперсионные, ориентационные и индукционные связи. Дисперсионные связи обусловлены возникновением мгновенных диполей в атомах при вращении электронов вокруг ядер. Для полярных макромолекул характерны ориентационные (диполь-дипольные) связи. В поле диполей полярных макромолекул могут поляризоваться и неполярные макромолекулы. Между постоянным и наведенным диполями возникают индукционные связи.



Межмолекулярное взаимодействие определяет способность полимера к растворению в низкомолекулярных жидкостях, поведение при низких температурах, эластические и другие свойства. Уровень его измеряют параметром растворимости – отношением произведения плотности полимера на сумму констант притяжения отдельных групп атомов в составном звене к молекулярной массе звена. Для этого используют также плотность энергии когезии (кДж/моль ), которая эквивалентна работе удаления взаимодействующих макромолекул или групп атомов друг от друга на бесконечно большие расстояния. При температуре стеклования Т с энергия межмолекулярного взаимодействия становится выше энергии теплового движения, и полимер переходит в твердое застеклованное состояние . Полимеры с Т с выше комнатной называют пластмассами , а ниже комнатной и параметром растворимости 14-19 (М . Дж/м 3 ) 1/2 эластомерами (каучуками).

Молекулярная масса полимеров и методы ее определения. Молекулярно-массовое распределение и форма макромолекул. Классификация полимеров по количеству и порядку расположения составных звеньев.

Молекулярная масса (ММ) – важная характеристика структуры полимеров, определяющая уровень механических свойств и принадлежность к определенной их группе: олигомеры (реактопласты) – 10 3 -10 4 , кристаллические термопласты – 10 4 -5 . 10 4 , аморфные термопласты - 5 . 10 4 -2 . 10 5 , каучуки – 10 5 -10 6 . Чем меньше ММ полимеров, тем ниже вязкость их расплавов и легче они формуются. Механические же свойства определяются больше степенью отверждения (олигомеры) и кристалличности (полиамиды, полиэфиры) или переходом в стеклообразное состояние. Наибольшую ММ имеют каучуки, которые трудно формуются, но изделия из них имеют высокую эластичность. Поскольку при большой ММ не получается одинаковая степень полимеризации, макромолекулы различаются по размерам. Полидисперсность (полимолекулярность) - одно из основных понятий в физикохимии полимеров, а тип молекулярно-массового распределения (ММР) – важный показатель, влияющий на физико-механические свойства полимеров не меньше, чем ММ.

Поскольку ММ - среднестатистическая величина, различные методы ее определения дают разные значения. Среднечисловые методы основаны на определении числа макромолекул в разбавленных растворах полимеров, например, путем измерения их осмотического давления, а среднемассовые - на определении массы макромолекул, например, путем измерения светорассеяния. Среднечисловую ММ (M n ) получают простым делением массы образца полимера на число макромолекул в нем, а среднемассовую ММ: M w =M 1 w 1 +M 2 w 2 +…+M i w i , где w 1 , w 2 , w i – массовые доли фракций; M 1 , M 2 , M i – среднемассовые ММ фракций. Средневязкостная ММ, приближающаяся к среднемассовой ММ, определяется по вязкости разбавленных растворов. Полимер называется монодисперсным , если состоит из одной фракции с очень близкими друг к другу размерами макромолекул, и для него отношение M w /M n =1,02-1,05. В остальных случаях среднемассовая ММ больше среднечисловой ММ, а их отношение (M w /M n =2,0-5,0) является мерой полидисперсности полимера. Чем больше M w /M n , тем шире ММР. На кривой ММР полимера значение M n приходится на максимум, т.е. на фракцию, доля которой в составе полимера наибольшая, а M w сдвинуто вправо по оси абсцисс.

Большие размеры макромолекул полимеров обусловили еще одну особенность их структуры. Они могут быть линейными или разветвленными (с боковыми ответвлениями от основной цепи или звездообразной формы). При близких значениях ММ они становятся изомерами . Свойства полимеров, состоящих из макромолекул линейных и разветвленных, сильно различаются. Разветвленность - нежелательный показатель структурымакромолекул, снижающий их регулярность и затрудняющий кристаллизацию полимера. Соединение макромолекул химическими связями приводит к формированию сетчатых структур , еще больше изменяющих свойства полимеров. В соответствии с такими различиями по строению макромолекул (рис.1.1) и полимеры называют линейными , разветвленными и сетчатыми (сшитыми ).

В последнем случае понятие «макромолекула» утрачивает смысл, так как весь образец сшитого полимера становится одной гигантской молекулой. Поэтому в сшитых полимерах определяют среднее значение ММ отрезка цепи между химическими связями (узлами сетки), соединяющими макромолекулы.

Сополимеры содержат в основной цепи звенья двух и более разных мономеров (например, бутадиен-стирольный каучук) и имеют более сложное строение, чем гомополимеры , состоящие из звеньев одного мономера. Сополимер с беспорядочным соединением звеньев мономеров в макромолекуле называют статистическим , с правильным их чередованием – чередующимся , а с большой протяженностью участков (блоков) из звеньев одного мономера - блок-сополимером . Если блоки одного из мономеров присоединены к основной цепи макромолекулы, составленной из звеньев другого мономера, в виде больших боковых ответвлений, то сополимер называют привитым . Структура сополимера характеризуется химическим составом и длиной блоков или привитых цепей и числом блоков или прививок в макромолекуле. Звенья одинаковых или разных мономеров могут соединяться регулярно (конец одного - начало другого) или нерегулярно (конец одного – конец другого, начало другого – начало третьего звена, и др.), а заместители в боковых группах могут иметь регулярное или нерегулярное пространственное расположение. Структуру макромолекулы определяют также ее конфигурация и конформация.

Конфигурация макромолекул и стереоизомеры. Конформация и гибкость макромолекул. Гибкоцепные и жесткоцепные полимеры и форма их макромолекул.

Конфигурация макромолекулы – это определенное пространственное расположение ее атомов, не изменяющееся при тепловом движении, вследствие чего разные ее виды являются стабильными изомерами. Цис-изомеры характеризуются расположением разных заместителей по разные стороны от двойной связи в каждом повторяющемся звене, а транс-изомеры - наличием разных заместителей по одну сторону от двойной связи. Примером таких изомеров являются НК и гуттаперча – идентичные по химическому строению природные полиизопрены. Гуттаперча является пластмассой с кристаллической структурой, плавящейся при 50-70 О С, а НК – эластомером в интервале температур от +100 о С до -72 о С, так как их макромолекулы имеют разные периоды идентичности . В цис -полиизопрене (НК) ориентированные в одном направлении метильные группы встречаются через одно составное звено, что равно 0,82 нм , а в его транс -изомере (гуттаперче) – через 0,48 нм :

цис- 1,4-полиизопрен (НК)

транс -1.4-полиизопрен

Из макромолекул оптических полимеров с асимметрическим атомом углерода специальными методами синтеза получают стереорегулярные изомеры - изотактические (заместители - по одну сторону плоскости макромолекулы) и синдиотактические (заместители - по разные стороны):

Они отличаются по свойствам от атактических полимеров с нерегулярным расположением заместителей. Взаимное отталкивание заместителей приводит к их смещению относительно друг друга в пространстве, и поэтому плоскость симметрии изгибается в виде спирали. Структура спиралей характерна и для биологически активных полимеров (например, двойная спираль ДНК). Структура макромолекул стереоизомеров является носителем информации о способах их синтеза, а в белках двойные спирали ДНК несут огромную информацию о их биологической наследственности.

Конформация макромолекулы - это пространственное расположение атомов или групп атомов, которое может изменяться под действием теплового движения без разрушения химических связей между ними. Большая длина макромолекулы при возможности вращения ее частей вокруг постых химических связей обуславливает поворотную изомерию , выражающуюся в возникновении различных конформаций. Чем ближе друг к другу находятся атомы водорода (цис -положение), тем больше их отталкивание и соответственно потенциальная энергия макромолекулы. Взаимодействие усиливают полярные заместители, например атомы хлора. В транс -изомерах потенциальная энергия макромолекулы меньше, расположение атомов выгоднее, чем в цис -изомерах. Энергетический барьер вращения частей макромолекулы, который делает его заторможенным , складывающимся из ряда колебаний, помогают преодолеть флуктуации тепловой энергии . Совокупность колебаний и перемещений вокруг простых связей приводит к искривлению макромолекулы в пространстве, которое может идти в разных направлениях и меняться во времени. Иными словами, макромолекула обладает гибкостью - способностью к изменению своей конформации в результате теплового движения или действия внешних сил. При большом числе атомов цепь может не просто искривляться, а даже сворачиваться в очень рыхлый макромолекулярный клубок , размер которого можно охарактеризовать среднеквадратичным расстоянием между ее концами и рассчитать математически, зная число составных звеньев в ней. Из-за цепной структуры макромолекул перемещение одного атома или группировки приведет к перемещению и других, в результате чего возникает движение, подобное перемещению гусеницы или червя, которое называется рептационным (рис.1.2). Отрезок цепи, перемещающийся как единое целое в элементарном акте движения, называется сегментом цепи . Термодинамическая гибкость характеризует способность цепи изменять свою конформацию под действием теплового движения и может быть оценена параметром жесткости, длиной термодинамического сегмента или параметром гибкости Флори. Чем меньше эти показатели, тем выше вероятность перехода макромолекулы из одной конформации в другую (табл.1.4). Параметр жесткости оценивают отношением среднеквадратичных расстояний между концами реальной и свободно-сочлененной цепей в разбавленных растворах полимера. Длина термодинамического сегмента А (сегмента Куна) характеризует такую последовательность звеньев, при которой каждое звено ведет себя независимо от других, и также связана со среднеквадратичным расстоянием между концами цепи. Она равна гидродинамической длине макромолекулы для предельно жестких и длине повторяющегося звена для предельно гибких цепей. Полимеры диенового ряда и со связями ~Si-O~ или ~C-O~ в основной цепи характеризуются большей гибкостью по сравнению с полимерами винилового ряда, так как у них из-за уменьшения обменных взаимодействий между СН 2 -группами в 100 раз ниже энергия поворотных изомеров. Природа заместителей мало влияет на гибкость макромолекул. Параметр гибкости Флори f о показывает содержание гибких связей в макромолекуле и служит критерием гибкости, по которому полимеры делят на гибкоцепные (f о >0,63; А <10нм ) и жесткоцепные (f о <0,63; А >35нм ). Последние не бывают в конформации макромолекулярного клубка и имеют вытянутую форму макромолекул – упругой струны (полиалкилизоцианат, А =100), коленча-того вала (поли-п -бензамид, А =210) или спирали (биополимеры, А =240). Кинетическая гибкость макромолекулы отражает скорость ее перехода в силовом поле из одной конформации в другую и определяется величиной кинетического сегмента , т.е. той части макромолекулы, которая отзывается на внешнее воздействие как единое целое. В отличие от термодинамического сегмента, он определяется температурой и скоростью внешнего воздействия. С повышением температуры растут кинетическая энергия и гибкость макромолекулы и уменьшается величина кинетического сегмента. В условиях, когда время действия силы больше, чем время перехода из одной конформации в другую, кинетическая гибкость высока, а кинетический сегмент по величине приближается к термодинамическому сегменту. При быстрой деформации кинетический сегмент близок к гидродинамической длине макромолекулы, и даже термодинамически гибкая цепь ведет себя как жесткая. Кинетическая гибкость изолированной макромолекулы определяется по вязкоупругим свойствам сильно разбавленных растворов с последующей их экстраполяцией к нулевой коцентрации. Макромолекулы гибкоцепного аморфного полимера имеют клубкообразную форму как в изолированном виде, так и в массе. При этом структура полимера не похожа на структуру «молекулярного войлока», в котором макромолекулы перепутаны хаотически, как считали ранее. Идея об упорядоченных областях в аморфных полимерах высказана в 1948 г. Алфреем.

· органические полимеры (в состав входят органогенные элементы – С, N, O, P, S).Делятся на гомоцепные (в основной цепи содержатся только атомы углерода) и гетероцепные (в состав основной цепи входят другие атомы) К этому классу полимеров относятся биополимеры.

· элементоорганические полимеры (в составе основной цепи наряду с атомами углерода находятся атомы Si, Al, Ti, Ge, B).

· неорганические полимеры (в основной цепи не содержатся атомы углерода, например силиконы).

1. Перечислите виды номенклатуры полимеров.

2. Как формируется номенклатура, основанная на названии мономеров?

3. Приведите примеры названий полимеров по номенклатуре, основанной на химической структуре полимерной цепи.

4. Назовите виды классификации полимеров. Приведите примеры.

5. Какие существуют виды сополимеров?

6. Каким образом осуществляется химическая классификация полимеров?

Задачи для самостоятельного решения*

2. Классификация и структурные формулы основных полимеров

2.1 Классификация полимеров

Вопросы2501 – 2502, 2403 – 2406, 2307

2.2. Структурные формулы основных полимеров

Вопросы 3501, 3402, 3303 – 3309

*Здесь и в дальнейшем задачи приведены из « Сборника тестовых заданий для тематического и итогового контроля по дисциплине «Химия и физика полимеров»,М.,МИТХТ, 2009г.

Раздел №3. Основные характеристики макромолекул

Макромолекулы характеризуются 4 основными параметрами:

1. Молекулярная масса (ММ), молекулярно - массовое распределение (ММР);

2. Конфигурация макромолекулы;

3. Конформация макромолекулы;

4. Топология (линейные, разветвленные).

· ММ позволяет определить длину, размеры макромолекул;

· Конфигурация определяет химическое строение макромолекул;

· Конформация определяет форму макромолекул.

3.1. Молекулярная масса (ММ), молекулярно-массовое распределение (ММР)

Основные отличия понятия ММ для ВМС и НМС:

ММ является мерой длины молекулы для линейных полимеров и может быть выражена через ММ низкомолекулярных составных повторяющихся звеньев:

https://pandia.ru/text/78/135/images/image040_18.gif" width="12" height="2 src=">m0 – молекулярная масса составного повторяющегося звена;

Pn – степень полимеризации

Большинство синтетических полимеров не являются индивидуальными соединениями, а состоят из смеси молекул разного размера, но одинакового состава.

Это приводит к тому, что:

· у полимеров эффективная молекулярная масса представляет собой среднюю величину из-за полидисперсности – разброса макромолекул по величине ММ;

· у большинства полимеров концевые группы отличаются от состава звеньев полимерной цепи;

· в макромолекулах могут существовать определенные боковые ответвления, это также различает макромолекулы друг от друга;

· большинство биополимеров – индивидуальные соединения (каждый конкретный полимер – уникален по составу, строению и молекулярной массе).

Причины полидисперсности:

1. из-за статистического характера процесса получения полимера: в процессе синтеза получаются макромолекулы различной длины;

2. из-за протекания процессов частичной деструкции макромолекул, например, в ходе эксплуатации материала;

3. из-за различия концевых групп у молекулы полимера;

4. из-за наличия у некоторых полимеров ответвлений в различных местах и различной химической структуры.

3.1.1. Способы усреднения молекулярных масс

1) Усреднение по числу молекул

Среднечисловая ММ:

Мw=∑(Ni Mi2)/∑(NiMi) (3.1.1.2)

Учитывается масса фракции данной молекулярной массы.

Mw определяют при помощи методов хроматографии, ультрацентрифугирования, светорассеивания.

Kn=Mw/Mn (3.1.1.3)

Для монодисперсных (биологических) полимеров Kn=1.

При узком распределении Kn=1,01÷1,05.

В промышленности чаще всего получают полимеры с Kn=3÷10.

3) Средневязкостная ММ:

Mŋ=((∑NiMi)1+α/∑(NiMi))1/α, 0<α<1 (3.1.1.4)

3.1.2. Молекулярно - массовое распределение (ММР)

Наиболее полной характеристикой молекулярных масс полимеров являются функции распределения по молекулярным массам.

Азот, бор, алюминий могут быть элементами макромолекулярных цепочек в других составных частях полимерной структуры, либо входить как гетероатомы в основную цепь.

4.3. Углерод

Обладает высокой склонностью к образованию прочных ковалентных связей, как между собственными атомами, так и с другими атомами.

https://pandia.ru/text/78/135/images/image064_12.gif" width="102" height="92"> - двухмерная углерод-углеродная структура графена, графита и сажи

Возможно получение и линейной цепи из атомов углерода:

https://pandia.ru/text/78/135/images/image066_10.gif" width="238" height="14 src=">

При нагревании он превращается в графит.

Гораздо большие возможности по построению линейных макромолекул из атомов углерода открываются, когда 1 или 2 валентности углерода насыщаются другими атомами или группами.

- полиэтилен

- полипропилен

- политетрафторэтилен

Также в составе основной цепи могут находиться различные группировки, содержащие гетероатомы:

https://pandia.ru/text/78/135/images/image071_11.gif" width="93" height="43 src="> - сложно-эфирная группировка

https://pandia.ru/text/78/135/images/image073_9.gif" width="105" height="45 src="> - карбамидная (мочевинная) группировка

https://pandia.ru/text/78/135/images/image076_9.gif" width="185 height=84" height="84">

Но они химически не очень устойчивы и при окислении кремний связывается с кислородом, образуя очень прочные связи кремний-кислород.

В природе кремний встречается в виде кварца:

Это жесткая трехмерная структура, не проявляющая «полимерных» свойств линейных макромолекул. Линейные макромолекулы получают, заместив две валентности у каждого атома кремния на органические радикалы (CH3-, C2H5- и т. д.). При этом появляются кремний-органические полимеры.

Можно синтезировать кремнийсодержащие полимеры:

- полисилоксаны

В цепь могут встраиваться атомы Al, B, Ti, Zn и некоторые другие.

4.5. Фосфор

Атомы фосфора могут образовывать полимеры, но в состав основной цепи должны входить и другие атомы (чаще всего кислород):

- полифосфаты

- полифосфорная кислота

Остатки ортофосфорной кислоты входят в природные полимеры (нуклеиновые кислоты, ДНК и РНК):

Таким образом, двух или поливалентные атомы (C, O, P, N, S, Si, Al, B и некоторые другие) могут находиться в виде элементов основной цепи макромолекул или находиться в боковых фрагментах; одновалентные атомы (H, F, Cl, J, Br и некоторые другие) могут выстраиваться только в качестве заместителей.

Химия полимеров построена на базе этих элементов.

4.6. Виды полимеров

Полимеры получают либо синтетически, либо извлекают из живых организмов (биополимеры), или же обработкой уже выделенных природных полимеров.

Часть синтетически созданных полимеров существует в природе. Полимеры получаются из мономеров – низкомолекулярных веществ или в результате превращений готовых полимеров (синтетических или природных) – полимераналогичные превращения.

1,4-цис-полибутадиена в природе не существует, получают синтетически из бутадиена.

1,4-цис-полиизопрен существует в природе (натуральный каучук), но в природе синтезируется из глюкозы и других веществ (но не из изопрена, как в промышленности)

Этот полиэфир можно получить конденсацией поли-β-гидроксибутирата, в то же время он синтезируется и рядом бактерий.

Синтезы биополимеров в данном курсе рассматриваться не будут.

Многие природные полимеры очень сложно получить синтетически. Они получаются в живых организмах в результате протекания сложных биохимических реакций.

Важнейшие природные полимеры:

Примерами могут служить реакции полиэтерификации :

HO-R-COOH + HO-R-COOH > HO-R-COO-R-COOH + H2O и т. д.

полиамидирования :

H2N-R-NH2 + ClOC-R"-COCl > H2N-R-NHCO-R"-COCl + HCl и т. д.

При этом в отличие от полимеризации, элементарный состав продуктов поликонденсации в данном случае не совпадает с составом мономерных соединений, т. к. каждый химический акт поликонденсации сопровождается выделением молекулы низкомолекулярного продукта.

Приведенной выше общей схеме поликонденсации соответствуют также некоторые разновидности процессов, которые не сопровождаются выделением низкомолекулярных продуктов. К их числу, например, относится синтез полиуретанов из гликолей и диизоцианатов:

НО-R-OH + O=C=N-R"-N=C=O > HO-R-О-CO-NH-R"-N=C=O и т. д.

Подобные поликонденсационные процессы часто называют полиприсоединением . По кинетическим закономерностям реакции полиприсоединения весьма схожи с реакциями поликонденсации. В обоях типах поликонденсационных процессов рост макромолекул осуществляется путем взаимодействия функциональных групп молекул мономеров или таких же групп находящихся на концах уже образовавшихся цепей различной молекулярной массы. Получаемые в результате этих реакций промежуточные полимерные продукты вполне устойчивы и могут быть выделены в свободном виде. Однако они содержат на концах реакционноспособные группы и поэтому способны к дальнейшим реакциям конденсации, как друг с другом, так и с соответствующими мономерными молекулами. Отсюда следует, что теоретически поликонденсация может считаться завершенной лишь тогда, когда прореагируют все концевые функциональные группы, в результате чего должна образоваться одна гигантская циклическая макромолекула. На практике, однако, это никогда не достигается.

Вопросы для самостоятельной проработки:

1. Какие элементы Периодической системы способны к образованию полимерных цепей?

2. Приведите примеры полимеров, получаемых синтетически.

3. Приведите примеры природных полимеров.

4. Какие мономеры могут участвовать в реакции полимеризации?