Емкостной датчик прикосновения к машине. Датчик прикосновения на транзисторе

Электор 2008 №7-8

Работа ёмкостных датчиков прикосновения основана на электрической ёмкости человеческого тела. Например, когда близко к датчику подносят палец, то это создаёт ёмкость между датчиком и землёй, лежащую в диапазоне 30...100 пФ. Этот эффект может быть использован в датчиках приближения и переключателях, управляемых прикосновением.

Сенсорные ёмкостные датчики имеют очевидные преимущества по сравнению с другими датчиками (например, срабатывающими от наводок частотой 50/60 Гц или измеряющими сопротивление), но они более трудоёмки в реализации. Производители микросхем, такие как Microchip в прошлом создали специальные ИС для этих целей. Однако и сейчас можно создать надёжный ёмкостный детектор и/или переключатель, используя только небольшое число стандартных компонентов.

В этой схеме мы детектируем изменения ширины импульсов сигнала, возникающие при касании контакта. На рисунке 1 можно рассмотреть следующие узлы (слева направо):

Рис. 1. IC1 - 561ТЛ1

Генератор прямоугольных импульсов, выполненный на триггере Шмитта (ИС CD4093);
RC цепь с гасящим диодом, за которыми идёт триггер Шмитта/контактная пластина с изолирующим конденсатором ёмкостью 470 пФ;
- Интегрирующая RC цепь, преобразующая изменения ширины импульсов в напряжение. Это напряжение лежит в районе 2,9...3,2 вольт, когда до пластины дотрагиваются, и 2,6 вольт в другом случае.
- Компаратор LM 339 используется для сравнения напряжения в точке C с образцовым напряжением в точке D. Последнее составляет около 2,8 В и устанавливается делителем напряжения.

Как только произойдёт касание сенсорной пластины, выход схемы станет активным. Для пояснения работы схемы на рисунке 2 приведены осциллограммы сигналов в разных точках. Пунктирная линия показывает состояние при касании пластины датчика, сплошная линия - при отсутствии касания.

Рис. 2. Осциллограммы сигналов а разных точках.

Образцовое напряжение в точке D настраивается один раз с помощью делителя R4/R5 (изменяя значение R4). Величина этого напряжения сильно зависит от площади поверхности пластины-датчика (обычно несколько квадратных сантиметров). Большая площадь поверхности пластины увеличивает ёмкость и напряжение в точке C тем не менее будет больше, по сравнению с тем напряжением, когда пластины не касались. Образцовое напряжение в точке D должно быть установлено ближе к значению 3,4 В. Датчик прикосновения может так же работать с пластинами большой площади (например, можно использовать в качестве сенсора весь корпус).

Выходной сигнал может быть использован для включения различных нагрузок. Во многих случаях рекомендуется добавить на выход один триггер Шмитта, особенно если выход соединён с цифровым входом.

Вим Абуйс


Рис. 4. Расположение компонентов на печатной плате.


Рис. 5. Печатная плата.


Рис. 6. Печатная плата (зеркальный вид).

Датчик касания для Arduino

Модуль представляет собой сенсорную кнопку, на его выходе формируется цифровой сигнал, напряжение которого соответствует уровням логических единицы и нуля. Относится к емкостным датчикам касания. С такого рода устройствами ввода данных мы сталкиваемся при работе с дисплеем планшета, айфона или тачскрин монитора. Если на мониторе мы нажимаем на иконку стилусом или пальцем, то здесь для этого используется область поверхности платы размером с иконку Windows касание которой производится только пальцем, стилус исключается. Основа модуля микросхема TTP223-BA6 . Есть индикатор питания.

Управление ритмом воспроизведения мелодии

При установке в прибор сенсорную область поверхности платы модуля закрывают тонким слоем стеклотекстолита, пластмассы, стекла иди дерева. К преимуществам емкостной сенсорной кнопки относится большой срок службы и возможность герметизации передней панели прибора, антивандальные свойства. Это позволяет использовать датчик касания в работающих на открытом воздухе приборах в условиях прямого попадания капель воды. Например, кнопка дверного звонка или бытовые приборы. Интересно применение в оборудовании умный дом - замена выключателей освещения.

Характеристики

Напряжение питания 2,5 - 5,5 В
Время отклика на касание в различных режимах потребления тока
низкое 220 мс
обычное 60 мс
Выходной сигнал
Напряжение
высокий лог. уровень 0,8 Х напряжение питания
низкий лог. уровень 0,3 Х напряжение питания
Ток при питании 3 В и логических уровнях, мА
низкий 8
высокий -4
Размеры платы 28 x 24 x 8 мм

Контакты и сигнал

Нет касания - выходной сигнал имеет низкий логический уровень, касание - на выходе датчика логическая единица.

Почему это работает или немного теории

Тело человека, как и все что нас окружает, обладает электрическими характеристиками. При срабатывании датчика прикосновения проявляются наши емкость, сопротивление, индуктивность. На нижней стороне платы модуля расположен участок фольги соединенный с входом микросхемы. Между пальцем оператора и фольгой на нижней стороне расположен слой диэлектрика - материал несущей основы печатной платы модуля. В момент касания происходит заряд тела человека микроскопическим током, протекающим через конденсатор, образованный участком фольги и пальцем человека. При упрощенном рассмотрении ток протекает через два последовательно соединенных конденсатора: фольга, палец находящихся на противоположных поверхностях платы и тело человека. Поэтому если поверхность платы закрыть тонким слоем изолятора, то это приведет к увеличению толщины слоя диэлектрика конденсатора фольга-палец и не нарушит работу модуля.
Микросхема TTP223-BA6 фиксирует ничтожный импульс микротока и регистрирует прикосновение. Благодаря свойствам микросхемы работать с такими токами никакого вреда такая технология не наносит. Когда мы касаемся корпуса работающего телевизора или монитора через нас проходят микротоки большей величины.

Режим пониженного потребления

После подачи питания датчик касания находится в режиме пониженного энергопотребления. После срабатывания на 12 секунд модуль переходит в обычный режим. Если далее касание не произошло, то модуль вернется в режим пониженного потребления тока. Скорость реакции модуля на касание в различных режимах приведена в характеристиках выше.

Работа совместно с Arduino UNO

Загрузите в Arduino UNO следующую программу.

#define ctsPin 2 // Контакт подключения линии сигнала датчика касания
int ledPin = 13; // Контакт для светодиода

Void setup() {
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(ctsPin, INPUT);
}

Void loop() {
int ctsValue = digitalRead(ctsPin);
if (ctsValue == HIGH){
digitalWrite(ledPin, HIGH);
Serial.println("TOUCHED");
}
else{
digitalWrite(ledPin,LOW);
Serial.println("not touched");
}
delay(500);
}

Соедините датчик касания и Arduino UNO как показано на рисунке. Схему можно дополнить включающимся при касании датчика светодиодом, подключенным через резистор 430 Ом к контакту 13. Сенсорные кнопки часто оснащают индикатором касания. Так удобней работать оператору. При нажатии на механическую кнопку мы чувствуем щелчок независимо от реакции системы. Здесь новизна технологии немного удивляет из-за нашей моторики сложившейся годами. Индикатор нажатия избавляет нас от излишнего ощущения новизны.

Ваш регион:

Самовывоз из офиса

Самовывоз из офиса в Москве

  • При оформлении до 15:00 в будний день заказ можно забрать после 17:00 в тот же день, иначе — на следующий будний день после 17:00. Мы позвоним и подтвердим готовность заказа.
  • Получить заказ можно с 10:00 до 21:00 без выходных после его готовности. Заказ будет ждать вас 3 рабочих дня. Если хотите продлить срок хранения, просто напишите или позвоните.
  • Запишите номер своего заказа перед визитом. Он необходим при получении.
  • Чтобы к нам пройти, предъявите на проходной паспорт, скажите, что вы в Амперку, и поднимитесь на лифте на 3-й этаж.
  • бесплатно
Доставка курьером по Москве

Доставка курьером по Москве

  • Доставляем на следующий день при заказе до 20:00, иначе — через день.
  • Курьеры работают с понедельника по субботу, с 10:00 до 22:00.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 250 ₽
Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • PickPoint .
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 240 ₽

Доставка курьером по Питеру

Доставка курьером по Санкт-Петербургу

  • Доставляем через день при заказе до 20:00, иначе — через два дня.
  • Курьеры работают с понедельника по субботу, с 11:00 до 22:00.
  • При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 350 ₽
Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint .
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1-2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • 240 ₽

Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint .
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1-2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
Посылка Почтой России

Почта России

  • Доставка осуществляется до ближайшего почтового отделения в любом населённом пункте России .
  • Тариф и сроки доставки диктует «Почта России». В среднем, время ожидания составляет 2 недели.
  • Мы передаём заказ Почте России в течение двух рабочих дней.
  • Оплатить заказ можно наличными при получении (наложенный платёж) или же онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время заказа и в среднем должна составить около 400 рублей.
Доставка службой EMS

Доставка службой EMS

  • Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
  • Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4-5 дней.
  • Мы передаём заказ в EMS в течение двух рабочих дней.
  • Оплатить заказ можно только онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400-800 рублей для России и 1500-2000 рублей для стран СНГ.

Помимо онлайн-магазина, товар также представлен:

Офис-магазин, м. Таганская

Офис-магазин, м. Таганская

Товары из офиса нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Офис находится в 5 минутах ходьбы от м. Таганская, по адресу Большой Дровяной переулок, дом 6 .

Скоро Магазин-мастерская, м. Лиговский пр-т

Магазин-мастерская, м. Лиговский пр-т

Товары из магазина-мастерской нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Магазин-мастерская находится в трёх минутах пешком от метро Лиговский Проспект, на территории пространства «Лофт Проект Этажи», по адресу Лиговский проспект 74Д .

Ёмкостный датчик прикосновения работает как обычная кнопка, но в нём нет подвижных частей. Кнопка почувствует «нажатие» сквозь корпус устройства и сработает как бесконтактный концевик в проектах домашней автоматизации.

Сенсор работает через неметаллические материалы - пластмассу, картон, фанеру или стекло. Эту особенность можно использовать для создания скрытых или защищённых элементов управления.

Поместите модуль в герметичный корпус или спрячьте под лицевую панель устройства - кнопка почуствует приближение пальца даже через четырёхмиллиметровый слой диэлектрика.

Использование в качестве «кнопки» - не единственный вариант использования ёмкостных датчиков. Они отлично подойдут для контроля уровня воды в пластиковой бочке или стеклянном аквариуме.

Что на борту

Система определения прикосновения состоит из чувствительного элемента, блока измерения ёмкости датчика и логической схемы, реагирующей на изменение ёмкости при приближении объекта.

В качестве чувствительного элемента используется токопроводящий контур на лицевой части модуля.

Логика построена на базе микросхемы AT42QT1010 . Она отвечает за автоматическую калибровку датчика. Калибровка занимает примерно полсекунды и выполняется сразу после появления питания на модуле. Кроме того, микросхема фильтрует значения, компенсирует дрейф ёмкостного датчика и корректирует работу устройства при изменении температуры и влажности окружающей среды.

При каждом срабатывании сенсора загорается яркий красный светодиод. Это поможет при отладке проекта и пригодится для создания интерактивных панелей управления.

Подключение

Сенсорный модуль по своей сути аналогичен цифровой кнопке . Пока кнопка нажата, датчик отдаёт логическую единицу; когда кнопка не нажата - логический ноль.

В простом варианте модуль подключается к управляющей электронике как простая кнопка - одним .

Для этого используется левая группа контактов:

  • Контакт S - сигнальный пин, подключаемый к цифровому входу контроллера.
  • Контакт V - питание. Подключается к линии питания 3,3-5 В.
  • Контакт G - подключается к земле.

В правой группе контактов используется только один пин - M. Он переключает режимы работы модуля. Две оставшиеся ноги используются для надёжной фиксации модуля на Troyka Slot Shield .

Переключение режима работы

По умолчанию модуль работает в режиме пониженного энергопотребления. Опрос датчика проводится раз в 80 миллисекунд. Это существенно экономит энергию аккумуляторов.

Если вам требуется увеличить отзывчивость интерфейса, подключите пин М к контроллеру и подайте на него логическую единицу. Модуль переключится в режим высокоскоростной обработки данных, интервал опроса сенсора уменьшится до 10 миллисекунд.

Комплектация

  • 1× Плата-модуль

Характеристики

  • Напряжение питания: 3,3-5 В
  • Контроллер сенсора: AT42QT1010
  • Интерфейс кнопки: цифровой, бинарный
  • Габариты: 25×25 мм

В данной статье представлены некоторые основные схемы построения емкостных датчиков прикосновений и обсуждения, как бороться с низкочастотным и высокочастотным шумом.

Предыдущая статья

Измерение изменений

Если вы читали предыдущую статью, то вы знаете, что суть емкостных датчиков прикосновений заключается в изменении емкости, которое происходит, когда объект (обычно палец человека) приближается к конденсатору. Присутствие пальца увеличивает емкость, так как:

  1. вводит вещество (т.е. человеческую плоть) с относительно высокой диэлектрической проницаемостью;
  2. обеспечивает проводящую поверхность, которая создает дополнительную емкость параллельно существующему конденсатору.

Конечно, сам факт того, что емкость изменяется, не особенно полезен. Для того, чтобы на самом деле реализовать емкостной датчик касаний, нам необходима схема, которая может измерять емкость с точностью, достаточной, чтобы идентифицировать увеличение емкости, вызванное наличием пальца. Существуют различные способы сделать это, некоторые довольно просты, другие более сложные. В данной статье мы рассмотрим два основных подхода для реализации емкостного сенсорного функционала: первый основан на постоянной времени RC (резистор-конденсатор) цепи, а второй основан на сдвигах частоты.

Постоянная времени RC цепи

Возможно, вы также испытываете чувства ностальгии по университету, когда видите экспоненциальную кривую, представляющую график напряжения во время заряда или разряда конденсатора. Возможно, кто-то при взгляде на эту кривую впервые понял, что высшая математика всё-таки имеет какое-то отношение к реальному миру, да и в век роботов, работающих на виноградниках , есть что-то привлекательное в простоте разряда конденсатора. В любом случае, мы знаем, что эта экспоненциальная кривая изменяется, когда изменяется либо резистор, либо конденсатор. Скажем, у нас есть RC цепь, состоящая из резистора 1 МОм и емкостного датчика касаний с типовой емкостью (без пальца) 10 пФ.

Мы можем использовать вывод входа/выхода общего назначения (настроенный, как выход) для заряда конденсатора до напряжения, соответствующего высокому логическому уровню. Затем нам необходимо разрядить конденсатор через большой резистор. Важно понимать, что вы не можете просто переключить состояние выхода на низкий логический уровень. Вывод I/O, сконфигурированный на выход, будет управлять сигналом низкого логического уровня, то есть, он создаст низкоомное соединение выхода с землей. Таким образом, конденсатор быстро разрядится через это низкое сопротивление - так быстро, что микроконтроллер не сможет обнаружить едва заметные временные изменения, созданные небольшими изменениями емкости. Что нам здесь нужно, так это вывод с большим входным сопротивлением, что заставит почти весь ток разряда течь через резистор, а это может быть достигнуто настройкой вывода для работы, как вход. Итак, сначала вы установите вывод, как выход, выдающий высокий логический уровень, а затем этап разряда, вызывается изменением режима работы вывода на вход. Результирующее напряжение будет выглядеть примерно следующим образом:

Если кто-то прикасается к датчику и тем самым создает дополнительную емкость 3 пФ, постоянная времени будет увеличиваться следующим образом:

По человеческим меркам время разряда не сильно отличается, но современный микроконтроллер, безусловно, может обнаружить это изменение. Скажем, у нас есть таймер с тактовой частотой 25 МГц; мы запускаем таймер, когда переключаем вывод в режим входа. Мы можем использовать таймер для отслеживания времени разряда, настроив этот же вывод действовать, как триггер, который инициирует событие захвата («захват» означает хранение значения таймера в отдельном регистре). Событие захвата произойдет, когда напряжение разряда пересечет порог низкого логического уровня вывода, например, 0,6 В. Как показано на следующем графике, разница во времени разряда с порогом 0,6 В составляет ΔT = 5.2 мкс.

С периодом тактовой частоты таймера 1/(25 МГц) = 40 нс, это ΔT соответствует 130 тактам. Даже если изменение емкости будет уменьшено в 10 раз, у нас всё равно будет разница в 13 тактов между нетронутым датчиком и датчиком, к которому прикоснулись.

Таким образом, идея заключается в многократном заряде и разряде конденсатора, контролируя время разряда; если время разряда превышает заданный порок, микроконтроллер предполагает, что палец вошел в «контакт» с конденсатором датчика касаний (я написал «контакт» в кавычках потому, что палец на самом деле никогда не касается конденсатора - как упоминалось в предыдущей статье, конденсатор отделен от внешней среды лаком на плате и корпусом устройства). Тем не менее, реальная жизнь немного сложнее, чем идеализированное обсуждение, представленное здесь; источники ошибок обсуждаются ниже, в разделе «Работа в реальности».

Переменный конденсатор, переменная частота

В реализации на базе изменения частоты емкостной датчик используется в качестве «С»-части в RC генераторе таким образом, что изменение емкости вызывает изменение частоты. Выходной сигнал используется в качестве входного для модуля счетчика, который подсчитывает количество фронтов или спадов, возникающих во время периода измерения. Когда приближающийся палец приводит к увеличению емкости датчика, частота выходного сигнала генератора уменьшается, и, таким образом, количество фронтов/спадов также уменьшается.

Так называемый релаксационный генератор (генератор колебаний, пассивные и активные нелинейные элементы которого не обладают резонансными свойствами) представляет собой основную схему, которая может использоваться для этой цели. Для этого в дополнение к конденсатору датчика касаний требуются несколько резисторов и компаратор. Кажется, это вызывает больше проблем по сравнению с методом заряда/разряда, который обсуждался выше, но если ваш микроконтроллер обладает встроенным модулем компаратора, это не так уж и плохо. Я не буду вдаваться в подробности схемы этого генератора, потому что, во-первых, он обсуждается во многих других местах, и, во-вторых, маловероятно, что вы захотите использовать этот метод генератора, когда есть много микроконтроллеров и отдельных микросхем, которые предлагают высокопроизводительную емкостную сенсорную функциональность. Если у вас нет другого выбора, кроме как создать свою собственную схему емкостного сенсора касаний, я думаю, что метода заряда/разряда, описанный выше более прост. В противном случае, сделайте свою жизнь немного проще, выбирая микроконтроллер со специальным аппаратным обеспечением для емкостного датчика касаний.

Примером встроенного модуля, основанного на релаксационном генераторе, является периферия емкостного датчика в микроконтроллерах EFM32 от Silicon Labs:

Мультиплексор позволяет частоте колебаний управляться восьмью различными конденсаторами датчиков касаний. С помощью быстрого переключения между каналами, контроллер может эффективно контролировать одновременно восемь сенсорных кнопок, так как рабочая частота микроконтроллера очень высока по сравнению со скоростью движения пальца.

Работа в реальности

Емкостная сенсорная система будет зависеть и от высокочастотного, и от низкочастотного шума.

Высокочастотный шум вызывает в измерениях времени разряда или количества фронтов незначительные изменения от отсчета к отсчету. Например, схема заряда/разряда без пальца, о которой говорилось выше, может иметь время разряда 675 тактов, затем 685 тактов, затем 665 тактов, затем 670 тактов и так далее. Значимость этого шума зависит от ожидаемого изменения времени разряда при поднесении пальца. Если емкость увеличивается на 30%, то ΔT будет составлять 130 тактов. Если наши высокочастотные изменения составляют только ±10 тактов, то мы можем легко отличить сигнал от шума.

Однако, увеличение емкости на 30% находится вблизи максимального значения изменения емкости, на которое мы можем рассчитывать. Если мы получим изменение только на 3%, ΔT составит 13 тактов, что слишком близко к уровню шума. Одним из способов уменьшения влияния шума является увеличение амплитуды сигнала, и вы можете сделать это за счет уменьшения физического расстояния, разделяющего печатный конденсатор и палец. Однако, часто механическая конструкция ограничена другими факторами, и вы уже больше не можете увеличить уровень сигнала. В этом случае вам необходимо понизить уровень шума, что может быть достигнуто путем усреднения. Например, каждое новое время разряда может сравниваться не с предыдущим временем разряда, а со средним значением последних 4 или 8 или 32 результатов измерений времени разряда. Метод, основанный на сдвиге частоты и описанный выше, автоматически включает усреднение, потому что небольшие изменения около средней частоты не будут существенно влиять на количество подсчитанных циклов в течение периода измерений, который более длительный по сравнению с периодом колебаний.

Низкочастотный шум относится к долговременным изменениям емкости датчика без прикосновения пальца; эти изменения могут быть вызваны условиями окружающей среды. Этот тип помехи не может быть усреднен, потому что изменения могут сохраняться в течение очель долгого периода времени. Таким образом, единственный способ эффективно бороться с низкочастотным шумом должен быть адаптивным: порог, используемы для обнаружения присутствия пальца, не может быть фиксированным значением. Вместо этого, он должен регулярно корректироваться на основе измеренных значений, которые не показывают значительные кратковременные изменения, такие как те, что вызваны приближением пальца.

Заключение

Методы реализации, обсуждаемые в данной статье, показывают, что емкостное определение касания не требует сложного аппаратного и программного обеспечения. Тем не менее, это универсальная, надежная технология, которая предоставить значительное улучшение производительности по сравнению с механическими альтернативами.

А. В. Скурятин, г. Москва

Датчик прикосновения был создан в ходе экспериментального изучения качер-процесса в биполярном транзисторе, описанного В. И. Бровиным .

Предлагаемая для повторения схема представляет собой усилитель, обладающий высокой чувствительностью к электромагнитному полю, создаваемому внешними устройствами. При подключении входного контакта схемы к антенне светодиод сигнализирует о наличии излучения электромагнитного поля и наводок от электрооборудования. Светодиод также будет индицировать факт прикосновения к контакту, так как роль антенны в данном случае выполняет тело человека. Отсюда и название - датчик прикосновения. Другое название схемы - активная антенна .

Принципиальная схема датчика прикосновения показана на Рисунке 1.

Схема напоминает автогенератор на транзисторе n-p-n структуры. Один из выводов обмотки L1 подключается непосредственно к входному контакту X1. Полярность включения светодиода VD1 не имеет значения. Резистор R2 ограничивает ток через светодиод и, тем самым, определяет яркость его свечения при срабатывании датчика.

Датчик прикосновения собран на макетной плате размером 40 × 40 мм. Внешний вид конструкции показан на Рисунке 2.

Рисунок 2. Внешний вид датчика прикосновения.

Обмотки L1 и L2 расположены на общем каркасе с двумя секциями для намотки и подстроечным ферритовым сердечником. Наружный диаметр каркаса - 10 мм, длина сердечника - 23 мм, диаметр резьбы у основания сердечника - 6 мм. В конструкции, показанной на Рисунке 2, L1 намотана на верхней секции, L2 - на нижней. Каждая катушка содержит 100 витков провода ПЭЛ 0,2. Обмотки включены согласно. При помощи отвертки сердечник ввинчивается внутрь каркаса. Светодиод VD1 - любой из серии АЛ307 . В качестве Х1 использован лепесток заземления. Прикосновение к нему вызывает зажигание светодиода.

Параллельно VD1 можно подключить измерительный прибор, к примеру, мультиметр в режиме измерения напряжения, что позволит оценивать уровень напряженности поля. В этом случае внешняя антенна может представлять собой отрезок монтажного провода длиной несколько сантиметров. Настройка схемы будет сводиться к выбору длины антенны и поиску такого положения сердечника, при котором напряжение на светодиоде максимально.

Схема не привередлива к выбору элементной базы. К примеру, в первоначальном варианте схемы применялся транзистор КТ815Г , сопротивление резистора R1 составляло 100 кОм. В качестве L1 и L2 использовались две катушки на стержневом ферритовом сердечнике длинноволновой магнитной антенны из радиоприемника. Катушки можно было двигать вдоль сердечника. При перемещении катушек наблюдались явления, не противоречащие закону электромагнитной индукции, в отличие от схемы, предложенной в . При значительном удалении катушек друг от друга и без ферритового сердечника схема работать переставала.

Практическое применение схема может найти не только при конструировании измерителей напряженности поля, но и в устройствах автоматики и сигнализации. Датчик прикосновения можно подключить к микроконтроллеру. Для этого следует выполнить аналого-цифровое преобразование напряжения на светодиоде VD1, возможно, с помощью ресурсов самого микроконтроллера, если он содержит встроенный АЦП.

В заключение необходимо отметить, что существует немало схем датчиков прикосновения, основанных на полевых транзисторах и не содержащих индуктивных элементов. Возможно, их работа во многих случаях более эффективна, но конструкция, приведенная в этой статье, является примером оригинального технического решения и ориентирована на начинающих радиолюбителей.

Литература

  1. Бровин В. И. Явление передачи энергии индуктивностей через магнитные моменты вещества, находящегося в окружающем пространстве, и его применение. - М.: МетаСинтез, 2003 - 20 с.
  2. Крылов К. С., Ли Жаехо, Ким Янг Жин, Ким Сеунгхван, Ли Санг-Ха. Патент на изобретение №2395876. Активная магнитная антенна с ферритовым сердечником.