Элек трон ная конфигурация атома. Неорганическая химия

Символ Льюиса: Электронная диаграмма: Единственный электрон атома водорода может принимать участие в образовании только одной химической связи с другими атомами: Количество ковалентных связей , которые образует атом в данном соединении, характеризует его валентность . Во всех соединениях атом водорода одновалентен. Гелий Гелий, как и водород, - элемент первого периода. В своём единственном квантовом слое он имеет одну s -орбиталь, на которой находится два электрона с антипараллельными спинами (неподелённая электронная пара). Символ Льюиса: Не: . Электронная конфигурация 1s 2, её графическое изображение: В атоме гелия нет неспаренных электронов, нет свободных орбиталей. Его энергетический уровень является завершённым. Атомы с завершённым квантовым слоем не могут образовывать химических связей с другими атомами. Они называются благородными или инертными газами . Гелий - их первый представитель. ВТОРОЙ ПЕРИОД Литий Атомы всех элементов второго периода имеют два энергетических уровня. Внутренний квантовый слой - это завершённый энергетический уровень атома гелия. Как было показано выше, его конфигурация выглядит как 1s 2, но для её изображения может быть также использована и сокращённая запись: . В некоторых литературных источниках её обозначают [К] (по наименованию первой электронной оболочки). Второй квантовый слой лития содержит четыре орбитали (22 = 4): одну s и три р. Электронная конфигурация атома лития: 1s 22s 1 или 2s 1. C помощью последней записи выделяются только электроны внешнего квантового слоя (валентные электроны). Символ Льюиса для лития - Li . Графическое изображение электронной конфигурации:
Бериллий Электронная конфигурация - 2s2. Электронная диаграмма внешнего квантового слоя:
Бор Электронная конфигурация - 2s22р1. Атом бора может переходить в возбуждённое состояние. Электронная диаграмма внешнего квантового слоя:


В возбуждённом состоянии атом бора имеет три неспаренных электрона и может образовать три химических связи: ВF3, B2O3. При этом у атома бора остаётся свободная орбиталь, которая может участвовать в образовании связи по донорно-акцепторному механизму. Углерод Электронная конфигурация - 2s22р2. Электронные диаграммы внешнего квантового слоя атома углерода в основном и возбуждённом состояниях:

Невозбуждённый атом углерода может образовать две ковалентных связи за счёт спаривания электронов и одну - по донорно-акцепторному механизму. Примером такого соединения является оксид углерода (II), который имеет формулу СО и называется угарным газом. Подробнее его строение будет рассмотрено в разделе 2.1.2. Возбуждённый атом углерода уникален: все орбитали его внешнего квантового слоя заполнены неспаренными электронами, т.е. число валентных орбиталей и валентных электронов у него одинаково. Идеальным партнёром для него является атом водорода, у которого на единственной орбитали находится один электрон. Этим объясняется их способность к образованию углеводородов. Имея четыре неспаренных электрона, атом углерода образует четыре химических связи: СН4, СF4, СО2. В молекулах органических соединений атом углерода всегда находится в возбуждённом состоянии:
Атом азота не может возбуждаться, т.к. в его внешнем квантовом слое нет свободной орбитали. Он образует три ковалентных связи за счёт спаривания электронов:
Имея два неспаренных электрона во внешем слое, атом кислорода образует две ковалентных связи:
Неон Электронная конфигурация - 2s22р6. Символ Льюиса: Электронная диаграмма внешнего квантового слоя:


Атом неона имеет завершённый внешний энергетический уровень и не образует химических связей ни с какими атомами. Это второй благородный газ. ТРЕТИЙ ПЕРИОД Атомы всех элементов третьего периода имеют три квантовых слоя. Электронную конфигурацию двух внутренних энергетических уровней можно изображать как . Внешний электронный слой содержит девять орбиталей, которые заселяются электронами, подчиняясь общим закономерностям. Так, для атома натрия электронная конфигурация имеет вид: 3s1, для кальция - 3s2 (в возбуждённом состоянии - 3s13р1), для алюминия - 3s23р1 (в возбуждённом состоянии - 3s13р2). В отличие от элементов второго периода, атомы элементов V – VII групп третьего периода могут существовать как в основном, так и в возбуждённом состояниях. Фосфор Фосфор является элементом пятой группы. Его электронная конфигурация - 3s23р3. Подобно азоту, он имеет три неспаренных электрона на внешнем энергетическом уровне и образует три ковалентных связи. Примером является фосфин, имеющий формулу РН3 (сравните с аммиаком). Но фосфор, в отличие от азота, во внешнем квантовом слое содержит свободные d-орбитали и может переходить в возбуждённое состояние - 3s13р3d1:

Это даёт ему возможность образовать пять ковалентных связей в таких, например, соединениях как Р2О5 и Н3РО4.

Сера Электронная конфигурация основного состояния - 3s23p4. Электронная диаграмма:
Однако он может возбуждаться, переводя электрон вначале с р - на d -орбиталь (первое возбуждённое состояние), а затем с s - на d -орбиталь (второе возбуждённое состояние):

В первом возбуждённом состоянии атом серы образует четыре химических связи в таких соединениях как SО2 и H2SO3. Второе возбуждённое состояние атома серы можно изобразить с помощью электронной диаграммы:

Такой атом серы образует шесть химических связей в соединениях SO3 и H2SO4.

1.3.3. Электронные конфигурации атомов элементов больших периодов ЧЕТВЁРТЫЙ ПЕРИОД

Начинается период с калия (19K) электронная конфигурация: 1s22s22p63s23p64s1 или 4s1 и кальция (20Ca): 1s22s22p63s23p64s2 или 4s2. Таким образом, в соответствии с правилом Клечковского, после р-орбиталей Ar заполняется внешний 4s-подуровнь, который обладает меньшей энергией, т.к. 4s-орбиталь проникает ближе к ядру; 3d-подуровень остается незаполненным (3d0). Начиная от скандия, у 10 элементов происходит заселение орбиталей 3d-подуровня. Они называются d-элементами.


В соответствии с принципом последовательного заполнения орбиталей, у атома хрома электронная конфигурация должна быть 4s23d4, однако у него наблюдается «проскок» электрона, заключающийся в переходе 4s-элекрона на близкую по энергии 3d-орбиталь (рис. 11).



Экспериментально установлено, что состояния атома, при которых p-, d-, f-орбитали заполнены наполовину (p3, d5, f7), полностью (p6, d10, f14) или свободны (p0, d0, f0), обладают повышенной устойчивостью. Поэтому если атому до полузавершения или завершения подуровня не хватает одного электрона, наблюдается его «проскок» с ранее заполненной орбитали (в данном случае - 4s).

За исключением Cr и Cu, все элементы от Ca до Zn имеют одинаковое количество электронов на внешнем уровне – два. Этим объясняется относительно небольшое изменение свойств в ряду переходных металов. Тем не менее, для перечисленных элементов валентными являются как 4s-электроны внешнего, так и 3d-электроны предвнешнего подуровня (за исключением атома цинка, у которого третий энергетический уровень полностью завершён).

31Ga 4s23d104p1 32Ge 4s23d104p2 33As 4s23d104p3

34Se 4s23d104p4 35Br 4s23d104p5 36Kr 4s23d104p6


Свободными остались 4d и 4f орбитали, хотя четвертый период завершен.

ПЯТЫЙ ПЕРИОД

Последовательность заполнения орбиталей та же, что и в предыдущем периоде: сначала заполняется 5s-орбиталь (37Rb 5s1), затем 4d и 5p (54Xe 5s24d105p6). Орбитали 5s и 4d ещё более близки по энергии, поэтому у большинства 4d-элементов (Mo, Tc, Ru, Rh, Pd, Ag) наблюдается переход электрона с 5s на 4d-подуровень.

ШЕСТОЙ И СЕДЬМОЙ ПЕРИОДЫ

В отличие от предыдущего шестой период включает 32 элемента. Цезий и барий – это 6s-элементы. Следующие энергетически выгодные состояния это 6p, 4f и 5d. Вопреки правилу Клечковского, у лантана заполняется не 4f а 5d-орбиталь (57La 6s25d1), однако у следующих за ним элементов происходит заполнение 4f-подуровня (58Ce 6s24f2), на котором четырнадцать возможных электронных состояний. Атомы от церия (Се) до лютеция (Lu) называются лантаноидами – это f-элементы. В ряду лантаноидов, иногда происходит «проскок» электрона, так же как в ряду d-элементов. Когда 4f-подуровень оказывается завершенным, продолжает заполняться 5d-подуровень (девять элементов) и завершают шестой период, как и любой другой, кроме первого, шесть р-элементов.

Первые два s-элемента в седьмом периоде – это франций и радий, за ними следует один 6d-элемент – актиний (89Ac 7s26d1). За актинием следует четырнадцать 5f-элементов – актиноидов. За актиноидами должны следовать девять 6d-элементов и завершать период должны шесть р-элементов. Седьмой период является незавершенным.

Рассмотренная закономерность формирования периодов системы элементами и заполнения атомных орбиталей электронами показывает периодическую зависимость электронных структур атомов от заряда ядра.

Период – это совокупность элементов, расположенных в порядке возрастания зарядов ядер атомов и характеризующихся одинаковым значением главного квантового числа внешних электронов. В начале периода заполняются ns -, а в конце – np -орбитали (кроме первого периода). Эти элементы образуют восемь главных (А) подгрупп периодической системы Д.И. Менделеева.

Главная подгруппа – это совокупность химических элементов, расположенных по вертикали и имеющих одинаковое число электронов на внешнем энергетическом уровне.

В пределах периода с увеличением заряда ядра и возрастающей силы притяжения к нему внешних электронов слева направо уменьшаются радиусы атомов, что в свою очередь обусловливает ослабление металлических и возрастание неметаллических свойств. За атомный радиус принимают теоретически рассчитанное расстояние от ядра до максимума электронной плотности внешнего квантового слоя. В группах сверху вниз увеличивается число энергетических уровней, а, следовательно, и атомный радиус. При этом металлические свойства усиливаются. К важным свойствам атомов, которые изменяются периодически в зависимости от зарядов ядер атомов, также относятся энергия ионизации и сродство к электрону, которые будут рассмотрены в разделе 2.2.

Первоначально элементы в Периодической таблице химических элементов Д.И. Менделеева были расположены в соответствии с их атомными массами и химическими свойствами, но на самом деле оказалось, что решающую роль играет не масса атома, а заряд ядра и, соответственно, число электронов в нейтральном атоме.

Наиболее устойчивое состояние электрона в атоме химического элемента соответствует минимуму его энергии, а любое другое состояние называется возбужденным, в нем электрон может самопроизвольно переходить на уровень с более низкой энергией.

Рассмотрим, как распределяются электроны в атоме по орбиталям, т.е. электронную конфигурацию многоэлектронного атома в основном состоянии. Для построения электронной конфигурации пользуются следующими принципами заполнения орбиталей электронами:

— принцип (запрет) Паули – в атоме не может быть двух электронов с одинаковым набором всех 4-х квантовых чисел;

— принцип наименьшей энергии (правила Клечковского) – орбитали заполняют электронами в порядке возрастания энергии орбиталей (рис. 1).

Рис. 1. Распределение орбиталей водородоподобного атома по энергиям; n – главное квантовое число.

Энергия орбитали зависит от суммы (n + l). Орбитали заполняются электронами в порядке возрастания суммы (n + l) для этих ортиталей. Так, для подуровней 3d и 4s суммы (n + l) будут равны 5 и 4, соответственно, вследствие чего, первой будет заполняться 4s орбиталь. Если сумма (n + l) одинакова для двух орбиталей, то первой заполняется орбиталь с меньшим значением n. Так, для 3d и 4p орбиталей сумма (n + l) будет равна 5 для каждой орбитали, но первой заполняется 3d орбиталь. В соответствии с этими правилами порядок заполнения орбиталей будет следующим:

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<5d<4f<6p<7s<6d<5f<7p

Семейство элемента определяется по орбитали, заполняемой электронами в последнюю очередь, в соответствии с энергией. Однако, нельзя записывать электронные формулы в соответствии с энергетическим рядом.

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 3 5s 2 правильная запись электронной конфигурации

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 3 неверная запись электронной конфигурации

Для первых пяти d – элементов валентными (т.е., электроны, отвечающие за образование химической связи) являются сумма электронов на d и s, заполненных электронами в последнюю очередь. Для p – элементов валентными являются сумма электронов, находящихся на s и p подуровнях. Для s-элементов валентыми являются электроны, находящиеся на s подуровне внешнего энергетического уровня.

— правило Хунда – при одном значении l электроны заполняют орбитали таким образом, чтобы суммарный спин был максимальным (рис. 2)

Рис. 2. Изменение энергии у 1s -, 2s – 2p – орбиталей атомов 2-го периода Периодической системы.

Примеры построения электронных конфигураций атомов

Примеры построения электронных конфигураций атомов приведены в таблице 1.

Таблица 1. Примеры построения электронных конфигураций атомов

Электронная конфигурация

Применяемые правила

Принцип Паули, правила Клечковского

Правило Хунда

1s 2 2s 2 2p 6 4s 1

Правила Клечковского

Электронная конфигурация атома – показывает распределение ē по энерг. уровням и подуровням.

1s 1 ←число ē с данной формой облака

↖ форма электронного облака

энерг.уровня

Графические электронные формулы (изображения электронной структуры атома) –

показывает распределение ē по энерг. уровням, подуровням и орбиталям.

I период: +1 Н

Где - ē, ↓ - ē с антипараллельными спинами, орбиталь.

При записи графической электронной формулы следует помнить правило Паули и правило Хундда « Если в пределах одного подуровня имеется несколько свободных орбиталей, то ē размещаются каждый на отдельной орбитали и лишь при отсутствии свободных орбиталей объединяются в пары».

(Работа с электронными и графическими электронными формулами).

Напр., H +1 1s 1 ; He +2 1s 2 ; Li +3 1s 2 2s 1 ; Na +11 1s 2 2s 2 2p 6 3s 1 ; Ar +18 1s 2 2s 2 2p 6 3s 2 3p 6 ;

I период: водород и гелий – s-элементы , у них заполняется электронами s-орбиталь.

II период: Li и Be – s-элементы

B, С, N, O, F, Ne – р-элементы

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы делят на 4 электронных семейства или блока:

1) s-элементы у них заполняется ē-ми s-подуровень внешнего слоя атома; к ним относятся водород, гелий и эл-ты гл.п/гр. I и IIгрупп.

2) р-элементы – у них заполняется электронамир-подуровень внешнего уровня атома; к ним относят элементы гл.п/гр. III - VIIIгрупп.

3) d-элементы – у них заполняется электронами d-подуровень предвнешнего уровня атома; к ним относятся эл-ты побоч.п/гр. . I- VIII групп,т.е. эл-ты вставных декад больших периодов, распложенные между s- и р-элементами, их также называют переходными элементами.

4) f-элементы - у них заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды (4f-элементы) и актиноиды (5f-элементы).

У атомов меди и хрома происходит «провал» ē с 4s- на 3d-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций 3d 5 и 3d 10:

29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Экспериментально доказано, что состояния атомов, при которых p-, d-, f-орбитали заполнены наполовину (p 3 , d 5 , f 7), целиком (p 6 , d 10 , f 14) или свободны, обладают повышенной устойчивостью. Этим объясняются переходы – «провалы» - электронов между близкорасположенными орбиталями. Те же отклонения наблюдаются у аналога хрома – молибдена, а также у элементов подгруппы меди – серебра и золота. Уникален в этом отношении палладий, у атома которого 5s-электронывообще отсутствуют и который имеет след. Конфигурацию: 46 Pd 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 6 5s 0 4d 10 .

Вопросы для самоконтроля

1. Что такое электронное облако?

2. Чем отличается 1s-орбиталь от 2s-орбитали?

3. Что такое главное квантовое число? Как оно соотносится с номером периода?

4. Что такое подуровень и как это понятие соотносится с номером периода?

5. Составить электронные конфигурации атомов элементов 4-6 периода ПСХЭ.

6. Составить электронную конфигурацию атомов магния и неона.

7. Определить какому атому принадлежит электронная конфигурация 1S 2 2S 2 2p 6 3S 1 , 1S 2 2S 2 2p 6 3S 2 , 1S 2 2S 2 2p 4 , 1S 2 2S 1

ПЛАН ЗАНЯТИЯ № 7

Дисциплина: Химия.

Тема:

Цель занятия: Изучить механизмы образования ионной и ковалентной связи, рассмотреть ионные, атомные и молекулярные кристаллические решетки.

Планируемые результаты

Предметные: владение основополагающими химическими понятиями: химическая связь, ионы, кристаллические решетки, уверенное пользование химической терминологией и символикой; сформированность умения давать количественные оценки и производить расчеты по химическим формулам и уравнениям;

Метапредметные: использование различных видов познавательной деятельности и основных интеллектуальных операций: составление электронных конфигураций атомов химических элементов.

Личностные: умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

Норма времени: 2 часа

Вид занятия: Лекция.

План занятия:

1. Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

2. Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

3. Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

4. Механизм образования ковалентной связи (обменный и донорно-акцепторный).

5. Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

6. Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

Оснащение: Модели кристаллических решеток, учебник, периодическая система химических элементов Д.И.Менделеева.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 - изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Тема 7. Ионная и ковалентная химическая связь.

1) Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

2) Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

3) Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

4) Механизм образования ковалентной связи (обменный и донорно-акцепторный).

5) Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

6) Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической частицы или кристалла как целого. Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами: катионами и анионами, ядрами и электронами. При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами. На некотором расстоянии эти силы уравновешивают друг друга, и образуется устойчивая химическая частица.

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами. В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

Взаимодействие ионов:

Если атом теряет один или несколько электронов, то он превращается в положительный ион - катион (в переводе с греческого - "идущий вниз). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу. При этом возникает химическая связь, и образуются химические соединения. Такой тип химической связи называется ионной связью:

Ионная связь, как правило, возникает между атомами типичных металлов и типичных неметаллов. Характерным свойством атомов металлов является то, что они легко отдают свои валентные электроны, тогда как атомы неметаллов способны легко их присоединять.

Рассмотрим возникновение ионной связи, например, между атомами натрия и атомами хлора в хлориде натрия NaCl.

Отрыв электрона от атома натрия приводит к образованию положительно заряженного иона – катиона натрия Na + .

Присоединение электрона к атому хлора приводит к образованию отрицательно заряженного иона – аниона хлора Cl - .

Между образовавшимися ионами Na + и Cl - , имеющими противоположный заряд, возникает электростатическое притяжение, в результате которого образуется соединение – хлорид натрия с ионным типом химической связи.

Ионная связь – это химическая связь, которая осуществляется за счет электростатического взаимодействия противоположно заряженных ионов.

Таким образом, процесс образования ионной связи сводится к переходу электронов от атомов натрия к атомам хлора с образованием противоположно заряженных ионов, имеющих завершенные электронные конфигурации внешних слоев.

1. Атомы металлов, отдавая внешние электроны, превращаются в положительные ионы:

где n - число электронов внешнего слоя атома, соответствующее номеру группы химического элемента.

2. Атомы неметаллов, принимая электроны, недостающие до завершения внешнего электронного слоя , превращаются в отрицательные ионы:

3. Между разноимённо заряженными ионами возникает связь, которая называется ионной.

2. Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки.

Классификация ионов:

1. По знаку заряда: катионы (положительные, K+, Ca2+, H+) и анионы (отрицательные, S2-, Cl-, I-).
2. По составу: сложные ( , ) и простые (Na+, F-)


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12

Электронная конфигурация - формула расположения электронов по различным электронным оболочкам атома химического элемента или молекулы .

Электронная конфигурация обычно записывается для атомов в их основном состоянии. Для определения электронной конфигурации элемента существуют следующие правила:

  1. Принцип заполнения . Согласно принципу заполнения, электроны в основном состоянии атома заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.
  2. Принцип запрета Паули . Согласно этому принципу, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа).
  3. Правило Хунда . Согласно этому правилу, заполнение орбиталей одной подоболочки начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заполнение орбиталей парами электронов с противоположными спинами.

С точки зрения квантовой механики электронная конфигурация - это полный перечень одноэлектронных волновых функций , из которых с достаточной степенью точности можно составить полную волновую функцию атома (в приближении самосогласованного поля).

Если говорить в общем, атом, как составную систему, можно полностью описать только полной волновой функцией . Однако такое описание практически невозможно для атомов сложнее атома водорода - самого простого из всех атомов химических элементов. Удобное приближённое описание - метод самосогласованного поля . В этом методе вводится понятие о волновой функции каждого электрона. Волновая функция всей системы записывается как надлежащим образом симметризованое произведение одноэлектронных волновых функций. При вычислении волновой функции каждого электрона поле всех остальных электронов учитывается как внешний потенциал , зависящий в свою очередь от волновых функций этих остальных электронов.

В результате применения метода самосогласованного поля получается сложная система нелинейных интегродифференциальных уравнений , которая всё ещё сложна для решения. Однако уравнения самосогласованного поля имеют вращательную симметрию исходной задачи (то есть они сферически симметричны). Это позволяет полностью классифицировать одноэлектронные волновые функции, из которых составляется полная волновая функция атома.

Для начала, как в любом центрально симметричном потенциале, волновую функцию в самосогласованном поле можно охарактеризовать квантовым числом полного углового момента l {\displaystyle l} и квантовым числом проекции углового момента на какую-нибудь ось m {\displaystyle m} . Волновые функции с разными значениями m {\displaystyle m} соответствуют одному и тому же уровню энергии, т. е. вырождены. Также одному уровню энергии соответствуют состояния с разной проекцией спина электрона на какую-либо ось. Всего для данного уровня энергии 2 (2 l + 1) {\displaystyle 2(2l+1)} волновых функций. Далее, при данном значении углового момента можно перенумеровать уровни энергии. По аналогии с атомом водорода принято нумеровать уровни энергии для данного l {\displaystyle l} начиная с n = l + 1 {\displaystyle n=l+1} . Полный перечень квантовых чисел одноэлектронных волновых функций, из которых можно составить волновую функцию атома, и называется электронной конфигурацией. Поскольку всё вырождено по квантовому числу m {\displaystyle m} и по спину, достаточно только указывать полное количество электронов, находящихся в состоянии с данными n {\displaystyle n} , l {\displaystyle l} .

Энциклопедичный YouTube

  • 1 / 5

    По историческим причинам в формуле электронной конфигурации квантовое число l {\displaystyle l} записывается латинской буквой. Состояние с обозначается буквой s {\displaystyle s} , p {\displaystyle p} : l = 1 {\displaystyle l=1} , d {\displaystyle d} : l = 2 {\displaystyle l=2} , f {\displaystyle f} : l = 3 {\displaystyle l=3} , g {\displaystyle g} : l = 4 {\displaystyle l=4} и далее по алфавиту. Слева от числа l {\displaystyle l} пишут число n {\displaystyle n} , а сверху от числа l {\displaystyle l} - число электронов в состоянии с данными n {\displaystyle n} и l {\displaystyle l} . Например 2 s 2 {\displaystyle 2s^{2}} соответствует двум электронам в состоянии с n = 2 {\displaystyle n=2} , l = 0 {\displaystyle l=0} . Из-за практического удобства (см. правило Клечковского) в полной формуле электронной конфигурации термы пишут в порядке возрастания квантового числа n {\displaystyle n} , а затем квантового числа l {\displaystyle l} , например 1 s 2 2 s 2 2 p 6 3 s 2 3 p 3 {\displaystyle 1s^{2}2s^{2}2p^{6}3s^{2}3p^{3}} . Поскольку такая запись несколько избыточна, иногда формулу сокращают до 1 s 2 2 s 2 p 6 3 s 2 p 3 {\displaystyle 1s^{2}2s^{2}p^{6}3s^{2}p^{3}} , т. е. опускают число n {\displaystyle n} там, где его можно угадать из правила упорядочения термов.

    Периодический закон и строение атома

    Все занимавшиеся вопросами строения атома в любых своих исследованиях исходят из инструментов, которые предоставлены им периодическим законом , открытым химиком Д. И. Менделеевым ; только в своём понимании этого закона физики и математики пользуются для истолкования зависимостей, показанных им, своим «языком» (правда, известен довольно ироничный афоризм Дж. У. Гиббса на этот счёт ), но, в то же время, изолированно от изучающих вещество химиков, при всём совершенстве, преимуществах и универсальности своих аппаратов ни физики ни математики, конечно, строить свои исследования не могут.

    Взаимодействие представителей этих дисциплин наблюдается и в дальнейшем развитии темы. Открытие вторичной периодичности Е. В. Бироном (1915), дало ещё один аспект в понимании вопросов, связанных с закономерностями строения электронных оболочек. C. А. Щукарев , ученик Е. В. Бирона и

    Электронная конфигурация элемента это запись распределения электронов в его атомах по оболочкам, подоболочкам и орбиталям. Электронная конфигурация обычно записывается для атомов в их основном состоянии. Электронная конфигурация атома, у которого один или несколько электронов находятся в возбужденном состоянии, называется возбужденной конфигурацией. Для определения конкретной электронной конфигурации элемента в основном состоянии существуют следующие три правила: Правило 1: принцип заполнения. Согласно принципу заполнения, электроны в основном состоянии атома заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.

    Водород; атомный номер = 1; число электронов = 1

    Этот единственный в атоме водорода электрон должен занимать s-орбиталь К-обо-лочки, поскольку из всех возможных орбиталей она имеет самую низкую энергию (см. рис. 1.21). Электрон на этой s-орбитали называется ls-электрон. Водород в основном состоянии имеет электронную конфигурацию Is1.

    Правило 2: принцип запрета Паули . Согласно этому принципу, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа).

    Литий; атомный номер = 3; число электронов = 3

    Орбиталь с самой низкой энергией-это 1s-орбиталъ. Она может принять на себя только два электрона. У этих электронов должны быть неодинаковые спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин -1/2 стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными) спинами на одной орбитали схематически можно представить записью (рис. 1.27)

    На одной орбитали не могут находиться два электрона с одинаковыми (параллельными) спинами:

    Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, т.е. 2в-орбиталь. Таким образом, литий имеет электронную конфигурацию Is22s1.

    Правило 3: правило Гунда . Согласно этому правилу, заполнение орбиталей одной подоболочки начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заполнение орбиталей парами электронов с противоположными спинами.

    Азот; атомный номер = 7; число электронов = 7 Азот имеет электронную конфигурацию ls22s22p3. Три электрона, находящиеся на 2р-подоболочке, должны располагаться поодиночке на каждой из трех 2р-орбиталей. При этом все три электрона должны иметь параллельные спины (рис. 1.22).

    В табл. 1.6 показаны электронные конфигурации элементов с атомными номерами от 1 до 20.

    Таблица 1.6. Электронные конфигурации основного состояния для элементов с атомным номером от 1 до 20